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A complete set of orthonormal wave functions valid at all times including that of the classical

singularity is obtained in closed form for each mode of the quantized Gowdy T' universe. These wave

functions are superposed to yield that wave function for each mode which reduces to a given initial

state near the classical singularity. The expected number of quanta in each mode at times far from the

singularity is obtained and depends only on the constants which characterize the initial state. All

expectation values agree with those obtained classically and semiclassically except for a smearing out of
the essentially classical picture due to quantum fluctuations. The precise description of the initial state
at the singularity yields a model with the size and shape parameter of the universe satisfying an initial

free-particle —like equation and later captured in the N-quantum state of a rising harmonic-oscillator
potential. This contrasts with the graviton creation from vacuum fluctuations description of an earlier
treatment by Berger. Misner has shown that the Gowdy T' model universe may be described as a
scattering process in minisuperspace. He obtains a Klein-Gordon equation for the wave function of the

universe which is separable in Fourier components of the wave part of the gravitational field. It is

shown here that exact solutions exist for the Klein-Gordon equation which reduces for each mode to
the Schrodinger equation for a time-dependent-frequency harmonic oscillator. The methods of Salusti and

Zirilli are used to obtain wave functions characterized by the quantum number N with

harmonic-oscillator spatial (in superspace) dependence and time-dependent coeAicients. These N-quantum

wave functions are fixed uniquely by requiring agreement with the known large-time-limit wave

functions. Initial states are constructed for each mode near the time of the classical singularity which

are wave packets characterized by an initial position and an initial momentum. These states form an

overcomplete family of states. Their expectation values follow the classical equations of motion.

I. INTRODUCTION

The Gowdy T' universe' is the simplest example
of a closed, anisotropic, spatially inhomogeneous
empty cosmology. As such, it has been studied' '
as a useful model for classical and quantum-mech-
anical processes in early universes.

The phenomenon of pair creation in strong gra-
vitational fields has been studied by Parker' and
Zel'dovich and Starobinsky' by considering the
behavior of a quantized field in a given classical
background cosmology. The Gowdy T' universe is
especially useful as an example of this process
since the wave (dynamical) part of the gravitational
field itself is quantized so that the known solution
of Einstein's equations can be used to fully account
for the back reaction of created quanta on the
metric. '

The quantum-mechanical treatment of this uni-
verse as given by the author" followed the lines
suggested by Zel'dovich. ' Pairs of gravitons were
produced from vacuum fluctuations. These gravi-
tons were characterized (at all times) by a mo-
mentum (wave number) which was conserved
and a time-dependent energy. The number of
gravitons produced in each mode (momentum
value) was proportional to the ratio of the wave-
length of the mode to the horizon size at an initial

time. In this calculation an arbitrary initial time
must be selected and spacetime assumed flat
prior to it so that the initial W-quantum states may
be constructed. This initial-time choice then ap-
pears to control the further evolution of the sys-
tem"

Misner has argued' that the definition of initial
quantum number requiring an arbitrary construc-
tion at an initial time is not appropriate for the
Gowdy T' universe. The classical model has an
initia' singularity near which the cosmology is a
(different) Kasner universe in each mode. The
Kasner behavior of the universe corresponds to a
trajectory in superspace following a free particle
rather than a harmonic-oscillator-type equation
of motion. Far from the singularity, the universe
appears to consist of a spatially homogeneous
background filled with gravitational waves. "
Misner shows' that evolution of the Gowdy T'
universe may be interpreted as a scattering pro-
cess in (mini) superspa, ce. The initial states in

the quantized model would then be the in-states
for the scattering process and would reflect the
local Kasner appearance near the singularity.

In this paper we discuss the quantized Gowdy T'
model from the point of view of a scattering in
superspace. As before, ' ' the appropriate Klein-
Gordon equation is separable, yielding a Schro-
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The wave function P represents the amplitude for
the universe being at a given point [i.e., specified
q„(-~ «n «+~), X„7'] in superspace where Xo is
the constant Fourier component of X.

The wave function is separable in A,, and in the
q„with the wave function for each mode, g„, sat-
isfying the Schrodinger equation'

~ ~t]tn & ~ ~ 4v

2 &g„

(pz is the momentum conjugate to Xo and is a con-
stant. )

Thus the SchrMinger equation for each mode of
the Gowdy T' universe is that for a harmonic
oscillator with time-dependent frequency

oo„= f nf e" .
The method of Salusti and Zirilli" is used to find

exact solutions. This method assumes the usual
harmonic-oscillator spatial dependence to set up
equations for the time-dependent coefficients.

