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The general topic of geometric unified field theories is discussed in the first section. Some reasons are
given for pursuing such theories, and some criticisms are considered. The second section develops the
fundamental equations of a purely affine theory which is invariant under projective transformations of
the affine connection. This theory is a generalization of that of Schrodinger. Possible identifications for
the space-time metric are considered in Sec. III. Sections IV and V deal with the limits of pure
gravitation and electrodynamics. In the symmetric limit, Einstein’s vacuum equations with cosmological
term are recovered. The theory also contains a generalized electrodynamic set of equations which is
very similar to the Born-Infeld set. In the weak-field approximation, a finite mass must be attributed to
the photon. The problem of motion for charges is discussed here, and it is argued that criticisms of
unified field theories because of a supposed inability to produce the Lorentz force law are probably not
justified. Three more speculative sections deal with possible explanations of nuclear forces, the

spin-torsion relation, and particle structure .

[. PROS AND CONS OF UNIFIED FIELD THEORIES

Einstein's general theory of relativity has been
important for at least two reasons. It is still the
most satisfactory theory of graviation and, per-
haps more importantly, the success of dynamic
non-Euclidean geometry has destroyed the idea
that Euclidean geometry is a necessary truth.

But Einstein’s theory is not a complete geo-
metrization of physics, for it describes only
gravitation in purely geometric terms. Other
interactions, and the structure of matter itself,
require the introduction of nongeometric variables
and laws.

From the mathematical point of view, there is
no more reason for Riemannian geometry to be
regarded as a necessary truth than there was for
Euclidean geometry. Why should we assume from
the outset that lengths are integrable, or that tor-
sion vanishes? Perhaps we will find such restric-
tions to obtain in nature, but to assume them at
the beginning is to make the object of our study
what we would like the world to be, rather than
what it is.

These considerations suggest that we should con-
sider more general geometries, with the hope that
the new geometric entities which arise will be ap-
propriate for the description of nongravitational
phenomena. This does not mean to add assump -
tions to general relativity, but to eliminate the
assumptions which restrict the geometry to that
of Riemann.

Many attempts of this sort have been made.
Weyl' suggested that the length of a vector might
change on parallel transport, and identified the
field causing such changes with the electromag-
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netic field. This idea was generalized by Einstein
and Eddington in the 1920’s,? and the electrody -
namics to which such attempts give rise was
studied by Born and Infeld.® In the 1940’s,
Einstein® and Schrodinger® took the further step
of allowing a nonsymmetric affinity. These theo-
ries have incurred a number of specific criti-
cisms, which I will deal with when encountered
in the development of the present theory. There
are, however, some general criticisms which
should be discussed first.

The work of Rainich and of Misner and Wheeler®
(RMW) has produced the claim that Einstein-
Maxwell theory is an “already unified” theory,
and that no further unification is needed. Similar
work has been done for other phenomena besides
electrodynamics.” But the conditions which have
to be imposed on the curvature to obtain the cor-
rect equations of motion, while geometric, do
not follow from any basic principle. They are de-
signed only to give previously known results.

For example, no one would dream of imposing
something as cumbersome as the RMW differ-
ential condition on Riemannian geometry if he
did not know exactly what he wanted to get out of
the theory beforehand. Thus these formulations
cannot really be regarded as natural geometric
theories.

Most modern physicists are suspicious of uni-
fied field theories because of the belief that they
stand in opposition to quantum theory. Working
on them is regarded as roughly equivalent to
working on phlogiston. This belief is, of course,
associated with Einstein’s well -known dislike of
quantum theory. But there is no necessary in-
compatibility. Perhaps orthodox quantization
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techniques will have to be applied to even a good
classical theory, though it may be hoped that a
geometrical formulation of quantum dynamics can
be found. Of course one must have an open mind.
Dogmatism about the Copenhagen orthodoxy, or
any other interpretation of quantum theory, is not
consistent with a serious attempt to analyze the
foundations of physics.

We cannot afford to be dogmatic about the geo-
metrization of physics, or insist that a particular
geometric formulation must be final. Even a
theory which is a considerable improvement on
general relativity will probably be incomplete.
There are also nongeometric unified field theo-
ries, such as the Urmaterie theory of Heisenberg.®
Such a theory involving a basic spinor field might
be provisionally combined with a geometric the-
ory. In fact, I will point out later just where this
connection could be made.

The notation in this paper will be fairly stan-
dard. Greek indices range over 0, 1, 2, 3. Gothic
letters indicate tensor densities and determi-
nants, so that, e.g., g=det(g,,). Parentheses
about two indices indicate symmetrization, and
square brackets indicate antisymmetrization.

