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The ground state of solid neutron matter is investigated using the f-matrix formalism
developed for the quantum crystal problem. Studies of neutrons interacting through the re-
pulsive part of the Reid 1S0 interaction, the Reid 1So interaction, and the full Reid potentials
are made in the Hartree, Hartree ¢-matrix, Hartree-Fock, and Hartree-Fock f-matrix
approximations. The results of the studies of the two model problems, the repulsive part of
the 1S, interaction and the 1S, interaction, are exhibited and discussed in detail. These model
problems provide a test of the computational procedures employed in using the quantum crys-
tal formalism on the neutron matter problem. The result of the study of neutrons interacting
through the Reid soft-core potentials is described. We find no evidence in the study of either
of the model problems for the presence of a solid ground state. Further, we find no evidence
in the study of neutrons interacting through the full set of Reid soft-core potentials for the

presence of a solid ground state.

I. INTRODUCTION

The possibility of a phase transition of neutron
matter from a liquid phase to a solid phase has
been suggested by a number of recent theoretical
investigations' and astrophysical observations.?
The solid-neutron-matter problem is the theo-
retical problem of learning whether a liquid-solid
phase transition exists, and if it does, at what
density or pressure it exists and the properties
of the resulting solid state. This problem is an
integral part of the overall problem of the equa-
tion of state of dense matter.

There have been a number of recent investiga-
tions of the solid-neutron-matter problem; they
are listed here along with useful information
about each calculation.*””

1. Anderson and Palmev. The neutron-neutron
interaction is scaled to a core-shifted Lennard-
Jones 6-12 potential. The neutron matter problem
is then mapped onto the 7'=0 rare-gas problem
using the de Boer theory of corresponding states.
A liquid-to-solid phase transition is found at a
density of 3.3x 10 g/cm? (see also the work of
Clark and Chao®).

2. Schiff. The repulsive part of the neutron-
neutron interaction is replaced by a hard sphere.
The resulting unperturbed system, the hard-
sphere—Bose system, is corrected for the weak
attractive interaction and statistics. A liquid-to-
solid transition is found at 2.9x 10*5 g/cm?.

Both the calculation of Anderson and Palmer
and that of Schiff map the neutron matter problem
onto another problem that is known to have aliquid-
solid transition. Thus the crucial question in at-
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tempting to assess the validity of the conclusions
reached in these calculations is whether the map-
ping employed is valid for neutron matter.

3. Pandharipande. A modified version of the
Reid interaction is employed. Pandharipande uses
a constrained variation of the energy approxi-
mated by the one- and two-body terms in the Van
Kampen cluster expansion to examine both the
liquid and solid states. No liquid-to-solid phase
transition is found up to 5.8x 10" g/cm?.

4. Nosanow and Pavish. A simplified version of
the Reid interaction is employed. A parametrized
Jastrow factor is used in a variational calculation
of the energy by a Monte Carlo integration scheme.
Both the liquid and solid phases are studied. A
liquid-to-solid transition is found at 4.2x 10**
g/cm3.

5. Ostgaard. A simplified state-independent
potential is employed. The computational scheme
is the variational form of the {-matrix formalism
developed for the quantum crystals. No evidence
for a liquid-solid phase transition is found up to
2.0x10% g/em3.

6. Canuto and Chitve. The full set of state-
dependent Reid soft-core potentials is employed.
The computational scheme is the self-consistent
form of the f{-matrix formalism developed for the
quantum crystals. A neutron solid state was
found for the system at all relevant densities.®
Comparison of the liquid energy (from
Pandharipande) and solid energy led to a liquid-
solid phase transition at 1.6Xx 10' g/cm?.

The calculation of Canuto and Chitre is by far
the most ambitious of the microscopic calcula-
tions on the solid-neutron-matter problem. It
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employs the best neutron-neutron interaction
available (without approximation) and a computa-
tional scheme that has been well tested against
the laboratory quantum crystals.

It is apparent from the disparity of the results
of these calculations that the solid-neutron-mat-
ter problem is still unsolved. Comparison be-
tween the various calculations is made difficult
by the wide variety of nuclear interactions and
computational methods utilized. In order to test
the various computational methods employed in
doing the solid-neutron-matter problem, several
research groups agreed to use their computational
methods on a “homework” problem and to compare
the results. The homework problem consisted of
using the repulsive partof the Reid 'S, potential with
no symmetry effects. Canuto, Lodenquai, and
Chitre® obtained values of E/N (energy/particle)
for the homework solid state (using the computa-
tional methods of Canuto and Chitre) which are in
reasonable agreement with the homework results
of Chakravarty, Miller, and Woo.!° Both of these
results for E/N differed from those of
Pandharipande. Results for the homework problem
were not obtained from Nosanow and Parish.
From this test it was concluded that the computa-
tional method of Canuto and Chitre was more
reliable than that of Pandharipande.'®

Although the E/N results obtained by Canuto,
Lodenquai, and Chitre and by Chakravarty, Miller,
and Woo for the homework problem are in reason-
able agreement, the “solid” states obtained in
each of these calculations are very different.
Chakravarty, Miller, and Woo obtain a “solid”
state with values of a® (a® is a measure of the
size of the wave function of a particle on a lattice
site) between 0.4 and 1.0. This range of o?® cor-
responds to single-particle wave functions that
span 10—20 lattice sites. The “solid” state of
Chakravarty, Miller, and Woo is thus best re-
garded as an alternate liquid state. Canuto,
Lodenquai, and Chitre find substantially more
compact single-particle wave functions than
Chakravarty, Miller, and Woo. Nonetheless,
their wave functions describe a solid with parti-
cles substantially less well localized on their
lattice sites than any known solid system. We
believe the agreement of the values of E/N cal-
culated by Canuto, Lodenquai, and Chitre and
Chakravarty, Miller, and Woo is at best fortu-
itous. Unfortunately, this does not reinstate the
solid-neutron-matter calculations of
Pandharipande as Woo and Shen!! have faulted
them on other grounds.

The contradictory results obtained in the theo-
retical studies of the solid-neutron-matter prob-
lem thus remain unresolved. Further, there is

no definite experimental evidence for the existence
of solid neutron matter. Thus it is necessary
that in presenting the results of a calculation on
the solid-neutron-matter problem, one makes a
serious attempt to demonstrate the credibility of
the calculation. In this context we wish to em-
phasize that theoretical treatment of the labora-
tory quantum crystals require formalisms of
marked complexity compared to those formalisms
which are used to treat the classical crystals.
Nonetheless, the laboratory quantum crystals

are known to have properties that are, at most,
the extreme limit of similar properties for the
classical crystals. Further, the laboratory quan-
tum crystals are described by wave functions

that are understandably related to their known
properties.'” Plausible expectations for the prop-
erties of the laboratory quantum crystals are
borne out in practice. We have the same expecta-
tions for the neutron quantum crystal and we em-
ploy these expectations in the assessment of the
outcome of our calculations.