We obtain a complete orthonormal set of solu-
tions to the time-dependent Schrodinger equation
of the form (for mode n)

„='Jl„(r)Pe(f(7')q„) exp[-a(r q}„'], (4)

where f=( R2ea)'". P„ is a Hermite polynomial
of order N in q„with time (T) dependent coeffi-
cients. 'X~ is an N-dependent time-dependent nor-
malization. The coefficient a(~) is found uniquely
by requiring

dinger equation for each mode. This equation in
fact has exact solutions. Thus the conclusions
drawn from this analysis of the quantized Gowdy
T' universe reflect only the approximation in-
volved in neglecting, in the quantized model, de-
grees of freedom removed by symmetry in the
classical problem and the arbitrariness in the
method of quantization' and factor ordering.

The Gowdy T' universe is obtained by general-
izing the closed Kasner universe to allow spatial
dependence in one direction. It is described by
the metric"

ds'=e ' ii'( e4'dt-'+dt's)+e"(e do'+e 8d5'),

(l)
where v, A, , P, are functions of 6), t only and the
space variables 8, 0', & are closed to give a 3-torus
topology. Misner has shown4 that the scattering
in superspace can be described by the IGein-
Gordon equation

~ E —,—le" Q n'q„')y=o.
0~7 fl=- o

lim g„„=q„(q„;(u„)
7 ~+on

T

x exp —fp~ '(&+ o) dT'u„(T'), (6)

where T-+~ is far from the singularity, Q„ is
the usual harmonic-oscillator N-quantum wave
function for frequency ur„(T), and the time depen-
dence of v„may be neglected. The large-time or
radiation limit of the Gowdy T universe is dis-
cussed in Refs. 2-4.

The wave functions tI)„„are solutions of the
SchrMinger equation at all times including the
time v = - of the initial singularity. The total
wave function for mode n is thus

4n
= Q a~4n. x ~ (6)

q, =q, +p, T/px

p. =p' (&b)

where P„ is conjugate to q„and P„', q„' are constants.
The work of Klauder" on continuous-representa-
tion theory is used to show that the

~ P„q„) for all
P„', q„' form an overcomplete family of states (OFS}
and thus span the Hilbert space of solutions of the
free-particle SchrMinger equation.

For an initial state ] P„q„), the a„of Eq. (6) are
found by expanding

~
p„'qo) in the complete set g„„

evaluated near v = -~ (when both the g„„and
~
P„'q„') are solutions of the same SchrMinger equa-

tion). Since the a~ are constants, the solution
g„such that

lim q„= ~p„'q„')
~ ce

(6)

is now known for all times. Since all the in-states,
] P„'q„'), have been found and all the out-states,
lim, „g„„,are known, the S matrix for the scat-
tering can be determined. It is easily found to
have the matrix elements

Sg;oooo ag( pns qn)

Thus the problem has been solved.
It becomes trivial to calculate any expectation

values of interest. For example, the expected
number of quanta in mode n, (N„), is

where the a„are constants. Near the initial sin-
gularity, the time-dependent potential term
—,&u„'q„' in the SchrMinger equation drops out (since
lim, „u&„=0}so that the appropriate states are
those for a free particle.

We choose as the initial states wave packets
] Poq„') which satisfy the free-particle SchrMinger
equation and of which the expectation values
(q„),( i&/&q-„) = (P„)—satisfy the classical (Kasner)
equations of motion''4
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(10) The coordinate choice

(13}
and is a conserved quantity because the g„~ have
been constructed as eigenfunctions of the number
operator. With this construction, (N„) represents
the number of quanta present as &- +~ for an
initial wave packet ~

P„'q„'}. In contrast to Refs.
2 and 3, no unphysical initial time must be spec-
ified. Initial conditions P„,q„are imposed at
w= —~, the time of the initial singularity.