II. GEOMETRY AND DYNAMICS

In this section I present the basic formulas of
the present theory, which is a modified version
of Schrodinger’s. To avoid undue prolixity, I
refer the reader to previous work for much of the
mathematical background and for details of proofs
and calculations.®

An affinity '3, gives a mapping of the tangent
space at P onto that at P +dP via the fundamental
formula for parallel transport of a vector A°
through a displacement dx”,

8AY = _Tt, A%dx" . (1)

(This is not the most general structure providing
such a mapping and the possibility for further
generalizations, to Finsler space, e.g., should
be noted.) The lower indices of I‘%, play different
roles in (1), and there is no obvious reason to as-
sume the affinity symmetric. The skew part,

;‘ansg,, is the torsion, whose presence means
that a displacement of dx" through 6x” will not
give the same result as displacement of 6x”
through dx". (I will use only coordinate bases in
this paper.)

From an affinity the curvature tensor

R \u==-T u+Tiun+Taalgu —Taulin (2)
can be constructed. It has two independent con-
tractions,

P=R® ,g=-T8 s+Tlg \+T T s-T 5Ty,

3)

- __ B 8
Qer=RBg ==-T8c r+TErx -

Metric has not yet been defined, so we cannot
say that geodesics are curves which extremize
the intervals between points, but parallelism of
vectors with respect to a curve can be defined by
considering the transport of a vector parallel to
itself along the curve. A necessary and sufficient
condition for the vectors A (t) to be parallel with
respect to the curve x* = x*(¢) is

AtdA” /at +T"  A°dy" /dt)
=AY (dA" /dt +Th, A°dX" /dt) . (4)

In particular, apath is a curve whose tangents
are parallel with respect to itself. If A" =dx"/dt,
(4) requires

d2x" /dt? + Tk, (dx° /dt)(dx’ /dt) = ¢ (t)ax" /di
(5)

with ¢(#) an arbitrary function of the parameter ¢.
An appropriate change of parameter to s =s(f) will
make this

d2x" /ds? + Tt (dx° /ds)(dx" /ds) =0 . (6)

Clearly s is determined only up to a linear trans-
formation with constant coefficients.

It is natural to ask if there are transformations
of the affinity, besides those induced by coordi-
nate transformations, which do not alter the prop-
erty of parallelism with respect to an arbitrary
curve. Can (4) be satisfied for both of the con-
nections I'g, and I'y) =T'§, +O63, and for arbitrary
A" and dx"/dt? The most general such trans-
formation is given by

2 =Tg, +20%, , (7)

with ¥, an arbitrary vector field. (The factor of
2 is simply for convenience.) Such transforma-
tions are called projective because, as a special
case, they map paths onto paths. However, they
are not the most general transformations which
preserve paths, for the torsion drops out of (4)
when A =dx" /dt, and any change in the skew part
of the affinity will therefore not affect the paths.

Projective transformations do alter the “pre-
ferred” parameter s for which the path equations
take the form (6), at least along most paths. I
will discuss this in Sec. IIL

The transformation (7) produces in the curvature
tensor the change

R'”,,o.,. =Ruuor +25!‘1‘(¢T'o - wo,r) s (8)
and its contractions become

Pl/lg =Puo+2(¢u,g - wg,u) s

Qlllo:'QUo"”s(‘pv,c_‘pa,V) . 9)

In order to use Hamilton’s principle to derive
field equations, we must have a Lagrangian for
the variational principle. The simplest scalar
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density at this stage, since we have no way of
raising and lowering indices, is the square root
of the determinant of a covariant second-rank ten-
sor, and a linear combination of P, and @y
comes to mind. Of course such a choice is far
from unique, and Pauli'® regarded this fact as a
defect of affine theories, but it is not. A Lagran-
gian is never unique, and some criterion of sim-
plicity is always used. So we put

Aguy =Py +TQuy , (10)

with A a constant having the units of an inverse
length squared, and T a pure number, and con-
sider the Lagrangian density

2 =2A(-g)"?
=2A(~det g,y )2
=(2/A)[-det(Py +TQ )]V (11)

The action is to be varied with respect to rgy.
The field equations thus obtained are

PRI I LT Ll S LS oo
M T, - gofT )80 +2To8™) =0 . (12)

Here g *? is the matrix inverse of g, and g 8
=(-g)Y2g B, The last term in (12) does not ap-
pear if we choose T =0, as Schrodinger did.

The set (12) can be manipulated to yield
(1-47)g (81 ;=0. I T#4%, then we get the iden-
tity ¢ [*8) 5 =0, but, if T=4, we obtain only 0=0.
And this latter case is exactly the one for which
{ is projectively invariant, as is seen from equa-
tions (9). In this case the vector density g [“‘3].5
is undetermined by the variational principle.