We have undertaken a careful and systematic
study of the ground-state properties of solid
neutron matter. The most reliable nuclear po-
tentials, the Reid potentials,'® are state-depen-
dent and extremely complex, thus precluding a
simple understanding of the basic physics of the
system. Thus we have chosen to examine two
spin- and state-independent model potentials as
well as the full set of Reid potentials.” The model
potentials we have examined are the “homework”
potential and the Reid 'S, soft-core potential. The
nuclear potentials are not excessively attractive
so that their repulsive core is the most important
feature for bringing about solidification. The
purely repulsive “homework” potential, our first
model problem, should thus crudely approximate
the behavior of the neutron system in the limit of
no attractive interaction. The second model prob-
lem, the 'S, potential, uses the most attractive
Reid potential and as such should thus crudely
approximate the behavior of the neutron system
in the opposite limit. We have chosen to study
these model potentials under a sequence of in-
creasingly sophisticated approximations, the
Hartree, Hartree-Fock, Hartree f{-matrix, and
the Hartree-Fock {-matrix approximations. Each
of these is a two-body approximation to the energy
of the system. The model problems employ state-
independent neutron-neutron interactions. They
can therefore be solved in an approximation that
localizes a particular particle on a particular
lattice site or that permits particles to exchange
with one another and be localized on two lattice
sites. The first approximation, a particle local-
ized on a particular lattice site, is called the



2698 M. T. TAKEMORI AND R. A. GUYER 11

Hartree approximation since particle exchange
is not permitted. When a pair of particles, each
localized near its own lattice site, is correlated
at small » by the interaction between them, we
refer to this as the Hartree f-matrix approxima-
tion. The second approximation, particles local-
ized on a pair of lattice sites, is called the Har-
tree-Fock approximation since particle exchange
is permitted. When the pair of particles so local
ized is correlated at small r by the interaction
we refer to this as the Hartree-Fock {-matrix
approximation. When a state-dependent neutron-
neutron interaction is used, partial-wave decom-
position of the pair wave function is required. The
resulting partial-wave components of the wave
function have symmetries that are not preserved
in a Hartree description of the system that local-
izes a particular particle on a particular site.
Thus the full solid-neutron-matter problem can
only be done in the Hartree-Fock approximation.
When a state-independent neutron-neutron inter-
action is used, partial-wave decomposition of the
pair wave function is not required. Thus the
model problems can be solved in all four approx-
imations. We can use the relatively straight-
forward Hartree and Hartree {-matrix solutions
of the model problems to test the adequacy of the
much more difficult Hartree-Fock and Hartree-
Fock f-matrix solutions. It is this last approxi-
mation, the Hartree-Fock {-matrix approxima-
tion, that we have used on the full solid-neutron-
matter problem. The sequence of approximations
we have studied permits us to exhibit the evolution
of the method of calculation from the Hartree to
the Hartree-Fock {-matrix approximation, as
applied to the model potentials. Further, this
sequence of approximations provides tractable
results on which we can apply physical tests and
on which we can sharpen our intuition about the
behavior of the system. It is through this system-
atic investigation of the model potentials that we
hope to demonstrate the validity of our results

for the full neutron solid problem.

The outline of the rest of the paper is as follows:
In Sec. II we exhibit the equations employed in the
four approximations we use. In Sec. III we de-
scribe the results of the application of each of
these approximations to the homework problem
and the problem generated by the Reid 'S, soft-
core potential. These results are discussed in
detail. In Sec. IV we state our expectations for
the results for the full solid-neutron-matter prob-
lem and we exhibit the results of a Hartree-Fock
t-matrix calculation on this problem. We com-
plete Sec. IV with critical comments on a number
of the existing solid-neutron-matter calculations
using the understanding we have gleaned from our

model problems as a guide. We summarize our
results in Sec. V. A number of useful details are
discussed in Appendixes A, B, C, and D.

1I. FORMALISM

In this section we outline the formalism we have
employed in doing our calculations on solid neutron
matter. We discuss the results of the application
of this formalism in Sec. III below. We have
worked on the solid-neutron-matter problem using
a number of approximations with varying degrees
of sophistication. In order to make comments on
the results of each of our calculations as specific
as possible we include in this section a systematic
description of the set of computational equations
employed in each approximation.

The system to be described is a lattice of N
neutrons occupying volume V and interacting with
one another through the Reid soft-core potentials.®
The Hamiltonian describing this system is

se=3 ) T(i)+3 D wli)), 8V
i

ij

where T(i¢) is the kinetic energy operator and
v(ij) is the interaction between a pair of neutrons.
[The prime on the summation indicates that j =i
is excluded in the double sum; we later use j# (7)
to mean sum on j except for j=i.] The pair
interaction in Eq. (1) is given by the Reid soft-
core potentials which have matrix elements

vl S ) =(r;JdM,, LS|v|v;d ' M., L'S")
X Oyt Oy parpe 055700, (1 o L712) (2)

where J and § are the total angular momentum
and total spin angular momentum of a pair of
neutrons. These potentials cause pairs of parti-
cles in a particular 3, § state to interact with one
another in a way that at most couples their rel-
ative orbital angular momentum. Because of the
state-dependent nature of the Reid soft-core po-
tentials, the wave function describing a pair of
particles must be decomposed into partial waves
which exhibit the appropriate spatial symmetry
to properly antisymmetrize the total pair wave
function. When employing such properly anti-
symmetrized pair wave functions, it is necessary
to describe the pair of particles by a Hamiltonian
consistent with their symmetry, i.e., to employ
a parity-conserving Hamiltonian.

To reveal important features of a complicated
physical system, it is often useful to do approx-
imate calculations with a simplified system. The
full Reid soft-core potentials are extremely
complex and thus a complete understanding of the
results of a problem involving them is very dif-
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ficult. For this reason, we have chosen to initially
examine two model potentials which are much
simpler than the Reid soft-core potentials. We
expect that these model potentials will approx-
imately describe the behavior of the full Reid
soft-core potentials:

(1) the repulsive interaction,
e—7x

vR(r)=6484.2

(3)

x )
(2) the 'S, interaction,

-X -4 -T7x
(r)=-10.463 £— -1650.6 ——+6484.25—,
So X X X

(4)

where x=u7 and 4=0.7 F~!. The repulsive inter-
action vg(r) is the repulsive part of the 'S, Reid
soft-core potential and vlso(r) is the full 'S, Reid
soft-core potential. The repulsive interaction
vg(7) has been previously used to define the “home-
work” potential. The potentials vy and Uy, are
state-independent, i.e., the same for all L. These
model potentials can thus be studied in some ap-
proximations without recourse to the complicated
partial-wave equations necessary when employing
the full state-dependent Reid soft-core potentials.
However, in the Hartree-Fock {-matrix approx-
imation for the model potentials we use the partial-
wave equations.