To compare Eq. (10) directly with (N„) as found
in Refs. 2 and 3, we use as an initial state the
lowest-energy (N=O) state of the wave equation
(3) for the frequency ne" evaluated at r =r, and
assumed fixed. (This procedure is equivalent to
stopping the expansion of the universe prior to 7p )
This initial state 4',(r,) is then expanded in the
(t)„„wave functions and (N„} is calculated. The
result obtained (for pq = 1 and multiplying by 2 to
include the mode -n} is precisely Eq. (110) of
Ref. 3 for N„(r) in the limit of v- ~. Thus the
choice of (I', (7,) as an initial state is equivalent
to a diagonalization of the Hamiltonian quantiza-
tion. '9

All other expectation values in addition to Eq.
(10) can be obtained from a semiclassical treat-
ment, so that the full quantum treatment here
yields no new information. Fluctuations 4q„, &&„,
etc. , can be calculated but serve merely to slight-
ly smear out the classical picture.

In Sec. II we summarize the classical picture
using the notation of Misner and the results of
Refs. 2-5. Section II is a discussion of the quan-
tization including the complete wave functions

g„„,which are derived in Appendixes A and B.
Section IV is a discussion of the initial states

~
P„'q„'}, which are shown to be an OFS in Appendix

C. Section V contains a derivation of the S matrix
S„.~o, o, and Sec. VI gives the results for the cal-
culations of (N„), (q„), b.q„, and bN„. The re-
sults are discussed in Sec. VII.

O ),(=-~ N.m)
' $ d&(l(* ~ le"()'*)=O, (14)

where Pz and P are the momenta canonically con-
jugate to X and p,

p, -=(2v} ' d8p, (15)

is the constant Fourier component of P„ the rno-
mentum conjugate to v, and the prime denotes
8/88. The dynamics of this universe is found
from the super-Hamiltonian (14).

The spatially varying part of the metric vari-
able ~ which we call ~, is nondynamical and is
found by identically solving the momentum con-
straint to yield4

9

~, =-(p, )-' pp d8 (2v)-) d8' d8pdp
Q 0

(16)

The constant Fourier component

is the dynamical variable conjugate to p& and is
cyclical in the super-Hamiltonian (14).

To easily study Eq. (14), P and P are rewritten
in Fourier-decomposed form4

P =qo+~2 g (q„cosn8+q „sinn8),
fl= j.

(18a)

f) =P, +W2 g (P„cosn8+P „sinn8), (18b)
fl —j

and the 8 integration in Eq. (14) is performed. We
obtain4

(which is preserved in time) leads to the integrated
Hamiltonian constraint~ (G = I = c)

IL THE CLASS1CAL GOODY T MODEL
(19)

The Gowdy T' universe is described by the
metric4'"

s' =e ' ~ '(-e"dt'+dP)

+'e( dec'+ e d5'),

where the metric variables 7', X, and P are func-
tions of t and 6} only. The 3-torus topology of the
spacelike hypersurfaees is achieved by requiring
0 ~ (9 ~ 2' and

The 3-torus topology requires the total 6 mo-
mentum Q to be zero4:

Q = -(2m} "~ PP'd6) =0 ~ (20)

(21)

Equation (20) acts to restrict the solutions ob-
tained by varying @. Upon Fourier transforma-
tion, we find4

do d5=8. (12} Varying @with respect to P and Xo yields
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dv/dt=p~ and p&, =const, (22)

which allows us to use v as the time variable.
We obtain the equations of motionn (the overdot

denotes &/8 v}

that in the limit of 7--~, the Gowdy &' universe
reduces to a Kasner universe in each mode n with
a true singularity at &= -~.'

Near the singularity,

~n =p, /p~

2 4T
p = ——e

Px. g n'q„',

(23a)

(23b} or

HAnM (p)) Q np

qn =qn+pn7/pv ~

(28)

(27)
q„=p„/p, , p„= —e"q„'.

Pk
(23c)

From Eqs. (23c) and (21), we see that Q=O is
satisfied if the ratio of the odd-parity amplitude

q to the even-parity amplitude q, „ is constant
in time v for each mode n.