Even if T+#%, f is invariant under the subgroup
of (7) for which y, is a gradient, for such trans-
formations do not even affect the full curvature
tensor. (These are Einstein’s “A-transforma-
tions.”'!) It is important to realize that the re-
quirement of projective invariance, with whatever
restrictions on ¢, (except §,=0), makes the use
of a torsion-free affinity impossible. It has been
argued that the use of “reducible” quantities like
an affinity possessing torsion presents a strong
objection against nonsymmetric field theories.'?
It is true that, under coordinate transformations,
the symmetric and skew parts of an affinity trans-
form in different ways, the former as an affinity
and the latter as a third-rank tensor. But with
projective invariance the affinity is not reducible
with respect to the full symmetry group of the
theory.

It may be worthwhile to note a similarity between
the present theory and that of a complex vector
field in this regard.'® Vector mesons can be de-
scribed by means of the Lagrangian ®'= —-3f%,f""
_m2¢ﬁ¢#’ Wherefuu =¢u.u —¢u.p and m is the

meson mass. From this results f** , = -m?¢"
and, since f,, is skew-symmetric, mqu“'“ =0. If
m#0, ¢" ,=0. On the other hand, we can put

m =0 and gain an additional symmetry, the in-
variance of the Lagrangian under the gauge group
¢y— ¢y +x,v. But then the scalar ¢>“,u is not deter -
mined.

In the following work I will put T =3, so that the
theory is projectively invariant, but then some de-
cision has to be made about the vector density
Q=g 1 ,. 3" could be constrained to be any-
thing, and it might seem natural to make it vanish,
as it would if we started with a general value of
T and then took the limit T - 3. Again, the treat-
ment of photons as vector mesons with m - 0 comes
to mind.

But we should bear in mind the fact that the
present theory is probably incomplete, and that a
later development may determine3”. Inparticular,
it is not easy to see how spinor fields will come
into the theory in an unforced way and, as a tem-
proary expedient, we might let3* be the current
density of a fundamental spinor field like that of
Heisenberg. It seems best to leave3 " free, at
least where it does not unduly complicate matters.

I should point out that the idea of projective in-
variance has been treated in the context of
Einstein’s mixed affine-metric theory by Chau.*

The system (12) can be simplified by a projec-
tive transformation to Schrodinger’s ‘“star af-
finity,”

ATy =Ty, +305T [ o) , (13)
with the important property that *I'(;,;=0. (This
is what leads to the simplification.) The field
equations become
QK)\,a"'ga)‘ *rga_'_gxo*r;u _ng *rga

= H(0,3% -3653%),  (14)
and can be converted to

8r8,0a=8c8* oo —&ox*Ta8=80(+) 8(-) i

=Ly Bu#lu ’ (15)
where

Logan=i5-28u88p 0+ 680880 u

+8p8(&ua =38an)] (16)

and 1" =3"/(-g)”2. The semicolon denotes the
covariant derivative with respect to the star af-
finity, but the + and - signs in (15) indicate the
change in index position in the different terms.
The system (15) has been studied extensively
for the case I"=0. Here it will suffice to note
the results of Hlavaty. We use the notation
8wy =huy, &ruvy=kuy and Ky =k +Rexjp
+Reuln the vertical stroke denoting the covariant
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derivative with respect to the Christoffel affinity,
{say}z h” (hBT.y +hyr g “hey,f) .

The affinity has the form
W0 =, O +8°,c + 28008 Ry g (17)

with S"‘By the torsion. The complete solution of
(15) with 1" =0 is then

*Th =107 b+ 3K + %Ko PR
s
+h% kg oK oy y P [01855,) — 205k 2Ry °

- 2005k, )%k, ] . (18)

This gives the affinity in terms of the sixteen com-
ponents of g4, and their derivatives. But it must
not be concluded from this that the content of the
theory will be exhausted by gravitation and elec-
trodynamics, which in Einstein-Maxwell theory
require just sixteen components. Or perhaps I
should say that gravitation and electromagnetism
may play some quite unexpected roles in a truly
unified theory.

Energy-momentum complexes can be found
either from the canonical formalism or by appeal -
ing to the invariance of the action. The latter
procedure was used by Schrodinger to calculate
the conserved quantities in his theory, and it is
easy to modify his procedure to include the effect
of the tensor @, in the present theory.'s How-
ever, I will not go into the details here.

