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In space permeated by a steady background electromagnetic field a gravitational wave and an
electromagnetic wave not only undergo beat frequency oscillations, but the linear polarizations of these
waves undergo Faraday rotations as well. The beating and the Faraday rotations are inextricably
related. The classification of these phenomena requires three parameters, the three Euler parameters of
SU(2). They specify in a more general sense the “polarization” of an electrograviton mode. The
evolution of the beat frequency oscillations and the Faraday rotations along a propagating wave front is
described as a moving point in SU(2). Consequently, a charged black hole serves not only as a catalyst
for converting suitably directed electromagnetic radiation into gravitational radiation, but also as an
agent that randomized the linear polarizations of radiation emerging from it. An assessment of these
phenomena in relation to the origin of Weber’s signals is given.

I. INTRODUCTION AND SUMMARY

Discussions about the propagation of gravita-
tional or electromagnetic waves in a gravitational
field are mostly presented within the context where
any effects due to a steady background electro-
magnetic field are ignorable. Although for most
earthbound or astrophysical wave phenomena such
a selective focus of attention is probably often
quite adequate, the recent discovery of black holes
makes it difficult to ignore steady background
electromagnetic fields associated with these ob-
jects. Under suitable conditions rotating black
holes' (and neutron stars?®) are capable of acquir-
ing a net charge and thus can be endowed with an
ambient steady electromagnetic field.

That electromagnetic waves propagating in such
a background change the electromagnetic stress
energy and thereby are (according to the Einstein
field equations) a cause of gravitational waves
with identical propagation properties probably
comes with little surprise.® That gravitational
waves propagating in such a background act back
on the electromagnetic stress energy and thereby
cause perturbations in it—perturbations which
according to Maxwell’s field equations are electro-
magnetic waves with identical propagation prop-
erties—is true and very consequential.

The interaction between the two types of waves
with identical propagation properties—an inter-
action evidently caused by the steady background
electromagnetic stress energy—gives rise to the
“resonance phenomenon” between coupled systems.
The “resonance phenomenon” between simple
systems of a single degree of freedom is well
known.* Here, however, the two systems are
waves—not merely scalar waves, but even waves
with polarization properties. All evolutionary

properties of interacting waves can be found once
the normal modes are determined. For high fre-
quencies, however, the physically most interest-
ing features are discussed not directly in terms
of normal modes but rather in terms of the indi-
vidual waves “resonating” (i.e., exchanging ener-
gy) among each other.

The purpose of this article is to determine the
normal modes of the interacting gravitational and
the electromagnetic waves and, hence, to exhibit
the associated resonance phenomenon. It mani-
fests itself, as we shall see, either as (1) beat
frequency oscillations between the two waves,®
or as (2) Faraday rotations of their polarization,
or as (3) a very classifiable mixture of the two
phenomena.

The Faraday rotations seem to be a new effect.®

The beating phenomenon is characterized by (i)
a periodic total interconversion of gravitons and
photons and (ii) the parallel transport of the re-
spective polarizations of the two waves, a trans-
port which conserves the total number of electro-
gravitons consisting of linearly polarized photons
and gravitons of one type and also the total num-
ber of electrogravitons consisting of linearly po-
larized photons and gravitons of another (orth-
ogonal to the first) type.

The Faraday rotations are characterized by (i)
a periodic total interconversion of vertically and
horizontally polarized photons (and also of up-
down and diagonally polarized gravitons) and (ii)
a transport which conserves the total photon num-
ber and also the total graviton number.

The mixture of these two phenomena is char-
acterized by (i) a periodic partial interconversion
of gravitons and photons combined with (ii) Fara-
day rotations of linear polarizations of the waves
traveling through the electromagnetic background
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field.

The rates of (1) the interconversion, (2) the
Faraday rotation of the linear polarizations of
each wave, and (3) the mixed processes are all
identical and are strictly locally (eventwise) de-
termined. The periodic evolution of these phe-
nomena along a null ray depends on the local back-
ground electromagnetic field and the propagation
direction along the ray history of a wave; it is
not defined in terms of an asymptotically Mink-
owskian frame.