The model neutron solid problems defined by
Egs. (1), (3), and (4) are solved in four approx-
imations: Hartree, Hartree-Fock, Hartree ¢
matrix, and Hartree-Fock { matrix. The theory
of the ¢-matrix approach to these problems is ex-
tensively discussed in many recent works.'> Here
we briefly review the most important equations.

The ground-state energy per particle of the
system described by JCin Eq. (1) is given to sec-
ond order in Rayleigh-Schr&dinger perturbation
theory as

E 3 n?

N—=Zﬁa2+%ﬁ, (5)

v,

where 3(%2/m)a? is the kinetic energy per particle
and 3 U is the average potential energy per parti-
cle. The unperturbed system is described in
terms of self-consistent single-particle wave
functions

¢, (9) =(a72)3/“ exp [— %2 (E‘—ﬁ‘)z] , (6)

which localize particle ¢ near lattice site ﬁ, and
are normalized to 1. The parameter a? which
describes the width of the single-particle wave
function, is determined from the self-consistency
condition

|3

a?=

w |

2(—L7—U0)) (7)

St

where U, is the depth of the single-particle po-
tential well which shapes the single-particle wave
function. The potential energy quantities U and
U, are computed as functions of a? using equations
specific to the particular approximation being
employed. When a? is regenerated through the
self-consistency equation, Eq. (7), this value of
a? is labeled a4 * and is used to compute the
ground-state energy per particle of the system in
Eq. (5).

1. Hartree approximations. The Hartree approx-
imations employ localized wave functions with
no symmetrization. The state-independent model
potentials can be analyzed in the Hartree approx-
imation whereas the state-dependent Reid soft-
core potentials cannot be correctly treated in this
unsymmetrized manner. In the Hartree approx-
imations U and U, are given by

U= fd% | d%,0,()*¢, ()% (i5)¢(if)
5=) fdx,fdi, ¢y (£)*¢; (5)*¢(ij)

(8)

and

a2 =3/2
o-(5)

x> LakJd%,0,)*0, () ()G = R y(is)
1= Jax,[dx; ¢,(1)*,;(j)*y(ij) ’
(9)
where ¢,(7) is the single-particle wave function
of Eq. (6) and ¢(¢j) is the correlated pair wave

function obtained by solving the “Hartree” Bethe-
Goldstone equation

[T(d) + T(j) + Uy(3) + U () + v(if)] 9(if) = €,;9(i5),
(10)

where

. 172 =
Ui)=Up+ 5= @ &,-R;)?. (11)

When ¢(ij) is written in the Jastrow form
Y(i7) =g(®)¢; (D)9, (4), (12)

g(r) is known as the pair correlation function
(where T =%,—X,). We treat g(r) in two ways: (a)
we solve Eq. (10) for ¢(ij) or g(r) in the one-di-
mensional approximation of Guyer and Sarkissian;
(b) we ignore Eq. (10) and take g(r) to be a simple
cutoff:

gr)=6(r-ry)
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We choose values of r, ranging from »,=0 (un-
correlated) to »,=1.0 fermi. The choice 7,=0
yields g(r)=1, (ij)=¢,()¢,(j). The problem
that results in this limit we refer to as the “Har-
tree problem.” When g(r) is given by Eq. (13) for
7,#0 we refer to the problem that results as the
“correlated Hartree problem.” When g(r) is given
by solving Eq. (10) we refer to this problem as
the “Hartree ¢{-matrix problem.”

2. Harlvee-Fock approximations. In a Hartree-
Fock description of the solid problem each of the
pair of particles spends some time at both of the
lattice sites associated with the pair. The wave
function for a pair of particles must be properly
antisymmetrized and the pair Hamiltonian which
describes the motion of a pair of particles must

Jdx, [ax,e~( 11 V¥u(ij)g~ (i)

be properly symmetrized (parity conserving).
Furthermore, a particular spin arrangement must
be defined for the solid. In the Hartree-Fock
approximations U is given by

U= [Ty ()0, + Ty (i )O14, 4] - (14)
=)

As the particles are indistinguishable ¢ and j refer
to lattice sites rather than particles. We have

1 if the spin at site 7 is ¢
044, 45 and the spin at site j is ¥, (15)
0 otherwise .

The potential energies Uy (ij) and Uy, (i) are
given by

Onla)= [dx, [d%; o~ (i)*¢™(i)) 16
and
(i) = LAZS R0 (i) 0 ()4 (i) + 9™ (i) *v i)y~ (35)] (17)
Un Jax [ ax o i) @)+ o) N
where
o* ('l])" 5 [904(1)0, (1) 94())e, ()] . (18)
In the Hartree-Fock approximations U, is given by
U,= Z (Ugtr (3)04y 45 + Ugty (67)044,45] (19)
i=(1)
where
@2\ [d%, [d%,0=(ij) (i) 6G,~ R, + 0G,~ R,)] v~ (i)
Uon (1) = (N> Jax, [d%;0" RO ’ 20)
and
U (i.)=(a_‘-)‘3” JdX, [ax,[o (ij)*v(ij)y* (z])+ ¢~ (ij)*o i)y~ (i) 6%, - R,) + 6(%,- R, )J @1)
oI\ T Jax; Jaxle™ (i) (7) + ¢~ (ij) ¢ (ij)]

Because particle ¢ spends 3 of its time at lattice site ¢ and the other half of its time at lattice site j, we
insert two 6 functions in evaluating U, as in Eq. (20) and Eq. (21). In fact, both 6 functions give the same
contribution to U,. In Egs. (16), (17), (20), and (21) $*(ij) is the correlated pair wave function obtained
by solving the “Hartree-Fock” Bethe-Goldstone equation; i.e.,

%T(ﬁ) + TF) +v(F) + % atR-d)?+ % % A F=RR,5, + (F+ K)E[m]‘( YH(ig) = (€= 2U ) * (4f) (22)
or
[T(§)+ T(F) +o(F) + % a*(R-d) + % %{ at(r? + A% - 2A|zl)] $(i7)=(e=2U )¢ * (i) . (23)

The smgle -particle potential in this equation is
1rE-2) for z>0 (particle 1 to the right of par-
ticle 2) and k(¥ + A)? for z< 0 (particle 1 to the
left of particle 2). For the kind of compact wave

functions we seek to describe the solid, the “cusp”

r

at z=0 is of no consequence. Here we use the
center-of -mass and relative coordinates