III. THE SPACE-TIME METRIC

The present approach can be regarded as a
physical version of Klein’s Evlangen Programm'®
He considered the various levels of geometry to
be characterized by properties which were un-
changed by different transformation groups. For
example, the concepts of lines and points as their
intersections are unchanged by projective trans-
formations, and are therefore meaningful quan-
tities in projective geometry. A structure of
parallelism can be added to yield affize geometry,
and metric properties of more or less specializa-
tion can be introduced. At each step we restrict
further the group which the geometry allows.

I began the previous section with the concept of
affine connection, but then noted that it is possible
to find a function of the affinity, the tensor g,
which is unchanged by the projective transforma-
tions which preserve paths, (though not the most
general ones with arbitrary change of torsion).
But in order to tie this theory in with other physi-
cal theories, a metric structure must be defined.
This is not hard to do. In fact, there is a super-
fluity of metrics.

Any affinity gives space-time a path structure,

and a length can be defined, up to a linear trans-
formation, independently on each path by the pa-
rameter S of Eq. (6). A projective transformation
will change this measure of length along each path.
Under (7), the path equation becomes

d2x¥/ds?+ T (dx/ds)(dx°/ds) = 29, (dx°/ds)(dx"/ds).

A transformation s’ =s’(s) with
as'/as = 4 exp[2 [voax?], (19)

A being a constant, will bring the path equation
back to the form (6) with s replaced by s’.

There will be no surprise in this modification
of length if you think of elementary examples of
projective transformations. But it is possible in
projective geometry to define an invariant distance
function in terms of cross ratio.!” Here we can
define a new path parameter p which satisfies

dp /ds =Bexp[—% f rg‘xdx*], (20)

with B a constant. It is easy to show that p is not
changed by a projective transformation. However,
it is not invariant under coordinate transformations
because of the nontensorial transformation law
for the affinity, while ds is a coordinate scalar.
Any path parameter, including s and p, gives
a metric only along one path, and the parameters
along different paths are independent. We can
assign an interval measure to any displacement
by using a symmetric second-rank tensor as a
metric tensor, and the symmetric part of g, de-
fined by (10) will serve. It is projectively in-
variant for any value of T because projective
transformations affectonly @,, and P,,). Thuswe
can define

d1'2-_-gw,,)dx“dx"=(1/A)Pwu)dx“dx”, (21)

Naturally we would like to have some relation be-
tween d7? and ds? or dp?. Schrddinger discussed
the general problem of “compatibility” between
the s metric and the T metric, and gives the con-
dition for it as'®

I-“llu:: v“o}'*'hupruoy (22)

with Tpry0y=0 and Tpyo +Tygp +Topw =0. 1t is easy
to show that these conditions obtain for affinities
satisfying (17).

Thus the metric defined by (21) is always com-
patible with the s metric defined by the star affinity
when I* =0. The path equation

d*x¥/ds? + {,* Hdx"/ds)(dx°/ds)
+2h* Mg S\ (dx?/ds ) (dx°/ds) =0,

on inner multiplication by k,,dx/ds, gives
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d[hu,, dx*/ds)(dx"/ds)]/ds =0,
dt /ds =constant.

We do not, in general, have compatibility for
affinities obtained from the star affinity by pro-
jective transformations, nor when I* #0, But then
the 7 metric should be regarded as fundamental,
since it is unaltered. So far, no useful physical
interpretation of the p metric has occurred to me.

IV. GRAVITATION AND COSMOLOGY

I now consider various limits of the general
theory, with the hope that the physical interpreta-
tion of the various geometric entities will become
clearer. Such identifications will have only ap-
proximate validity. For example, the fact that a
certain skew tensor can be identified with the elec-
tromagnetic field in a certain limiting case does
not mean that it will always have that, and only
that, meaning.

The most obvious limiting case is that in which
the torsion vanishes and I* =0. Then (17) shows
that the affinity is given by the Christoffel brack-
ets, and (10) then requires that k,, =0, so that

Buv EPuu({ﬂay})=Ahuv- (23)

These are Einstein’s vacuum equations with a
cosmological term. Furthermore, any space-time
for which the torsion has the form S*, =67\ F,
can be reduced to this case by a projective trans-
formation.

In this limit, the physical interpretation of the
geometric entities used in general relativity can
be transferred to the present theory. The deriva-
tion of equations of motion by treating particles
as singularities can be used if we are willing to
admit singular solutions, and there seems to be
no reason not to in this approximation. “Singular”
regions are simply those in which S“g, or I* do
not vanish. (The general case is different, as I
will argue later.) In particular, test particles
will follow the paths (geodesics, in a Riemannian
space) of the external field."

The constant A cannot vanish in this theory, and
the necessity for a cosmological term was con-
sidered sufficient cause for rejecting affine theo-
ries by Pauli.?* The generally negative attitude
toward the cosmological term requires some com-
ment.