Regardless of which mode one is considering,
beat frequency, Faraday rotations, or a mixture
of the two, the coupling between the linearized
Einstein equations and the perturbed Maxwell
equations is such that there is only a pairwise
energy exchange among suitable linear combina-
tions of the following four waves: (1) horizontally
(linearly) polarized electromagnetic waves, (2)
vertically (linearly) polarized electromagnetic
waves, (3) up-down (linearly) polarized gravita-
tional waves, and (4) diagonally (linearly) polar-
ized gravitational waves.

This article can be summarized briefly by say-
ing that we solve the coupled Einstein-Maxwell
wave equations in the high-frequency (WKB) ap-
proximation and observe that their solutions,
which govern all the above-mentioned phenomena,
are most efficiently exhibited and classified as
members of the group SU(2).

In Sec. II the linearized coupled Einstein-Max-
well equations are exhibited in vector (and tensor)
component form.

In Sec. III scalar wave functions and the cor-
responding linear polarizations are introduced for
the vector (electromagnetic) and tensor (gravita-
tional) waves. This introduction generalizes an
analogous approach by Isaacson’ and Misner’ to
the uncoupled Maxwell field equations and linear-
ized Einsteint field equations. The coupled equa-
tions are then rewritten in terms of two complex
scalar wave equations.

In Sec. IV the two coupled complex Einstein-Max-
well equations first are written more compactly
in terms of a complex spinor wave equation, then
are decoupled [in the short-wavelength (geomet-
rical optics, WKB) approximation] by introducing
their normal modes, and thereby are rewritten in
terms of (1) the standard wave equation [Eq. (12)]
which governs the propagation properties of the
waves and (2) the evolution equation [Eq. (13)] for
the interaction transformation, which relates the
normal modes to the complex Einstein-Maxwell
wave function. Solutions to this evolution equation
are discussed in terms of the group SU(2) and a
typical solution is exhibited [Eq. (15)].

In Sec. V the normal modes and hence the solu-

tions to the coupled Einstein-Maxwell equations
are written down. The solutions are actually ex-
hibited for the class of special cases mentioned
in Sec. IV.

In Sec. VI the normal modes are classified in
terms of curve segments in SU(2). The classifica-
tion (Fig. 1 and Fig. 2) embodies the three general
features of electromagnetic and gravitational
waves propagating through a steady electromag-
netic and gravitational background: (1) beat fre-
quency oscillations, (2) Faraday rotations, and
(3) a mixture of these two phenomena.

In Sec. VII Weber’s signals are assumed to have
their origin in our galactic center; in light of this
assumption some of those chief difficulties which
are removed and also those which are created by
attributing the signals as coming from a charged
black hole are delineated and discussed.

II. PERTURBED EINSTEIN-MAXWELL FIELD EQUATIONS

Focus attention on the linearized coupled Ein-
stein-Maxwell equations in the WKB approxima-
tion® ™ 8:

vam‘pa == Fﬁmvmw’a ’

167G -1

V"V pibap = = = ar

(Famvmlpb +Fbmvm¢u + Vamemb

+ vbmema +gamenvm¢") .

These equations govern the propagation of distur-
bances of a steady background vacuum geometry
S Permeated by a steady background electro-
magnetic field F,,. The disturbances are related
to the above gravitational potentials ¢, and the
electromagnetic potentials i, by

GFub = vad’b - Vblpa ’

084y = Yap ~ %gabwmm .

The equations are most easily dealt with in terms
of dimensionless potentials

5=(%)"0,

aab = ‘I)ab ’

and the electromagnetic background in geomet-
rical units (ecm™),

_ 86 1/2

Fab =<-E-T ) de .
Introducing these variables and dropping the bars,
the equations reduce to

VY’ = = F,,, V™ (1a)

for the perturbed Maxwell field equations and
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vmvmzpab =%(Fumvm¢b +Fme"'l/)a)

+%(Fmavb¢m +Fmbvam)
- %gumenV" ¢m (lb)

for the perturbed Einstein field equations. It is
evident that these equations preserve, as they
must, both the traceless nature of §,,, i.e., 5=0,
and the Lorentz conditions V., =0 and V%, =0.