Equations (23c) combine to yield the second-
order equation

Pz'q„+n'e"q„= 0. (24)

The dynamical equations for the field amplitude
q„can be found by varying the Arnowitt-Deser-
Misner (ADM) Hamiltonian

HADM ( pX) Q n( p (25}

which is obtained as -P, i.e., the negative of
the momentum conjugate to &. It has been shown

where 2m=-2v+y+1n(~ n~ /4Pq) and y is Euler's
constant. {The use of f' as the time variable sim-
plifies the form of the appropriate solution of
Eq. (24) as given in Eq. (28). Equivalently, we
could have taken q'„=—q„'+ [y/2+ & in(~ n~ /4P~)]P„'/P~
as the coefficient of 8, in Eq. (28). This would
yield q„' in place of q„ in the final results. ) The
solution of Eq. (24) which reduces to Eq. (27) in

the limit v- -~ is

(28)

where J„and N, are respectively the vth-order
regular and irregular Bessel functions. 'n (Note:
For the mode n=0, the Kasner relation qp qp
+pn&/pq is retained for all time. )

In the limit as 7-+~, we have

1/2 T

lim q„=Py {d„—Py p& sin p) dT {dn +qz — cos py dT +n
T ~on

where

(u„-=[nJe". (3o)

or'

0 2p~@. =~A". =~.
8 (p.')'+ -p~(q!)' (3 l)

In this limit the time dependence of ~„can be
neglected compared to all other time derivatives.
The ADM Hamiltonian can thus be expressed as
the "energy" due to the sum of N„harmonic oscil-
lators of frequency ur„ for each mode n (40) di-
vided by Pz. For mode n, the component of the
equivalent harmonic-oscillator Hamiltonian P&H„
1s

III. QUANTIZING THE MODEL

[p., ~.l=-,
[P„~]=-f,

[p., q.l=-f, «c. ,

(34a)

(34b)

(34c)

To quantize this model, we follow Misner4 and
require the wave function for the universe 4 to
obey the (mini) superspace equation

(33)

where@ is given by Eq. (19). By imposing the
usual commutation relations on the dynamical
variables (I = l),

02 X 02 (32) we can write Eq. (33) as the Klein-Gordon equa-
tion

The interpretation of these oscillators as gravi-
tons is described in Ref. 3. Thus, classically,
this model behaves as a system of disjoint Kasner
universes near the singularity and as a universe
containing gravitational radiation far from the
singularity.

a' 1 a'
1 ™~ g —,—le" Q n'q„*)n =a.

~~0~~ „2 &q„' ~oo

(35)

This equation is easily seen to be separable in
~ and for each n —i.e., we may write4
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~Ingp„—"= —— + 2rPe q2 gq 2 (37}

From Ref. 3 or Eq. (29) or by direct substitu-
tion, we find that in the limit of 7 -+~ (i.e., far
from the classical singularity)

(36)

where f is an arbitrary function. The separated
wave functions (C)„each satisfy the Schrodinger
equation'

=X„((2Rea)'"q„),
where X„ is the Nth-order Hermite polynomial,
and

' e*')qInl

2p lt

(40d)

The properties of the Hermite polynomials are
used to construct the generating function

F(s, q„, r) = exp[-s'+ 2(2 Rea)'"sq„]

x q)„(q„;e„), (38) P„q„,T s" Nf (41)

Equations (38) and (39) are valid in the (adiabatic
or WKB) regime for which &u„' » p~dur„/dr or
~. =-

I
s

I
s"= p~

'
Using the methods of Salusti and Zirilli" for

finding wave functions for time-dependent-fre-
quency harmonic oscillators, we obtain a complete
set of normalized wave functions g„„(q„,r) which
are solutions of Eq. (37) for all r These w. ave
functions are completely determined by requiring
agreement with Eqs. (38) and (39) in the limit of
7-+~. These solutions are constructed in detail
in Appendixes A and B.

We find that the set of solutions to Eq. (37) has
the form

q„„=X„(r)P„(q„,r) exp[-a(r)q„'], (40a)

where X„ is a time-dependent normalization fac-
tor, P„ is an Nth-order polynomial in q„with
time-dependent coefficients, and a is a complex
time-dependent function. We find (Appendix B)
that

where &u„=
~

n~ e", a„ is constant for all N, and

Q„ is the usual W-quantum harmonic-oscillator
wave function for a unit-mass oscillator with fre-
quency ~„. The Schr6dinger equation (3V) becomes
in this limit

to show that the g„„form a complete, orthogonal,
normalized set of solutions of the SchrMinger
equation (37). By using the large-argument
(7-+~) form of the Hankel functions, we find

lim f„,„=exp fp~ '(N-+ —,') &o„dr' (t)„(q„;u„),
Tw oo

(42)

as required.
The P„„can be constructed from the ground

state
1/2 I +I -1/2

*»4&-«/8 ~[»

x exp(- aq„') (43)

where

=(N)) '"(A }"(() (44)