The arguments which can be mustered against
the cosmological term in orthodox relativistic
cosmology are, I think, successfully disposed of
by McVittie and Rindler,? and I will make only
a couple of brief points. First, the current severe
disagreement between the mass density in the
universe and the deacceleration parameter makes
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it quite impossible to rule out a reasonable value
of A on observational grounds.?? And secondly, the
fact that opponents of the cosmological term are
often reduced to appealing to the authority of Ein-
stein shows the weakness of their case.?® (Quan-
tum mechanics can be refuted in the say way.)

Most arguments against the A term are philo-
sophical ones: It is said that this term does not
do what Einstein introduced it to do, and that it
complicates the field equations.?* Now for what-
ever force such arguments may have in ordinary
general relativity, they are quite irrelevant in a
new theory. Why should affine theories be ruled
out for all time simply because Einstein, perhaps
unwisely, put an extra term in his equations a
long time ago to obtain a static universe? If he
had never done this, someone would have even-
tually “discovered” the cosmological constant in
an attempt to construct a unified field theory.

The simplest solution of the set (23) is not Min-
kowski space, but the de Sitter space-time whose
metric can be written in the form

hoy=+1, hy;==6, expl(A /3)/2ct). (24)

(With this signature, A>0 gives an expanding uni-
verse.) This and other forms of the line element
are treated very nicely by Schrddinger.*® The

de Sitter group, rather than the Lorentz group,
should be considered the basic space-time sym-
metry group for elementary particles.?®

V. ELECTRODYNAMICS

We now reinstitute torsion and attempt to find
electromagnetic equations. Consider the case in
which I#=0, and write &,,=Py,,;+1€,,. Two sets
of our equations are then

gkl =0 (25a)
and
LB L PR L =2A(*Supv+*spvu + *Suup) ,
(25b)

where *Sy4, =h,<-,*1"'[‘ae]- Equations (25) can be
interpreted as a Maxwellian set in two different
ways. I shall follow what has become the conven-
tional interpretation in a rough way by identifying
®,r with the dual of the displacement (D,H) tensor
density and g°" with the dual of the field (E,B)
tensor.?” This means that the third-rank tensor
on the right-hand side of (25b) is the dual of an
electric current density. The vector /* would
represent a magnetic current, but would also in-
troduce extra terms into (25b). The opposite
identification has been considered recently?® but,
without wishing to rule this out permanently, I
will adopt the usual scheme here.
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It must be remembered that the association of a
tensor and a tensor density is not as obvious in
nonsymmetric theories as it is with Riemannian
geometry. This is because the square root of the
determinant of any of the tensors g,,, h,,, or &,
are scalar densities, and a number of different
relative tensors of weight + 1 can be formed from
a given tensor by multiplication or division with
them.?® The relation between these determinants
can be written®°

8/0=A=1+5kk®+1/p , (26)

indices being raised and lowered with &,

We shall also need the totally skew relative
pseudotensors of weights + 1, G and e*87°,
Furthermore,

g™ =(1/0)[ 9N + (k/2)(1)/2 G kg, ], (272)
and

g0 = (1/A) R (1 +k sk ®®/2) + "], (27b)
with k the sign of G*f7% 4k ys- We then define

For=(b/2) egry, 8477,

28

%= —(b/20)6" %, @8
b being a constant with units of an electromagnetic
field strength to convert from geometric units to

conventional ones. Then

Fuu,o+Fop,v+Fvo,u=0) (29a)
and

o\ =8°, (29b)
with

5B°=—(b/3)(§°“""(*5u‘,u +*Spwi +*Swp). (30)
The “constitutive relations” can be written as

5&5 + (K/sz)($)1/2¢aﬂof ol
8 T1 - (1/20%H , H" +$/hb*

where § =detH,,, H,, =9,,/(-H)"2.

Equations (29) and (31), with 8°=0, are those of
the Born-Infeld electrodynamics, if care is taken
with the different sign conventions.3! Thus the
Born-Infeld theory should provide quidance for us
in some situations. But note the following quali-
fications.

(i) The set (25) is not a complete statement of
the field equations of the projective -affine theory.
The other equations will place additional con-
straints on their solutions.

(ii) hy,, ultimately depends on “electromagnetic”
variables, and the current density 8*, which does
not occur in the Born-Infeld theory, depends on the
torsion, which also enters into the fields F,3 and
@OT.

I will defer to a later section discussion of the

('b)“zFa

]1/2 ] (3 1)

agreement of the Born-Infeld theory and the re-
sults of this section to the known facts concerning
the electromagnetic structure of “elementary”
particles.