IIl. WKB FORMULATION OF THE COUPLED
EINSTEIN-MAXWELL WAVE EQUATIONS

Generalizing Isaacson’s and Misner’s WKB treat-
ment’ of the perturbed Einstein field equation and
the Maxwell field equations, focus first on a Max-
well wave whose propagation vector is k2,. That
wave is described completely by specifying (a) its
propagation vector field and (b) its two scalar
amplitudes for its two linear polarizations along
two spacelike unit vectors parallel propagated
along k,; in other words, a Maxwell wave and an
Einstein wave are given, respectively, by

Y =yge] +U5e; (2a)
and
PP =ygey +iiey . (2b)

Here the basis vectors and tensors are orthonor-
mal (thus, e%e,, =1, ele,=1, etc.) and are par-
allel propagated along the mutual wave propaga-
tion vector k, of ¥* and ¥*. They are related to
one another by

1
b b
et = 75 (efed —ezed) ,

et = 7%—(e‘}e’2’ +ebed)
(3)

1
ey’ = ezae;b =77 e’i ’

ab _ ab _ 1 b
€146y == €,54€; -ﬁ-ez .

The linear polarization amplitudes in Eqgs. (2a)
and (2b) are, of course, given by transvection
against the respective basis vectors and tensors.
Thus, in the absence of a background electromag-
netic field, the unit polarization vectors and ten-
sors are parallel transported along the direction
of the propagating wave,” i.e., the polarizations
coincide with parallel-transported basis vectors,
and the ratio of the two polarization amplitudes

is a constant along the null ray. If on the other
hand a background electromagnetic field is pres-
ent, then Eqs. (1a) and (1b) examined by the usual
WXKB approach’ reveal that in general neither the
electromagnetic nor the gravitational polariza-

tion is parallel-transported along the history of

a wave crest. It follows that the ratio of the po-
larization amplitudes in each of Eqs. (2a) and (2b)
is not a constant. To determine how they vary
introduce these equations into the coupled Ein-
stein-Maxwell wave equations (1a) and (1b), use
Egs. (3), and obtain the four coupled Einstein-
Maxwell wave equations® '° for the scalars ¥}, ¢%
(electromagnetic) and yg, % (gravitational):

VY= - - (be, f+dbe, ) (42)
TV = = T (= dbey frbbe ) (4v)
Vb= g ke, - hef) (52)
VIV =+~ ke, f+Uhes ) (b)

Here the projections of the vector F,,k™ onto the
two basis vectors e} and €] are given by the inner
products

el .f= eTFumkm ’

e, f=eyFonk™ .
The wave propagation vector 2™ arises from the
WKB approximation for the gradient of the four

: 1 1
scalar wave functions ¥}, ¥%, ¥, ¥%, as for ex-
ample in

Vg =ikndp, etc.

To solve the Einstein-Maxwell scalar equations
(4) and (5) introduce the complex-wave-function
electromagnetic and gravitational wave functions

bp =5+, (6a)
@ =g +idG - (6b)

In terms of these the Einstein-Maxwell wave equa-
tions (4) and (5) become

V“V,,@E:—i%e"%c, (7a)
V"'V,,,@G=+i%l-ei %y . (b)

Here we introduce the angle a between the vector
fa = F,,k™ and the parallel transported basis vec-
tor ef and also the magnitude |f| of that vector!':

e, f=e Fuuk™=|f|cosa,

e, f=€3F,,k"=|f|sina .