=e "~'(s/Sp )'" /see"H'" e" qn
2p n

(, ) )n( „s
2P},

(45)

and the caret denotes an operator. The operator
A„constructed as the Hermitian conjugate of A„
yields

by a rule analogous to that for the harmonic oscil-
lator,

2 1/2
cg -fN &/4+-f&/82-8/2p 1/4 + ~

8 Nt -1/2
A„t]I)„0= O (48)

„@,) l I,„"'H(, ) I I ... " '"'"'
0 2p 0 2p

for all times. %e also obtain the time-independent
commutation relation

(40b) [A„,A„]=1. {47}

{where H„' is a t/th-order Hankel function of the
ath kind),

To satisfy Eqs. (38) and (39), we completely de-
termine &„and A„by requiring
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lim A„=a„=(2(u„)"'(P„+i(u„q„)
7'w + eo

7- I

xexp i—(pq) ' ru(r')dr'

(48)

IV. THE INITIAL-STATE %AVE FUNCTIONS

The total wave function for mode n must be a
superposition of the A-quantum wave functions
(40a)—i.e.,

where e„ is given by Eq. (30) and a„ is the usual
harmonic-oscillator creation operator.

From Eq. (44) we easily show that

4. ,». , =(&+I) ' &.4.~ (49a)

and

(49b)

X„-=A„A„ (50)

such that

Thus we can construct the conserved number op-
erator

4. = Q n»))'. .» ~

N=o
(52}

To determine the appropriate a„, we study the
solutions of Eq. (37) in the vicinity of the classical
singularity v = -.

In this limit, Eq. (37}becomes a "free-particle"
SchrMinger equation

8$ 1 82
zp, 8 qn

(53)

(since the potential term goes to zero), where
is the wave function near the singularity. (For

convenience we shall again use 7'—= r+ 2[y+In(~n~/
4P), )] as the time variable. )

It is clear that we must have

N„g„g =Kg„N . (5I)
0 .(q. , ~) = dk F(k) exp(ikq„—2ik'7'/p„),

Thus the wave functions g„„are eigenfunctions
of the number operator. From Eq. (48) and its
Hermitian conjugate, we conclude that N„as de-
fined in Eq. (50) is just the usual harmonic-oscil-
lator number operator in the limit of 7-+~.
Since it is a conserved operator, N„must at all
times produce, when acting on the wave function,
the number of gravitons which will be present in
the adiabatic regime for a given initial state.

(54)

where F(k) is chosen so that ))) „ is normalized.
For

F(k) = (4») '"exp[- s v( p„' —k)' + iq„'( p„' —k) ],
(55)

we obtain the normalized wave packet

(q T} p) + 2i j/p e'xp ipoq i qq ( ql qqq pqq /p ) )
2 pg w/2p), +2if/p) (56)

In addition to being a solution of Eq. (53}, ))) „
from Eq. (56) has the following properties:

the limit v- -«. In fact, the form of Eqs. (55)
and (56) was suggested by the fact that

&q.) -=dq. 0*=q.4- =q!+p!f/pi, (57a) lim i(„,=P~ "' +2if/P
«OO Px

1/2

(q ) —f dq q (—'q/qq =)q =)d, (57b)

2./qq, .q q/. ,) (58)

and

g „(q„,r)~,0 )q. ,= lim g„,(q„, r),
7'w «00

(57c}

where )))„,is given by Eq. (43). Properties (57a)
and (57b} imply that our initial state ))) „ is a wave

packet whose expectation values follow in this
limit the classical equation of motion (24). The
spread of the wave packet is fixed by Eq. (57c)
to coincide with that for the ground-state wave
function $„0which behaves as a wave packet in

is a spreading minimum-uncertainty wave packet. "
Thus for each set of initial conditions P„,q„a

wave packet with the classical expectation values
can be constructed. Thus let us rewrite the initial
wave function as ))) (q„, r; P„,q„) —= (P„'q„') . In Ap-
pendix C we show that the set