Note that I have not said that gy,, is the dual of
the displacement field, but that ¢,, is. In view of
(10), the distinction might seem pointless, but it
is not, and an investigation of this will provide
additional insight into the physical meaning of our
equations. A slight digression is needed to explain
this.

Let us begin by asking what quantity in conven-
tional Maxwell electrodynamics is the analog of
the metric tensor in general relativity. We often
consider the metric 2, and the vector potential
A, as analogous “potentials,” but the analogy is
weak when we consider physical significance. In
electrodynamics, the physically meaningful quan-
tity is the Maxwell field, F,,=A4, , -A, ,, which
gives the force on a charged particle. For gravi-
tation, the meaningful quantity is the curvature
tensor which, according to the equation of geodesic
deviation, gives tidal accelerations between pairs
of test particles. It is made up essentially of sec-
ond derivatives of k,,, for the terms containing
first derivatives can be transformed away, while
F,, is made up of first derivatives of A,.

In electrodynamics one can define covariant
Hevtz potentials® with a skew tensor Z,,, from
which the vector potential is calculated according
toA,=Z,,'". (The formulas here are for flat
space for simplicity.) F,, will be made up of
second derivatives of Z,, so, as far as order of
differentiation is concerned, k,, and Z,, corre-
spond.

There is a disruption of this correspondence
with the usual formulation of the field equations:
F*¥ ,=0is of third order in Z,,, while B, =0 is
of second order in %,,. But (23) is a more general
formulation of the gravitational equations. We can
exploit the h,, — Z,, analogy by replacing the
Maxwellian F¥” , =0 with

F,,=aAZ,, , (32)
where « is a pure number. Then we find
OA, +aAA,=0. (33)

Equation (32) thus results in a nonzero mass for
the photon. We shall find shortly that « is of orde.
unity, so that (33) will be approximated by Max-
well’s equations for distances much smaller than
A~'2, Present observational limits on the photon
rest mass are many orders of magnitude greater
than required by this theory.*® Equation (33) is
also a covariant statement of London’s empirical
supercurrent formula.?* Equations of the type
(current) = (constant) X (vector potential) occurred
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a long time ago in affine theories.%

Now consider (10) and (25) in the light of this
analogy. We have already identified &,, with the
dual of the displacement tensor density, which is
the same as the field tensor for weak fields. It
then seems that we should identify k,, with the
dual of the Hertz potential.

In order to see how this should be done, let us
look at the weak-field approximation. If (18) is
used for the affinity, and only linear terms in &,
are retained, (10) yields (23) and

@ +20 )k = R%x =2 ) | o - (34)

(The equation 3" =0=[(-5)2>"] , =(~5)*2k™,
is used to get this.)
Now we introduce the tensor Z,, by means of

by, =ae,,,,2°/2, (35)

€apys and E a8ys being pseudotensors rather than
densities. Inner multiplication of (34) by E<**?
produces

(D"'A)Zuu:%(Au,u_Av.p)y (36)

A, being defined by A, =Z,,'°. On the other hand,
the usual Maxwell set

F”°|GEJMy FaB=AB,a ‘Aa,ﬁ
in general relativity yields®®
DFuu=Ju,u -Jyv "BucFev +BuEF(p +2BuuazF€a~
(37

Here BY,,, is the curvature tensor formed from
hs. Equations (23) and (37) together give

@+20)F,,=d, =y, + 2By e FEO. (38)

Put F,,=aAZ,, and J ;= aAA, in (36) and sub-
tract this equation from (38). The result is

Fuu:%(Jy_“-J“_,,)+2BwMF‘°‘. (39)

This looks rather strange at first, and it is in-
structive to work it out for the de Sitter metric
(24). We have B, qc=A(hy, hae —hyah,e)/3, and ob-
tain

Ay, =4y, =F=(9/20)d, ,-J,,) (40)

so that a=%. The situation is more complicated if
the curvature is not uniform, but then the consid-

erations of the first part of this section will be of

more interest than the present analogy.

A general comment on such weak-field approxi-
mations should be made here. Hlavat§®’ points
out that perturbation methods will generally dis-
tort the algebraic classification of the tensor kqg.
In the first place, it would have more meaning to
work with an algebraic classification of the full
curvature tensor, as one does with the Petrov-
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Pirani classification in general relativity. Sec-
ondly, such a classification may not always be of
most importance. For example, the Weizsédcker -
Williams method is useful for the description of
atomic scattering problems, even though the field
of a moving charge does not belong to the same
algebraic class as does that of a plane wave.