;(i Xi, A:Rj‘Ri, (24)

D.'N "“
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and

zZ=T* (25)

As in the Hartree case, we use the Hartree-Fock
equations in two ways: (a) We solve Eq. (23) for
$*(#j) variationally after decomposing ¢*(ij) into
its partial waves. The state-dependent Reid soft-
core potentials can only be studied in this kind of
complicated partial-wave treatment. (b) We also
treat ¢ *(ij) in the cutoff approximation of Eq. (13).
When 7,=0 in the cutoff approximation we have
glr)=1and 9*(ij)=¢*(ij). The problem that re-
sults in this limit we refer to as the “Hartree-
Fock problem.” When g(r) is given by 6(r —7,)
for 7,#0 we refer to the problem that results as
the “correlated Hartree-Fock problem.” When
g(r) is given by solving Eq. (23) we refer to this
problem as the “Hartree-Fock {-matrix problem.”

The formulas in this section are schematic as
they do not include the angular momentum and
spin dependence of the wave functions. In Appen-
dix A we exhibit the formulas for U and U, that
result from using a partial-wave decomposition
of the wave function. The Appendix also contains
details of how we handle the spin quantization
problem.

II. RESULTS AND DISCUSSION

In this section we report the results of calcu-
lations using the sets of equations outlined above.
There are three important elements to be dis-
cussed for each calculation: (a) the self-consis-
tency condition, (b) the energy per particle, and
(c) the qualitative properties of the physical state
that results. In general we have done calculations
at densities of 5x 10" 16x 10, and 50x 10**
g/cm?® for a bee crystal structure with an anti-
ferromagnetic spin configuration.®

A. Hartree calculations with v,(r)

The self-consistency condition for @® in all
cases can be written in the form

,_4m

a comp § F

[T(a?) - Uyla?)], (26)
where U and U, are computed as functions of a*
using equations specific to the particular approx-
imation being employed. We denote by a .? the
self-consistent value of @® which occurs when

@ mp- €quals @®. The results of this kind of pro-
cedure for the “Hartree problem” [»,=0 in Eq.
(13)] are shown in Figs. 1(a), 1(b), and 1(c) in
which we plot @,,,* vs a® for the three densities
we explored. A self-consistent value of a®is
found when the « % curve crosses the self-con-

comp

sistency line (a,,,>=a’) drawn in the figures.
Self-consistent values of a® are found for all three
densities in this “Hartree problem.” The energy
per particle of the system is shown in Figs. 2(a),
2(b), and 2(c) as a function of @ for these den-
sities. As a®- 0 the energy per particle ap-
proaches the Hartree liquid value (the value cor-
responding to @®=0),'®

N e
ER= T,—41r£ r2drvg(r)
A

(27

where A=6484.2 MeV, 3=17, and 7»g is defined by

3

%’ =4q 1:; , (28)
where 4=0.7 F~!. These asymptotic values of
the energy are noted on the left-hand sides of
Figs. 2(a), 2(b), and 2(c). For each of the three
densities, we see that the energy per particle
approaches its corresponding liquid value rapidly
for @®< 1. On these figures we note that the en-
ergies corresponding to a” the self-consistent
value of & found from Figs. 1(a), 1(b), and 1(c),
fall very close to their corresponding energy
minima. This becomes particularly true as the
density is increased and the relevant a.* becomes
larger.” In Fig. 3 we show ag*A® as a function of
density. We regard this parameter a *A* as a
reasonable estimate of the qualitative structure
of the solid.” It is a measure of the ratio of the
wave-function width to the interparticle spacing.
We note that at the lowest density p =5% 10" g/cm?,
ay.°A*=12.3. In Fig. 4 we show a second test of
the qualitative structure of the wave function (see
Pandharipande, Ref. 5). This is the “number of
particles per particle,” i.e.,

n =_§_.n,« u?) )32 g
0.63
= ————asrss , (29)

where 1 is the displacement of a particle away
from its lattice site. The number » is the volume
of the single-particle wave function times the
density of particles. It is a measure of the aver-
age number of particles in the volume occupied by
a particle. For a solid we want this number to
be much less than 1. For each density we define
ac? as the value of a® for which »=1 and note it
on the self-consistency plots in Figs. 1(a), 1(b),
and 1(c) and on similar plots below. We regard
values of @? less than a.? as describing a liquid-
like state or as unphysical.

In Figs. 1(a), 1(b), and 1(c) and Figs. 2(a), 2(b),
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FIG. 1. (Continued on following page)
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FIG. 1. Hartree self-consistency condition for vgz(¥). For the 3 densities we show acomp2 calculated from Eq. (26) as
a function of &? for the Hartree (7¢=0), correlated Hartree (7= 0), and Hartree {-matrix calculations. The physical

region is a?=a?.

Self-consistency is achieved when the value of ammf, crosses the diagonal labeled “self-consistency.”

The Hartree t-matrix results are similar to those obtained with 0.7 =7;=<0.8 at 5x 10! g/ecm?3, 7,~0.6 at 16x 10'* g/cm?,
and 7,~ 0.5 at 50X 104 g/cm3. There is no self-consistency in the physical region for the larger values of ¥, or for the

Hartree ¢-matrix results.

and 2(c) we also show the corresponding results
for the self-consistency condition and for the
energy per particle calculated for the “correlated
Hartree problem” [7,#0 in Eq. (13)] as a family

of curves for varying v, values. As with the
“Hartree problem” above, the values of the energy
per particle in this “correlated Hartree” calcula-
tion approach their corresponding liquid values

as a*-~ 0. We have

ER(r)=ER(1+ Brou)eBro . (30)