~
p„'q„') for all p„', q„'

can be put into 1 to 1 correspondence with the
overcomplete family of states (OFS} for phase
space, as discussed by IQauder. " Thus the OFS
( p„'q'„) for all p„', q„' spans the space of solutions
of the SchrMinger equation (53). Therefore, the
wave functions (56) for all P„', q„' constitute all the
initial states for mode n of this model.
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$„,= ()t'„I U(+, — )I ))',), (59)

where g, is an in-state, g„ is an out-state, and
U(t, t') is the time-evolution operator —i.e.,

V. THE SCATTERING MATRIX

The Klein-Gordon equation (35) is that for a
particle (or, in this case, universe) scattering
in a (mini) superspace with ™+2dimensions
~„~,qp qy q The in-states for this
scattering process are the ~Poqo). The out-states
are the |I)„„in the limit of T-+~. The 5 ma-
trix relating the in- and out-states has the ele-
ments"

SN. pp 0= (fq„(lim„„(t)d'
» }(t (63)

%'e now reconsider the state of the system for
mode n,

(64)

For the system initially in the state )P„'q„), we
have

4. = U(r, -")
I p.'q.'&, (65)

where, from Eqs. (40), )()„» is known for all r.
Thus we define the S-matrix elements

U(t, t '))t)(t ') = )t) (t) .

Since Ut = U ', Eq. (59} may also be written

S„,= (U(-, + )0„I 0,) . (61)

i.e., the state of the system is the future evolved
initial state. Comparing Eq. (63) with Eq. (65)
substituted in Eq. (64), we find

But

U(-~, ~) lim)t)„» = lim )t)„», (62)

N;p (66)

Using Eqs. (40) and (56}, the integration (63} is
easily performed to yield

I x 77

Thus given the initial wave packet characterized
by p„, q„' we have obtained the wave function which
is a solution of Eq. (37) at all times for the mode
n (We no.te bere that the mode n=0 retains its

~
)Cq„') form for all 7 This is t.he quantized Kas-

ner behavior. "}
VI. THE STATE OF THE SYSTEM

To obtain the full solution (36), we must form
the product of the wave functions g„over the n

modes. This product is restricted by the condi-
tion (21) on the total e momentum. In the quan-
tized model, Eq. (21) becomes

(67)

I

initial condition.
Calculations of various expectation values in

the state $„defined by

(71)

for some p„', q„' (i.e., the initial state is a basis
state) are completely straightforward using Eq.
(52) for (J)„with a„ from Eq. (67).

The expected quantum number in the mode
n, N„ is [using Eq. (50) for N„]

(N„) = f dd„d„'A„d„d„

(9)=0. (68)

From Eq. (21), we see that the modes sn must
satisfy

= Pf dd ddd„' „d.„„'„,
f
a„)'N. (72)

=0. (69)

Using Eq. (52) for (1),„with a„ from Eq. (67), we
find that Eq. (69) is equivalent to

0 0 0 0
~nq~ =P-nqn y (VO)

as in the classical treatment.
Thus, subject to the restriction of Eq. (70), the

complete wave function (36) may be written down

with )t)„given by (52) and a„ from Eq. (67). The
distribution f(P),) is, of course, an arbitrary

(d d dd ) f.f .~-~ .d:=-d (i d A. d )d..d .. . .-, .
Using Eq. (67) for a„, the summation is easily
performed to yield

('I 3}

aN„= +((N„') —(N„)')"' . - (74)

A comparison with Eq. (32) for the (semi)classical
N„shows that the quantum treatment yields the
came result.

%e can also calculate a purely quantum-mech-
anical quantity —the fluctuation in quantum number
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Straightforward use of a procedure as in Eq. (72)
for

X' =A„'A„A„'A„

yields

(N. '& =&N.&'+&N. &

(75)

(76)

or

n, N„= + ((N„& )'", (77)

where (N„& is given by Eq. (73). Thus the fluc-
tuations are at the usual statistical level. We
emphasize here that both (N„& and bN„are con-
served quantities in this treatment but describe
the number of particle-like quanta (gravitons)
only at large times. The value of (N„& valid for
all times in the quantum treatment agrees at
large times with the semiclassical value obtained

by recognizing the quantum-like (or radiation)
character of the system in the adiabatic regime.

Other calculations are also easily performed.
The expected value of the field amplitude q„ is

Comparing Eq. (78) with the classical q„[Eq. (28)]
shows that the expected field amplitude satisfies
the classical equations of motion at all times.