I have not yet discussed electromagnetic fields
as sources of the gravitational field. Linear terms
in k,, do not appear in the symmetric part of (10)
but, in higher approximation, there are quadratic
terms. These do not seem to form any kind of
recognizable energy-momentum tensor for the
electromagnetic field.

There are no data on the active gravitational
mass of electromagnetic fields. But the correct
energy -momentum tensor is needed if the usual
approximation methods of the relativistic theory
of motion are to yield the Lorentz force law.3®
This is a serious problem. Indeed, the inability
of such methods to derive the correct equations of
motions for charges has furnished a powerful argu-
ment against unified field theories.3®

But it is doubtful whether or not approximation
methods which make use of singularities to de-
scribe particles are compatible with the type of
theory which we are trying to develop here. In
general relativity, such singular regions are
really idealizations of regions in which the energy-
momentum tensor does not vanish, but one of the
purposes of a unified theory is to represent matter
geometrically, and to eliminate the need to intro-
duce ad hoc energy-momentum tensors. Thus
singular solutions are not, in general, justified.
As Wheeler has pointed out, to allow singular so-
lutions in a field theory is really to allow anything
at all.*® In the present version of the projective -
affine theory, singularities representing magnetic
monopoles are permissible. This is because the
field equations do not determine the current I*.

It is also important to note that C. R. Johnson
has, inarecent series of papers,*! given an approxi-
mation method by which the equations of motion for
charges can be derived from Einstein’s mixed
affine-metric theory. That theory is closely re-
lated to the present one. The calculations are
very lengthy, and I will not attempt to summarize
them here. However, I think that this work is
quite important, in that it disposes of what has
come to be used as a standard “disproof” of non-
symmetric theories.

In connection with this problem of electromag-
netic interactions, the exchange betweenC. P. John-
sonand Einstein should be mentioned.** Johnsonar-
gued that the homogeneity of Einstein’s theory
allowed scale transformations of the form ¥*=px¥
(with B a constant), and displayed an inconsistency
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between Newton’s law of gravitational motion and
Coulomb’s law because of the different ways in
which mass and charge would have to transform.
Einstein’s reply showed the tentative nature of
such arguments, but was not entirely convincing.
In affine theory, no such argument can be brought,
because the field equations with a cosmological
term do not allow such scale transformations. I
feel that this is an argument in favor of the purely
affine approach.

VI. STRONG INTERACTION

I have already cautioned against the idea that
the content of this theory is exhausted by gravita-
tion and electrodynamics. The previous section
indicates that the theory will be even more com-
plex than a theory of interacting Einstein and
Born-Infeld fields. At the same time, it must be
confessed that these next considerations will be
more speculative than the preceding ones. They
are only of the nature of suggestions on places
where new phenomena may be found.

We know that the equations of motion of a test
particle in a gravitational field are contained in
Einstein’s equations, but originally Einstein had
to postulate that a test particle followed the geo-
desics of an external field. At the present stage
of development it seems reasonable to examine
the paths of our non-Riemannian space-time to
see if they might serve as the world lines of un-
chargedtest particles. The path equationdoesnot
involve the torsion directly, but it does involve the
non-Christoffel part of I'(j,).

The solution (18) for the affinity yields a path
metric which is compatible with that defined by
g,v, but this solution does not hold if /*#0, or if
a projective transformation is made from the star
affinity. It is therefore useful to consider a case
in which these metrics are not compatible.

C%,=T§p =15} can be written in such a way as
to yield a vector force which is proportional to the
inertial mass of a test particle, but independent of
any other property of the particle, and which can-
not be removed by a coordinate transformation.

If

Cop= 0°h1p=0G0m , (41)
with ¢* a vector field, we obtain an acceleration
at= =CH . U°U"
== ¢ 6k - UM, (42)

where U” is the four-vector velocity of the particle.
This has the necessary property that U,a"=0.

This force might represent a very simple-minded
classical version of the nuclear interaction, as
Schrédinger suggested.*® If ¢* were a gradient,

we would obtain a scalar or pseudoscalar mesonic
interaction. For this approach to be of any value,
it would have to be shown that the scalar field
obeyed an equation with some resemblance to the
Klein-Gordon equation on the basis of the projec-
tive-affine field equations.

VII. SPIN AND TORSION

A number of writers have considered the possib-
ility that the torsion tensor is related to the spin
of material systems.* The work of Sciama, in
which “vierbeins” are used, makes clear the
physical and mathematical ideas involved in such
an approach. But it is a little difficult to compare
this work, which uses a mixed affine-metric for-
malism, with the present purely affine one. (Al-
though Sciama speaks of “the Einstein-Schrédinger
theory,” the approaches are not at all the same.)