(8)

IV. EQUATIONS DECOUPLED BY NORMAL MODES

The solutions to the coupled complex Einstein-
Maxwell wave equations (7a) and (7b),
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) 0 —iet® ®
m E _ lfl E
V"V, =75 .
\ ®¢ ie'® 0 L2
(9)
are found in terms of the normal modes ¢, and ®,,

£ Ty, Ty, @ &,
T . (10)
®c Ty T o, ®,

In the WKB approximation the transformation ma-
trix T has only “slowly” varying entries. Only
the wave functions contain the rapidly varying
dynamical phase factor exp(sS). In terms of the
normal modes the coupled Einstein-Maxwell sys-
tem, Eq. (9), is

¢, o,
TV™vy

m

(11

The functions @, and &, constitute a normal mode
if and only if T is that nonsingular transformation
which makes the right-hand side a multiple of the
right-hand side of Eq. (10). But one can, and we
shall, require without loss of generality that this
multiple (the “eigenvalue”) be equal to zero. Con-
sequently, the coupled equations (11) become

) (12)

provided the transformation 7, which relates any
of the normal modes to the complex Einstein-Max-
well modes, satisfies the differential equation

d f (o n7T=0. (13)
Here the derivative with respect to the parameter

/s

ar dx k™
T ar T T Ee T T

has an invariant significance and evidently is in-
dependent of the scale of the components ™. As
we shall see, it measures the evolution of (i) the
beat frequency oscillations, or (ii) the Faraday
rotation, or (iii) a mixture of these two phenom-
ena along a null ray determined by a complex
normal mode satisfying Eq. (12). The matrix
G-1l is the Hermitian matrix exhibited in Eq. (11).
In terms of the Pauli spin matrices it is

F:fi=-sinao, +cosao, . (14)
Consequently, the solution to Eq. (13) constitutes
a one-parameter family of unitary 2 X2 matrices,
i.e., a curve in SU(2) whose tangents'? are given
by Eq. (14). Observe, for example, that if the
spatial vector field F,,k™ is parallel along a given
null ray, i.e., if the angle « in Eq. (8) does not
change along the null ray,’® then -1 is constant
and the solutions to Eq. (13) constitute simply
segments of great circles™ of SU(2),

T(f)=e i3 2 (15)

The starting point of this segment is the identity
matrix. The end point of the segment is deter-
mined by the limiting value of the parameter that
measures the progress of the beating and Faraday
rotation along the null ray,

dx™ dx" >‘ /2
= ap
ffinal_ jn‘ull ay < F an d)\ ax ax . (16)

It goes without saying that for nonconstant angles

a in Eq. (14) the solutions to Eq. (13) are no longer
closed great circles in SU(2) but rather curves
that presumably fill the SU(2) manifold in some
ergodic fashion, provided of course that the curve
parameter’ in Eq. (16) is long enough.

V. SOLUTIONS TO THE COUPLED EINSTEIN-MAXWELL
WAVE EQUATIONS

Having solved Eq. (13) for the unitary trans-
formation matrix, we can exhibit the complex
Einstein-Maxwell field, Eq. (10), in terms of the
normal modes. The general normal mode, a solu-
tion to Eq. (12), is the product of a constant com-
plex spinor with a real-valued wave function, ®,
which of course also satisfies the wave equation
V.V "®=0:

&, a+tb
= . (1
o, c+id

Here the complex spinor with constant entries
is normalized to unity,

a?+b?+c2+d%=1

This normalization is preserved by the transfor-
mation matrices T(f). Such a complex spinor
can be effectively parametrized by three Euler
parameters s, ¢, and u:

a+ib 1
= @i 0ys/2 yiogt/2 yioyu/2 i (18)
c+id 0

Consequently, the general solution to the coupled
Einstein-Maxwell wave equation is
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& &
= T(f) eioys/z eio,t/z eioyu/z
ER 0
%
=T(f) T, . (19)
0

To illustrate what physical phenomena this solu-
tion embodies, consider the special case where
the evolution matrix T(f) is given by Eq. (15).

In that case the vector F,,k™ is parallel all along
the null ray. Without loss of generality one may
set the constant angle @« =0. According to Egs.
(14), (15), and (19), the complex waves are there-
fore

&, =[cosstcoss(s~ f+u) +isinztcoss(s-f-u)]®

=[cosfe'®E]d, (20a)

®; =[- cosstsini(s- f+u) - i sin3tsinz(s - f~u)]®
=[sinfe'%c]® . (20b)

By comparing this expression with Egs. (6a) and
(6b) and equating real and imaginary parts, we
obtain the scalar wave functions for the four re-
spective linear polarizations of a Maxwell-Ein-
stein wave,

Yp=cosfcosd ® ,
Y% =cosfsindz®
Y =sinbcosdy @,
Y% =sinfcosdy & .