The field fluctuations

Z2 2T +pf 2 ~2T

(7S}

are independent of initial conditions P„', q„' and
vanish at large times. The fluctuation bq„ is
infinite at the classical singularity.

VII. DISCUSSION

A comparison of the classical results of Sec. II
with the quantum results of Sees. III-VI shows
surprisingly little effect of quantization. The only

significant difference appears to be the smearing
out of the quantum picture due to fluctuations. The
expectation values all agree with the classical
quantities so that the singularity structure is un-
changed. Even the Planck length, i.~ = (Gk/c')"', —

which was introduced through the commutation
relations, "appears to play no significant role
since the number of Planck lengths, times, etc.
in any relevant quantity can be controlled by

adjusting the free parameter p&."
We emphasize here that the g„„(q,r) of Eq. (40)

constitute a complete orthonormal set of solutions
of the SchrMinger equation (37) for all times

-& ~7' - ~. Once the g„„have been obtained, only
questions of interpretation remain —i.e., which
superpositions of the g„„are physically interest-

ing�.

The ~P„'q„'& initial states [Eq. (56}], constructed
as minimum-uncertainty wave packets, are those
which most nearly reproduce the classical results
for this model universe. They are readily inter-
pretable and well defined at all times including
that of the initial singularity, and thus enable us
to avoid the problems usually associated with
particle-number definition in strong gravitational
field regimes. '

By contrast, we reproduce the results of Ref. 3

by requiring co„=co„—= ne"p for all v ~ v„where
Tp is arbitrary, and choosing as a vacuum state
the lowest-energy eigenstate of the Hamiltonian
2p„'+2~„'q„'. If ~„ is not in the adiabatic regime
for mode n, gravitons are created. This creation
regime is, however, just that where particle
number is not well defined, ' so that the creation is
more a consequence of the inappropriateness of
the particle description of the initial state than
an actual physical process.

Thus the choices of initial states such as the

~
p„'q& which are appropriate near the classical

singularity are seen to follow the known classical
behavior of the system. As such, they should
(to within the limitations of the model due to the
absence of degrees of freedom absent classically
by symmetry) eliminate artificial creation as-
sociated with poorly defined graviton number and

should describe interesting physical processes.
This use of plane-wave initial states to describe

a Kasner-like singularity has been generalized to
the case of a quantized massive scalar field in a
given classical background spacetime which is
spatially homogeneous with a 3-torus topology. "
Very similar results are obtained.

The conjectures which have been made" as to
the importance of quantization of gravity do not

appear to be valid in this model since the quanti-
zation essentially reproduces the classical results.
It is possible that the quantization of a more
complex cosmology with interacting modes would

yield results absent from classical universes. "
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APPENDIX A: THE GROUND-STATE WAVE FUNCTION

We use the method of Salusti and Zirilli" to
find solutions to Eq. (37) of the form



2778 BE VERLY K. BERGER

0 = Q a»4, »(q r'Px) ~

N

We assume that g„p can be written

)„,=3f exp[E(~)q„'+ B(v)q„+C(~)] .

(A1)

(A2)

We also see that the Hermitian conjugate of Eq.
(A7}

At= -f ( n~ e"Z+ e" q —Z+ e"
2pg 2P'x 8qn

For convenience, we choose B(r) =0 or alterna-
tively choose a new q„with no linear term in the
exponent of Eq. (A2). The SchrMinger equation
(37) restricts E(r) and C(r) to satisfy the equa-
tions

(A8)

yields A„()I as a solution of Eq. (37) for g a solu-
tion. [Z~(x) is the complex conjugate of Z„(x) when
x is real. ]

Operating with A„on g„p yields

and

gp„= 2g2+ —,pg2g«
d7' (A3a)

A„t|)„p=-0 (A9)

dc
iP) —= -~

dT

Equations (A3) are easily solved" to yield

(A3b)

for any choice of Bessel function Z, confirming
our calling g„p the ground state and allowing us
to call A.„an annihilation operator. We shall
call A„a creation operator and define in analogy
with the usual harmonic oscillator

=-(&') '"(A)"() (A10)

ip) =-+ e pdT
(A6a)

(A4)

where Z„(x) is any solution of the uth-order
Bessel's equation.