We note that E/N approaches this asymptotic

value rapidly as a®- 1 for all cases. This is
particularly true for the larger values of »,. The
reason for this is that as »,~ 1 F the wave function
need not spread very far before a particle has
seen all there is of the interaction. Thus the liquid
limit is achieved for rather large values of a*

for the larger values of 7,. From Fig. 1(a), for

a density of 5% 10" g/cm®, we see that as the
cutoff becomes larger the values of o, become

comp

less until at »,=0.7T F, ay.°, the self-consistent
value of @® becomes less than the critical value,
ac®. Thus the self-consistent wave functions
become unphysically large for »,< 0.7 F. We
further note in Fig. 2(a) that the energy ceases

to have a minimum as a function of a® for »,

< 0.7 F. The physics in these results is simple.
The self-consistency condition requires that a
Hartree calculation of the structure of the single-
particle well leads to a single-particle well that
will yield the Hartree single-particle wave func-
tion. As 7, becomes large the repulsive part of
the interaction becomes so weak that the neighbors
of a particle cannot suitably localize it in space
to produce the Hartree wave function. Qualitative-
ly similar results are obtained for the other two
densities as shown in Figs. 1(b), 1(c), 2(b), and
2(c). We next show that the behavior of o, as
a function of «? for the “Hartree f-matrix” pair
wave function is much the same as that found here
for the cutoff correlation functions.
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FIG. 2. Hartree energy per particle for vgz(7). For the 3 densities we show E/N vs a? for the Hartree (74=0),
correlated Hartree (7,= 0), and Hartree ¢-matrix calculations. On the left-hand side we show the Hartree liquid en-
ergy values. The energy per particle approaches these liquid values as a?—0. For 79> 0.5 the Hartree energy at a?
1.0 is already nearly equal to the liquid value. For large a? the kinetic energy dominates the total energy. The po-
tential energy is independent of @2 for large a? where it is given by a lattice sum. We note that a minimum in E/N vs
a? occurs for smaller values of 79; so does self-consistency. The existence of a self-consistent @? or a minimum in
E/N seem to be related. We note that for the physical valuesof a? the energy per particle given by the Hartree t-matrix

is about the same as a simple cutoff.

In Figs. 1(a), 1(b), 1(c), 2(a), 2(b), and 2(c) we
also show the results of a Hartree {-matrix cal-
culation in which the correlation function is found
from the solution to Eq. (10). The computational
procedure in this case involves an intermediate
step: (1) Choose an a?, (2) solve the differential
equation for the correlation function appropriate
to @? and (3) calculate @’ using the correlation
function from step (2). In Figs. 1(a), 1(b), and
1(c) we exhibit the results of such a ¢t-matrix
analysis of the self-consistency condition. We see
that for large values of %, a .’ is the same as
the Hartree values. For large a? the correlation
function when combined with vg(») to yield a ¢
matrix leads to an insubstantial change in the inter-
action in the region of space where the particles
are localized. For 5x10™ g/cm?® as a®- 10 the
wave function has broadened enough that the par-

ticles sample the region of space where the ¢
matrix differs from vg(r) and a . differs from
the Hartree value of @, 2. From Fig. 1(a) we
see that a % follows a curve midway between
that appropriate to g(») cut off at »,=0.7 and
7,=0.8. That is, the effect of introducing the

t matrix determined by solving Eq. (10) is equiv-
alent to a g(r) cutoff at 0.7 <7,<0.8. We note
further that no self-consistent a? is found with
glr) from Eq. (10) except possibly far into the
unphysical region. The similarity of a,, cal-
culated with the exact f matrix to a,,,” calculated
with a cutoff potential permits us to repeat the
explanation given earlier. The correct { matrix
for vy(7) leads to too weak an effective interaction
to permit self-consistent binding of the particles.
Furthermore, as shown in Fig. 2(a), no energy
minimum is found in the physical region. We find
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FIG. 3. agc’A? vs density. The value of ag-2A? is
shown as a function of density for several calculations:
vp(7) in the Hartree and Hartree t-matrix approximation,
the calculation of Canuto and Chitre on the full Reid
potentials, the calculation of Canuto, Chitre, and Loden-
quai on vg(7) and the calculation of Chakravarty, Miller,
and Woo on vg(7). The unphysical region or liquid region
is at aSCZAZ =4.6. Most calculations lead to unphysical
wave functions.

these results at all densities. We find at most a
self-consistency in the highly unphysical region
at higher densities. The corresponding values of
a’A% and n, when available, are recorded on
Figs. 3 and 4 for comparison with the Hartree
results.

We note that in solving the “Hartree {-matrix
problem” with g(»r) given by Eq. (10) we find values
ay-? and E/N similar to those found by Canuto,
Chitre, and Lodenquai. As we have solved Eq.
(10) in the one-dimensional approximation of
Guyer and Sarkissian,'® which we do not complete-
ly trust as a®—~ a.%, we expect the results of
Canuto, Chitre, and Lodenquai to be more ac-
curate than our own. If the self-consistent values
of a? were larger, we would expect excellent
agreement between the two calculations. Thus our
results here are qualified by the fact that we have
used the one-dimensional approximation of Guyer
and Sarkissian. We believe this to be an excellent
approximation in the physical region. Below we
discuss the Hartree-Fock solutions in which the
one-dimensional approximation is removed.
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FIG. 4. n vs density. The value of » given by Eq. (29)
is shown as a function of density for the calculations dis-
cussed in the text. See the caption to Fig. 3 for an enum-
eration. For z >1 the wave function is highly unphysical
for a solid; i.e., it is liquidlike. The result of most solid
calculations lies in the liquid region.

B. Hartree-Fock calculations with v, (r)

For a Hartree-Fock calculation of the ground-
state energy for an antiferromagnetic spin ar-
rangement, the self-consistency results are shown
in Figs. 5(a), 5(b), and 5(c) and the correspond-
ing energy per particle results are shown in Figs.
6(a), 6(b), and 6(c). The results shown in these
figures include those for the “Hartree-Fock
problem,” the “correlated Hartree-Fock problem,”
and the “Hartree-Fock f{-matrix problem.” We
note that as a”— 0 the energy per particle ap-
proaches 3 of the energy per particle of the Har-
tree liquid,; i.e., it goes to the Hartree-Fock
liquid value.”® Comparing Figs. 1(a), 1(b), and
1(c) with Figs. 5(a), 5(b), and 5(c) and Figs. 2(a),
2(b), and 2(c) with Figs. 6(a), 6(b), and 6(c), we see
that as a@® becomes large the Hartree-Fock value
of @ ,.,,° approaches the Hartree value of a
and the energy per particle approaches the energy
per particle of the Hartree calculation. But as
a®~ac® we find @’ goes through zero and be-
comes negative. Negative values of a,,* can
occur at large a® with a potential having an attrac-
tive region. In that case, for a suitably large
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lattice spacing, a particle sits on an equilibrium
site in a potential at higher energy than the aver-
age potential energy nearby. This is the classic
situation for a quantum crystal or for neutrons in
the Vig, (r) potential at low density. At the op-
posite extreme a®— ag?, however, a different
effect occurs to cause a_,,’ to become negative.
As a?- a.? the Hartree-Fock values of the energy
per particle deviate strongly from the Hartree
values and begin to approach the Hartree-Fock
liquid energy. In Figs. 7(a) and 7(b) we show
separately the behavior of U and U, for the Har-
tree and Hartree-Fock calculation for a density

of 5x10" g/cm®. We see that U and U, are the
same for large a? in both the Hartree and Hartree-
Fock calculations. As a®- a.? the Hartree-Fock
value of U deviates more rapidly from the Hartree
value of U than the Hartree-Fock value of U,
deviates from the Hartree value of U,. Thus the
average potential energy of a particle near a
lattice site becomes smaller, due to the spin
correlations that drive the opposite spin particles
away, more rapidly than the potential energy of
the particle at the lattice site. When a particle

is fixed on a lattice site its relative motion with
respect to its neighbors is described by

exp[-a2(F - A)?] and it has less overlap with its
neighbors than when it is free to move and its
relative motion is described by exp[-(a%/2)F- A)3.
Thus the Pauli principle affects the average po-
tential energy more strongly, for fixed @?, than

it does the lattice -site potential energy.