Here we have introduced not only the angles 6,
and 0. for the linear polarizations of the electro-
magnetic and the gravitational waves, respec-
tively, but also the beating phase angle 6, which
determines the ratio of the electromagnetic to the
gravitational amplitude. Reference to Eqs. (20)
now makes evident the fact that the evolution, the
beat phenomenon, and the Faraday rotation of the
polarization can be most generally characterized
as the motion of a point on the three-sphere, the
group SU(2). As the wave crest of an electrogravi-
ton mode traces out its history along a null ray,
Eq. (19) asserts that there is a corresponding
point, T(f)T,, in SU(2) which moves along a curve
determined by Eq. (13). For the illustrative case
under consideration, Eqs. (20a) and (20b), the
point moves along a great circle; how far is de-
termined by the value of the final curve param-
eter given by Eq. (16).

VI. CLASSIFICATION OF SOLUTIONS

Given a specific null ray, how do we classify
the various beat frequency and Faraday rotation

(normal) modes of the waves whose propagation
vector £™ lies along the null ray? A glance at
Eqgs. (20a) and (20b) reveals that the two appro-
priate parameters that distinguish one normal
mode from another are the Euler parameters «
and {. Their values distinguish one great circle
from another. The third Euler parameter, s-f,
measures the position of the moving point along a
given circle. How does one best concretize these
circles in terms of the evolution of the amplitude
and the linear polarization of the electromagnetic
and gravitational waves? Consider in SU(2) any
two-dimensional surface spanned by the two Euler
parameters « and £, a torus, Every possible nor-
mal mode is characterized by a curve that pierces
this torus. It follows that each and every prop-
agating mode under consideration is represented
by a point on the torus. A chart of this surface
together with the essential physical attributes
that each point refers to is given in Fig. 1 and
Fig. 2. These figures and the above discussions
can be summarized by the following remarks:

(1) In the absence of a background electromag-
netic field electromagnetic waves and gravitational
waves propagate independently of each other. The
linear polarizations of these waves are parallel
propagated with a wave crest (along a null ray).
Consequently, their polarizations can be depicted
on two circles as static points characterized by
two angles.

(2) In the presence of a steady background elec-
tromagnetic field the electromagnetic and gravi-
tational waves beat against each other. Their
relative amplitude changes periodically. Further-
more, the two linear polarizations rotate slowly
as they are carried by a wave crest along its null
ray. This rotation of the polarizations is a cum-
ulative effect just as Faraday rotation in a plasma
permeated by a steady magnetic field is cumula-
tive. Evidently the two phenomena, Faraday ro-
tation of gravitational as well as electromagnetic
polarized radiation and the beating phenomenon,
are inextricably related. Their classification re-
quires three parameters, the Euler parameters.
They specify in a more general sense the “polar-
ization” of an electrograviton mode. That “polar-
ization” is initially represented by a complex
spinor, Eq. (18), of unit magnitude. Its change
along the null ray is depicted in Eq. (19) as a point
moving in SU(2).

VII. DISCUSSION

Should Weber’s signals actually be due to bursts
of gravitational radiation coming from our galactic
center' then it follows that this radiation must
be due to synchrotron modes of excitation.'® The
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most likely candidate for such an excitation mech-
anism examined so far is that of a particle spiral-
ing'’™®° into a rotating massive uncharged black
hole. The results are that (a) the radiation must
be highly polarized and (b) the radiated power for
such (tensor) radiation is distressingly small.
These two consequences of the synchrotron mech-
anism are in direct conflict with experiment,
which requires the gravitational radiation to have
(a) a polarization not in excess of 40% (see Ref.
21) and (b) a power much larger than that attain-
able from any of the uncharged rotating black
holes examined so far."