Let us assume that f is a solution of Eq. (37).
We wish to construct an operator

A„—=y(r)q„+ p(~)s/sq„

such that A„g is also a solution of Eq. (37). For
A„g to be a solution, we require

The boundary condition (38) requires that we
choose

(A11)

as the appropriate solution of Bessel's equation,
where 0,'~ is the vth-order Hankel function of the
ath kind. (Note: Z„'=H," .)

APPENDIX B: THE N-QUANTUM

%B'AV

E FUNCTIONS

From Eq. (A10) we obtain the analogous recur-
rence relations

and 4. , »„=(&+1}'"&.'0. . » (Bla)

dp
d7

Equations (A6) are easily solved to yieM

(A6b)

g. , » -, = (H} '"&.(I. , » . (B1b)

e q —z

(A7}

Equations (Bl) will be used to find the explicit
form for g„N.

The form [Eq. (45)] of the operators A„and A„
forces g„„to be written as

{B2)

where XN is some function of time and PN is a polynomial of order N in q„with time-dependent coeffi-
cients.

The recurrence relations (Bl) yield

1/2 ] ] t 1 ~ 1/2 I)ply
(H y 1) 1/2(3f ) 13f i Pk H(1) I I e2w P H(R) I I e2™e iK/4 (B3a)

and
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1/2

(N) 1/2(5f ) 13f ( ') + 1 «/4H( 1) I nI e2 «N
N l N l N 8~ 0 (B3b)

which combine to yield the second-order equation

'dP m I gI &g2p
q eq„'4P„~ 2P,

'
Bq

The solution of Eq. (B4) which reduces to the correct limit as 7- ~ is

(B4)

(B5)

where XN is the Hermite polynomial of order N.
The ratio 5f///3f„, is determined by requiring Eqs. (B3) to be the usual recurrence relations for Hermite

polynomials. We find that

l/2 I„I
(7) 2-1/2(N+ i)-»2(~2) H(2) e2«e («/4 H(1) -" e2«5f (y)N+l (Bs)

By comparing Eq. (B2) for N=O with the known result [Eq. (43)] for (t„o we see that

1/2

p 1/4~-f &/8 H(l) I ~ e2 7'

0 ~ X 0 2P

Thus

l/2 —
I ~I

- N/2
-

I&I
- -(N+l)/2

3f (7) e-(N « /«e i «/22 N/2(+ i)//(N( ) -1/2P 1/4 )/f(2) I I e2 «H(1) I I e2 «

2P), — —
' 2P)

Substituting Eqs. (B8) and (B5) in Eq. (B2) yields Eqs. (40) as the N-quantum wave function.

(B7)

(BS)

APPENDIX C: THE OVERCOMPLETE FAMILY

OF STATES {OFS)

In his work on continuous-representation theory"
IQauder has defined an overcomplete family of
states as normalized vectors in a Hilbert space
which lie arbitrarily close to each other (non-
orthogonal) and span the Hilbert space. As an ex-
ample of an OFS he gives" one-dimensional phase
space characterized by

U(p„q, ) =e'"e "0'e"&' (C4)

4', =
I p„' = Oq„' = 0)-=li m (ti „,,

we can show that

(C 5)

the 4(p„q,) constitute an OFS for any choice of
real a.~

For the Gowdy T' universe, we wish to show that
the IP„'q„') defined by Eq. (56) constitute an OFS
(for each n, P1). For the choice of fiducial vector

[q, P] =i, (C 1) Ip, q„') =U(p„', q„')4&& (C6)

where the caret denotes operator. The elements
of this OFS are the vectors in the Hilbert space of
solutions of the free-particle SchrMinger equation

for

U = exp[--'( p.')'&/p1 —1(q.'+ p.'~/p1) p. + ip!q.]
(C7}

is(r//st = —w (tilsq (C2}

@(P«,«qo) =U(P« qo)4'e {C3)

is also a solution of Eq. (C2). For

We choose a fiducial normalized state 4 0 which
is a solution of Eq. (C2) and construct a unitary
operator U(p„q0) such that

at each value 7. Comparing Eqs. (C7) and (C4}
shows that there is a 1 to 1 correspondence be-
tween the solution states for the Gowdy T' universe
near 7 =-~—i.e., between solutions of Eq. (53)—
and phase space —Eqs. (C1)-(C4). Thus the

I P„'q„) constitute an OFS. This is not surprising
since Eq. (C2) is the same as Eq. (53) for
t =v/p), .
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