In Figs. 5(a), 5(b), 5(c), 6(a), 6(b), and 6(c) we
also show the results of a Hartree-Fock {-matrix
calculation employing a partial-wave decomposi-
tion of the pair wave function and an antiferro-
magnetic spin arrangement. As with the Hartree
t-matrix calculation described above, an inter-
mediate step of solving the pair equation, in this
case Eq. (23), is involved. In the Hartree-Fock
case a partial-wave decomposition of the pair
equation is required. This decomposition leads
to separate systems of coupled equations for the
even and odd angular momentum components.

The total even and odd wave functions are jointly
normalized. (The question of normalization is an
important one and is discussed in Appendix C.)
The systems of coupled equations are solved
variationally. For the self-consistency condition
we find the results shown in Figs. 5(a), 5(b), and
5(c). For relatively large values of a®, a .,
becomes greater than the Hartree values because
of the limit on the number of partial waves we
include. (See the remarks in Appendix B.) At
intermediate values of &%, @, agrees well with
the results of the Hartree {-matrix calculations
which are also plotted in these figures. Then at

e’z ac® @, begins to deviate from the Hartree
results and to follow the trend noticed in the
“correlated Hartree-Fock” calculations described
above. As in that case no self-consistency is
achieved in the physical region. We see that the
behavior of @’ in the full Hartree-Fock ¢-
matrix calculation is essentially the same as in
the Hartree f-matrix calculation in the physical
region. The ¢ matrix behaves like a cutoff at
some value of r,. As a®- 0 the effective cutoff
moves to larger 7, so that a2 does not neces-
sarily follow a single 7, curve.

C. Hartree calculations with v,s’J (r)

In Figs. 8 and 9 we illustrate the results ob-
tained from a Hartree solution for the v lS0(1’) mod-
el potential. The results shown in these figures
include those for the “Hartree,” the “correlated
Hartree,” and the “Hartree {-matrix” problems.
The general behavior of these results are striking-
ly similar to the Hartree results we have just
discussed for the vg(r) model potential at the
three densities we have studied—5Xx 10", 16X 10,
and 50X 10" g/cm®. For this reason, we only
present the intermediate density results. The
introduction of a strong attractive term (potential
depth ~ -90 MeV) into the state-independent model
potential problem does not affect the general be-
havior of the a® self-consistency curves nor the
E/N curves although the values of E/N are now
typically much lower. The “Hartree f-matrix”
results show no self-consistency and no energy
minimum, except perhaps far into the unphysical
region for all three densities we have studied.

D. Hartree-Fock calculations with Vig, (r)

In Figs. 10 and 11 we illustrate the results ob-
tained from a Hartree-Fock solution for the v, ()
model potential. The results shown in these figo--
ures include those for the “Hartree-Fock,” the
“correlated Hartree-Fock,” and the “Hartree-
Fock ¢-matrix” problems. Here again, the gen-
eral behavior of these results are very similar to
the Hartree-Fock results for the vgz(r) model
potential. Consequently, we only display the
16X 10" g/cm?® results although our analysis ex-
tended to 5x 10 and 50x 10* g/cm®. As a? be-
comes large the Hartree-Fock values of a,y,°
and E/N approach their corresponding Hartree
values. As a? gets smaller and approaches a.?,
Qomp deviates from its Hartree values. However,
as o ,..° enters the unphysical realm (a,,,’*< ac?)
we observe an effect not previously observed in
the vR(r) results. For the vg(r) Hartree-Fock
results, a2 becomes negative in the unphysical

comp
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FIG. 5. Hartree-Fock self-consistency condition for v5(7). For the 3 densities we show ozmmp2 calculated from
Eq. (26) as a function of a? for the Hartree-Fock, correlated Hartree-Fock, and Hartree-Fock ¢-matrix calculations.
We also show the Hartree values of acomp2 (light curves) for comparison with the Hartree-Fock ammpz (heavy curves)
and the Hartree f-matrix result for comparison with the Hartree-Fock ¢t-matrix result. The dip in the Hartree-Fock
values of ozm,,,p2 is the manifestation of a zero on a log scale. On a linear scale the bumps and dips that appear here
disappear. See the discussion involving Fig. 7 for an explanation of the zero in acomp’. The Hartree-Fock results are
in all cases similar to the Hartree results for large a?. As c«z--o:c2 large overlap occurs and departure of the Hartree-
Fock results from the Hartree sets in. There is no self-consistency in the Hartree-Fock f-matrix calculation.

region. For the v, () Hartree-Fock results,

@ omy becomes (or attempts to become) positive
deep in the unphysical region. This reverse be-
havior of &, arises from the peculiar behavior
of the U and U, values for the Hartree-Fock cal-
culations in the large overlap region for the v ,so(r)
attractive potential. The “Hartree-Fock {-matrix”
results show no self-consistency and no energy
minimum except in the unphysical regime owing
to the behavior just described. This behavior is
also observed for p=5x10" g/cm3. For p=50

x 10" g/cm® however, our analysis does not ex-
tend far enough into the small-a? unphysical re-
gion to determine whether self-consistency or an
energy minimum exist. The corresponding values
of a®A? and n, where available, are plotted in
Figs. 3 and 4, which clearly reveal their un-

physical nature.

These results complete the series of calcula-
tions associated with the model problems. A
number of conclusions are possible:

(a) The sequence of model problems defined by
the potentials vg(r) and v, (r), the correlation
functions g(r) = 6(r - 7,) foror0 =0,0.1,0.2, ...,
the choice of a bce geometry, the density range
5x10" <p <50X 10" g/cm®, and the choice of an
antiferromagnetic spin arrangement (when a spin
arrangement is required) have well defined Har-
tree and Hartree-Fock solutions for suitably
strong repulsive interactions.