The results of this paper indicate that at least
the first and possibly both of the two aforemen-
tioned difficulties do not arise if one considers
charged black holes instead. In other words, (a)

4
\ 4 Y ) \ 4 » ]
N7 N~ ~_ 7/ N_ 7
3
* k\ /, \\ /A \\ // \\ /‘
t orw
|
\ 4 » / \ 1 3 /
~_ S N ~_~ N~_
T
N ! \ 4 A / \ 4
~_7 N_ - N_ 7 ~ _7
(0]
0 T 2m 3T 41
._-._—u—»

FIG. 1. Space of solutions to the coupled Einstein-
Maxwell wave equations. The u and the ¢ coordinates
are the Euler parameters that subtend a two-dimensional
submanifold, a torus, of SU(2). Each point on this torus
is the initial point of a curve that describes the evolution
of the beating and the Faraday rotations along a wave’s
history. The solid lines constitute the starting points
for the 100% beat frequency modes (no Faraday rotation)
already found in Ref. 9 where the linear polarization
angles 65 and 6; are constants for the electromagnetic
and the gravitational wave along the whole given null
ray. The heavy dots, on the other hand, are the starting
points for the 100% Faraday rotation modes which under-
go no beating. The arrows around these dots refer to the
changing of the linear polarizations as a wave crest
travels with the speed of light along the null ray. The
solid arrow refers to the changing angle 6 of the elec-
tromagnetic polarization; the dashed arrow refers to the
changing 6; of the gravitational polarization. For details
of the classification see Fig. 2.
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the polarizations of suitably excited gravitational
and electromagnetic waves undergo Faraday ro-
tations in the vicinity of the charged black hole
and (b) accompanying the Faraday rotations, the
two waves undergo an already-reported mutual
interconversion process® (beat frequency oscilla-
tions) which keeps interchanging the energies in
the two waves as long as they are traveling in
space permeated by a steady electromagnetic
field. The Faraday rotations randomize the radi-
ation emerging from the vicinity of the charged
black hole.

However, the removal of these difficulties is
obtained at the seemingly very heavy price of
understanding how a large charged black hole can
be formed or how, once formed, it acquired ad-
ditional charge. Assume the price has been paid.
Even then, understanding the radiation mechanics
presents a very nontrivial problem. In order to
reconcile the strength of Weber’s signals with ob-

NN
QY
@O
S IR
t-o*///3§

FIG. 2. A collection of 25 tracings of the tip of the
electromagnetic linear polarization. The to-be-imagined
x and y axes in each picture are proportional to the real
scalar amplitudes ¢} and 2 of the two linear polariza-
tions. Each picture portrays one of the solutions charac-
terized by the Euler parameters » and ¢, a typical
ellipse referring to the electromagnetic part of an
electrograviton mode. The linear polarization not only
rotates slowly (Faraday rotation) along the history (null
ray) of a wave crest, but the whole amplitude of the
electromagnetic wave varies in proportion to the distance
from the central dot of the picture to the elliptical trace
of the tip of the slowly rotating linear polarization. If
the vector F,,k™ in Eq. (8) does not stay parallel along
the null ray, then the coefficient matrix of the differen-
tial Eq. (13) is not constant. Consequently, the curves
in SU(2) are no longer great circles and the ellipses
depicted here become Lissajous figures.
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servational limits on the mass loss from the
galactic center, it is necessary that the radiation
be beamed in the galactic plane. Gravitational
synchrotron radiation has precisely this property.
However, such radiation requires that the moving
source be highly relativistic (at least near an
uncharged rotating black hole) in a well-defined
sense,' and no one, it seems, has yet been able
to identify an astrophysically reasonable process
which furnishes such relativistic sources. Wheth-
er this identification is made easier by virtue of
the fact that one is focusing on charged matter
moving in the geometry of a charged or even a
rotating charged black hole is not obvious.