I have not been able to cast the Lagrangian (11)
into such a mixed form without destroying its most
attractive features. Therefore, rather than pre-
sent a mutilated theory, I will only sketch some
ideas here.

Sciama introduces “vierbeins” and a viervbein
connection to define their parallel transport, and
relates these elements to the space-time affinity.
The Einstein-Palatini action*® is written in terms
of “vierbeins” and their connection, and is varied
with respect to both. Variation with respect to
the connection yields relations leading to the
Christoffel affinities, while variation of the
vierbein fields leads to the vacuum Einstein equa-
tions.

If a matter Lagrangian, involving matter vari-
ables and the “vierbeins,” but not their connection,
is added, the usual energy-momentum tensor ap-
pears in the Einstein equations, while the affinity
is unchanged. Such a matter Lagrangian will not
be invariant under local (nonrigid) rotations of the
“vierbeins.” It is possible to remedy this by in-
toducing into the matter Lagrangian terms which
involve the vierbein connection and whose changes
under local Lorentz rotations will compensate for
those produced by the derivatives of the vierbein
fields. But the Christoffel relations will then no
longer hold, and the torsion will not vanish.
Sciama showed how this torsion could be related
to the material spin.

The purely affine theory already possesses tor-
sion, and it should be possible to match up with
such a spin-torsion theory in some appropriate
limit. The torsion would then enter into both the
spin and the electric current given by (30). The
suggestion of a relation between spin and isospin,
and thus charge, has been made by Corben.*®

In order for this idea to become more than wish-
ful thinking, the projective-affine Lagrangian will
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have to be dealt with in terms of the vierbein con-
nection, without destroying its purely affine char-
acter. In any case, it seems to me that the present
approach is superior to one in which torsion is
simply tacked on to the Christoffel affinity.

VIII. PARTICLE STRUCTURE

Can a nonquantum geometric theory of this type
make any contribution to our knowledge of the
ultimate structure of matter? Certainly a final
solution cannot be reached without some form of
quantum dynamics, but an improvement of our
knowledge of the geometry of space-time may be
essential for progress.

The Born-Infeld electrodynamics has many at-
tractive features which are lacking in the linear
Maxwell theory. In particular, a static, spheric-
ally symmetric solution with finite total energy
exists.?” The mass for this particlelike solution
depends on the critical field strength b [cf. Eq.
(31)]. To within factors of order unity, mc?
~¢g?/r,and e/r2~b, so b=m?c*/e? withr,a
length which specifies the extent of the effective
(“bound”) charge distribution.

Born and Infeld identified these solutions with
electrons, so that 7, is on the order of the classic-
al electron radius, but this seems to disagree with
experiment. The departure from a pure Coulomb
interaction, equivalent to an extra vacuum polar-
ization, should contribute to the Lamb shift. The
effect would be of the same order of magnitude as
that due to a finite nuclear size, and first-order
perturbation theory gives an estimate of

Av=(|E, |/ )r,/a)f ~1 MHz,

for the additional 2s,,, - 2p,,, frequency shift, a
being the Bohr radius. Such a value is inconsistent
with present measurements of the Lamb shift in
hydrogen.*®

But the identification of these solutions with the
electron is open to question on other grounds.
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These solutions have no spin while, of course, in-
trinsic angular momentum is a fundamental feature
of real electrons. And the limit to the localizabil-
ity of the electron is its Compton wavelength, 137
times its classical radius. Any attempt to mea-
sure the electron’s position more precisely than
this will produce real pairs.

Perhaps the particlelike solutions should be
identified with classical (and so, inter alia, spin-
less) nucleons. This would mean that », should be
on the order of 107! cm. New phenomena would
then be expected at such distances.

Then what about electrons? Perhaps they have
to be represented by some sort of spinor
Urmaterie, as in Heisenberg’s theory. The cur-
rent density of this field could be identified with
3*. Real nucleons then might be a combination of
the spinless Born-Infeld solution and the spinor
electron solution. Both theories are highly non-
linear, so such a “combination” would be very
complicated. And it must be remembered that the
Born-Infeld theory is only an approximation to
the present one.

IX. CONCLUSION

In the previous sections I have outlined the sim-
plest affine-projective theory, and have indicated
some of the possible physical consequences. There
are many ways in which the theory could be altered.
For example, the skew part of P,, + %Q",, could be
given an arbitrary dimensionless coefficient in
the Lagrangian. In order to get the correct coup-
ling between gravitation and electromagnetism, I
suspect that this will be necessary. However, only
a more detailed treatment of electromagnetic in-
teractions can decide this. Quantization might
take care of this automatically.

I hope to deal with exact solutions, the theory of
motion, conservation laws and the spin-torsion
relation in more detail later.
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