(b) The asymptotic behavior of these solutions
is in agreement with the expectations that follow
from rather general physical arguments. Specific-
ally, the Hartree and Hartree-Fock results are
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FIG. 6. The Hartree-Fock energy per particle for vz(7). For the 3 densities we show E/N vs a? for the Hartree-
Fock, correlated Hartree-Fock, and Hartree-Fock f-matrix calculations. On the left-hand side we show 1 of the
Hartree liquid energies, i.e., the Hartree-Fock liquid energies. The Hartree-Fock energy curves follow the Hartree
energy curves until a?~ acz where the Pauli principle comes into play and the Hartree-Fock energy begins to approach
the liquid value. For the Hartree-Fock t-matrix calculation the energy per particle is almost the same as the Hartree

t-matrix energy per particle.

in agreement for small overlap, the Hartree and
Hartree-Fock energies are asymptotically cor-
rect as the liquid limit is reached and the self-
consistency condition breaks down as a®-ac? in
a physically understandable way.

(c) The solution to the Hartree {-matrix problem
with the correlation function given by Eq. (10) or
the Hartree-Fock {-matrix problem with the cor-
relation function given by Eq. (23) is not substan-
tially different in detail or in final result from
the solution of the model problems. Therefore,
conclusions drawn from the discussion of the
model problems described in (a) above are cor-
rect for the relatively complex Hartree f-matrix
and Hartree-Fock {-matrix problems.

It remains to be seen whether the introduction
of realistic potentials changes these conclusions.
We believe that, as most of the important results
follow from physical arguments invariant to the
details of the potentials involved, the introduction
of the full collection of Reid soft-core potential

will not change the conclusions. In Sec. IV, we
present our results using the full Reid soft-core
potentials.

IV. THE FULL SOLID -NEUTRON -MATTER PROBLEM

In this section we discuss our results and under-
standing of the full solid-neutron-matter problem.
In Figs. 12 and 13 we show the results of our
Hartree-Fock {-matrix computations using the
full set of Reid soft-core potentials. We present
the @ ., and the energy as a function of a® for a
density of 16x10* g/cm®. For comparison we
also display the corresponding Hartree-Fock ¢-
matrix results for the two state-independent mod-
el potentials vg(r) and v, (r). The self-consistent
results of Canuto and Chitre at this density are
plotted as single points on each figure. In Fig. 12
the data in the region a®> 10 are unreliable be-
cause of the insufficient number of partial waves
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FIG. 7. U and U as a function of @?®. To understand the behavigr of otmmp2 in the Hartree and Hartree-Fock calcu-
lations we show U and U, for a number of cases. In (a) we show U and U, for the Hartree calculations; in (b) we show
U and U, for the Hartree-Fock calculations. We note that for large a2, U (2 a?) =U y(@?) and the Hartree and Hartree-
Fock values of U and U, are similar. As a?—a.? the Hartree-Fock values of U and U, depart from the Hartree values;
U feels the effect of the Pauli principle more rapidly than U o and begins to go toward the Hartree-Fock liquid value. As
a?— 0 both Uand U o should be equal at the liquid value in a Hartree or Hartree-Fock calculation. An argument for the
stronger effect of the Pauli principle on U is given in the text.
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FIG. 8. The Hartree self-consistency condition for vy (7). We plot Ceomp? from Eq. (26) vs o? for the Hartree,
correlated Hartree, and Hartree ¢-matrix cases. We show the result for the intermediate density, p = 16x 10'¢ g/cm?.
The results are quite similar to those in Figs. 1(a)—1(c) for the vy(7) potential. We note that the attractive part of the
‘So potential leads to a reduction of the effective repulsive core so that by 7,~ 0.4 the self-consistency condition is bare-
ly satisfied. There is no self-consistency for the Hartree ¢t-matrix calculation.

used to evaluate U,. In Fig. 13, however, the
data in this region still remain reliable since U
requires fewer partial waves for an accurate
description. In Fig. 12 we note that our «,, *
results using the full Reid soft-core potentials
follow more closely the a,,’ curve of the purely
repulsive vg(r) than the attractive vlSo(r) potential.
The most striking feature is the lack of self-con-
sistency in the physical region in our computations
for either the two model potentials or the full
Reid soft-core potentials.!® In Fig. 13 the energy-
per-particle curve for the full Reid potential
problem falls between the corresponding curves
for the two model potentials. This is reasonable
since the model potentials may be considered as
envelope potentials for the complex set of Reid
soft-core potentials. The potential vy(r) is purely
repulsive while vlSO(‘r) is the most attractive of
the Reid potentials. No energy minimum is ob-
served except in the unphysical region for the
vlso(r) model potential. We observe qualitatively

similar behavior in the two other densities that
we have studied, 5% 10 and 50x 10" g/cm®. In
neither case do we obtain a self-consistency or
an energy minimum except possibly in the un-
physical region.

We have carried out our calculations only in
the bee phase. Since the tensor part of the nuclear
interaction is dependent upon the spin configur-
ation, one should examine the tensor force con-
tribution for various spin and lattice configura-
tions. However, as seen in Figs. 12 and 13 and
explained in Appendix A, several different treat-
ments of the tensor force contributions in a bce
lattice have produced similar results. This be-
havior is expected since the tensor force com-
prises only a small part of the interaction and
also because, on the basis of our experience with
the two model potentials, we do not expect minor
modifications in the potential structure to sig-
nificantly change our results. Thus, we have not
examined crystallographic structures other than
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FIG. 9. The energy per particle in the Hartree approxi-
mations for vy (7). We show the energy per particle as
a function of @ for p =16 x 10! g/cm? for the Hartree,
correlated Hartree, and Hartree t-matrix calculations.
For small a? the energy approaches the Hartree liquid
energy.

the bece lattice. It does not seem likely that a
modification of the spin configuration would lead
to a change in the tensor force contribution which
would drastically alter our basic results.

There have been a number of earlier investi-
gations of the solid-neutron-matter problem. The
work we have presented here is most like that of
Canuto and co-workers and our conclusions are
most usefully related to theirs. We noted earlier
that our solution to the vg(r) problem was similar
to the result of Canuto, Chitre, and Lodenquai
for the homework problem. The original calcu-
lation of Canuto and Chitre on the full solid-
neutron-matter problem employed a formalism
similar to the one we have employed here in the
Hartree-Fock t-matrix approximation. However,
because the pair Hamiltonian they used to find
the ¢ matrix was not parity conserving they were
forced to deal with certain unnecessary compli-
cations. Their results differ markedly from any
we have achieved. Although we are unable at
present to undertake an exhaustive criticism of
their work, some comment on our present under-
standing of their work may be instructive.