In any case, should the net charge of a black
hole play an important role in furnishing the (pre-
sumably necessary) ultrarelativistic sources of
synchrotron-type radiation, then one is immedi-
ately confronted with very rapid charge neutral-
ization of the black hole. This would definitely
be the case for nonrotation black holes. For a
rotating charged black hole, however, there is
the possibility that rotation may prevent charge
neutralization or may even be responsible for the
acquisition of a net charge by means of an as-yet-
unspecified process.?* 22

If such a process exists, it could very well solve
both problems, i.e., it could be responsible (a)
for the creating and maintenance of a net charge
of a rotating black hole and (b) for the furnishing
of the ultrarelativistic sources. The attractive-
ness of such a process has its roots in the huge
amount of extractable energy stored in a rotating
black hole,?® if Weber’s experiments in fact do in-
dicate a black hole at the center of our galaxy.
The essence of that to-be-discovered process is

that it is expected to be a catalytic mechanism
which trades the rotational energy of the black
hole for electrical energy,* i.e., angular mo-
mentum for charge. It would presumably be the
net charge of the black hole that is responsible
for putting particles into ultrarelativistic orbits,
which would radiate electromagnetic and/or gravi-
tational synchrotron radiation in the galactic plane.
How much charge must a black hole have in
order that the Faraday rotations and the intercon-
version process be appreciable? Consider a
charged Kerr black hole with mass M*, charge
Q*, and rotation parameter a* (geometrical units)
situated in the center of our galaxy. A straight-
forward analysis based on Eq. (16), or on Eq. (26)
in Ref. 5, reveals that the total amount of beating
phase and/or Faraday rotation angle that a null
ray undergoes as it emerges from its radius of
closest approach » near the black hole to a distant
observer is

Q*
AG, Ad g, AS BFM* .

If the signal emerges from the ergosphere, » ~M*,
then it follows that a substantial beating and Fara-
day rotation requires that the net charge, @*/M*,
be substantial (unless, of course, most of the

null rays start out by spiraling out from their un-
stable quasibound orbits). Parenthetically, one
may notice that a Kerr black hole endowed with a
substantial amount of charge, say @*/M* >0.5,
must have a mass of at least M* >3.36 X 10°)z*
(solar masses) if the vacuum near the event hori-
zon is not to break down because of spontaneous
electron-positron formation.

!R. M. Wald, Phys. Rev. D 10, 1680 (1974).

2For ways of overcoming charge neutralization of New-
tonian neutron stars see P. Goldreich and W. H. Julian,
Astrophys. J. 157, 869 (1968); R. Ruffini and A. Treves,
Astrophys. Lett. 13, 109 (1973).

M. E. Gertzenshtein (Zh. Eksp. Teor. Fiz. 41, 113
(1961) [Sov. Phys.—JETP 14, 84 (1962)] ) seems to be
the first one to recognize the importance of resonance
in converting electromagnetic into gravitational rad-
iation.

4For a discussion of the notion “resonance” between
different degrees of freedom see, for example,

L. Pauling and L. B. Wilson, Introduction to Quantum
Mechanics (McGraw-Hill, New York, 1935).

SU. H. Gerlach, Phys. Rev. Lett. 32, 1023 (1974).

®The author has been kindly informed that N. R. Sibgat-
ullin (Zh. Eksp. Teor. Fiz. 66, 1187 (1974) [Sov.
Phys.—JETP (to be published)] ) has also considered the
“interaction between short gravitational and electro-
magnetic waves in arbitrary external electromagnetic

fields.” The primary differences between his work and
ours lie in the facts that (1) the basic equations that
govern beat frequency oscillations and Faraday rota-
tions are not arrived at by starting with a generaliza-
tion of Isaacson’s and Misner’s WKB approach, but
rather by starting with the Newman-Penrose tetrad
formalism in the WKB approximation; and (2) we give
an SU(2) classification of the solutions to the coupled
Einstein-Maxwell system.

'R. A. Isaacson, Phys. Rev. 166, 1263 (1969).

®In these perturbed equations we have already assumed
that the potentials on the left-hand side satisfy the
Lorentz gauge and that the gravitational potential is
traceless. In this paper Latin subscripts range over
0, 1, 2, 3.

YEquations (4) and (5) together with Egs. (2) (all in the
present paper) generalize an analogous set of equations
in Ref. 5 [Egs. (14) and (6), respectively].
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