(1) The ¢t matrix employed by Canuto and Chitre
is found from the solution of a pair equation of

HARTREE - FOCK, v('Sg) |

p=16x10" g/cm3

.\\/—HARTREE - FOCK

\ t - MATRIX 7

FIG. 10. The Hartree-Fock self-consistency condition
for vig (7). We plot Qeomp? from Eq. (26) vs a? for the
Hartree-Fock, correlated Hartree-Fock, and Hartree-
Fock t-matrix cases. These results are for p =16 x 10!4
g/cm®. At large ? the results are similar to the
Hartree results. At small or nonphysical values of o?
the results are unusual. We show the Hartree-Fock t-
matrix and Hartree ¢-matrix for comparison and note
that the Hartree-Fock ¢t-matrix result departs below
the Hartree result for large a2, This is due to failure
to include a sufficient number of partial waves. No self-
consistency is achieved for the Hartree-Fock ¢-matrix.

motion in which a biased single-particle potential
appears: viz.

UF)=1kF-A)2. (31)

This potential has the effect of not permitting a
pair of particles to exchange place; i.e., it biases
the relative coordinate wave function of the pair
so that the region of relative coordinate space with
T=A is much preferred to the region of relative
coordinate space with T = -A. The energy required
to have T~ —A is 2kA? = (12a? /m)a®A? = 4000 MeV
for the solid states found by Canuto and Chitre.
For the relative coordinate wave function to
achieve the bias imposed by U(T) it is necessary
that it be constructed from unphysical states as
well as physical states. By physical (unphysical)
states, we refer to states with the correct (in-
correct) spatial symmetry to properly antisym-
metrize the total pair wave function. Since U(T)

is not symmetric (not parity conserving), the
unphysical states must enter the analysis. For a
parallel spin pair the physical states produce a
spatially antisymmetric wave function of equal



11 SOLID NEUTRON MATTER 2715

200——— T
Liguip ! L
HARTREE - FOCK, v ('Sg)
fo=0 14
= 3
100k p = 16x10 9/cm i
or 1
S
N
3 oo s 4
2 .
= -200} 1
~
w
I 05 1
- 300} e
\HARTREE— FOCK ]|
-400+ t - MATRIX
{
I . (.
'
),
_500 oaaal 1 4 L o da L A
| 10
a® (F7YH

FIG. 11. The Hartree-Fock energy per particle for
V15, (7). We show the energy per particle as a function of
a® for vig (7) in the Hartree-Fock, correlated Hartree-
Fock, and Hartree-Fock t-matrix cases. The energies
approach the corresponding liquid values as a?—0. The
energy per particle is not much different from the
Hartree energy per particle.

but opposite amplitudes at T~ A and T~ -4; the
unphysical states produce a spatially symmetric
wave function of equal amplitudes at T = A and
T~-A. In the total relative coordinate wave func-
tion the physical states and unphysical states add
at T~ -A to have zero (or very small) amplitude
and the physical states and unphysical states add
at T~ A to have a large amplitude. If a pair of
particles in the physical states has the same en-
ergy by virtue of their interaction with one another
as a pair of particles in the unphysical states,

then the interaction would tend to leave the amount
of pair wave function in the physical and unphysical
states unchanged; i.e., |Cp|?~|Cyp|2~3. If, on
the other hand, a pair of particles in the physical
state interacted with one another with a more
attractive interaction than a pair of particles in
the unphysical state, there would be a tendency

to populate the physical state at the expense of

the unphysical state. But this tendency would have
to balance against the positive potential energy in
U(F) gained by having a finite wave function at
T~-A. This energy is of order
(72a?/m)(a?a?)(|Cp |2 =|Cp|?). The final relative
coordinate wave function would represent a balance
between these competing effects. The pair wave func-
tion found by Canuto and Chitre contains both physical
and unphysical states. In calculating the potential

LERELILE T T T T rrrry

- HARTREE ~ FOCK
2 p =16x10*% g/cm3

CANUTO 8

CHITRE SELF CONSISTENCY ]

v
! enO---
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w “TTe .
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FIG. 12. The Hartree-Fock self-consistency condition
for the Reid potentials. We plot comp? from Eq. (26) vs
@? for the Hartree-Fock ¢-matrix case. We show the
results for the two model potentials and the Reid soft-
core potentials at p =16x 104 g/cm®. For the Reid soft-
core potentials we show two curves that result from the
several treatments of the spin quantization described in
Appendix A. The curves labeled “(1)” and “(2)” cor-
respond to methods (1) and (2) of Appendix A. We note
that the various methods of treating the spin quantization
produce little difference in the outcome of the calcula-
tions. We note that only the vig (%) problem satisfies
the self-consistent condition (but in the nonplysical
region). For a?>10 we dash the ozcomp2 curves to show
that they are becoming less reliable as o? increases due
to the limit on the number of partial waves we use. The
location of the self-consistent a? found by Canuto and
Chitre is shown.

energy for a pair of particles, Canuto and Chitre
take only the physical part of the wave function.

If the only effect of the competition between the
physical and unphysical wave functions is to shift
the amplitude of each while leaving the shape un-
changed, the computational procedure of Canuto
and Chitre should be quite satisfactory. But the
equation of motion for the physical wave function
is coupled to that for the unphysical wave function.
A shift in the relative amplitudes of the physical
and unphysical wave function is necessarily ac-
companied by a change in their shape. Thus the
introduction of the unphysical wave function is not
just a cumbersome artifact; it makes itself known
through a distortion of the physical wave function.
If this distortion is not large, the results of
Canuto and Chitre should again be quite satisfac-
tory. This argument does not apply for a problem
involving state-independent potentials, i.e., it
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does not apply to the work of Canuto, Chitre, and
Lodenquai on the homework problem or on the
helium problem, for in these problems particles
in the physical and unphysical states have the
same interaction with one another. On the other
hand, for this reason the work on these state-in-
dependent problems does not demonstrate the
adequacy of the formalism of Canuto and Chitre
for the full neutron matter problem.

(2) We have a general expectation about the be-
havior of U and U, that is not met in the calcu-
lations of Canuto and Chitre. The quantity U is
the average potential energy per particle in the
presence of its neighbors when the relative mo-
tion of the particle with respect to its neighbors
is described by exp[-(a?/2)(r - A)?]. The quan-
tity U, is the potential energy of a particle on its
lattice site. That is, U, is the average potential
energy of a particle in the presence of its neigh-
bors when the relative motion of the particle with
respect to its neighbors is described by
exp[-a2(r-A)?]. We expect

T(202)= Uy(@?) . (32)

This relation is borne out in our Hartree and
Hartree-Fock calculations [see Figs. T(a) and
7(b)]. This relationship does not seem to be cor-
rect for the calculations of Canuto and Chitre;
e.g., see their Fig. 4.

(3) The calculation of U, by Canuto and Chitre
seems to contain an error. When a particle is
placed on its lattice site its relative motion with
respect to its neighbors is described by a com-
bination of the relative-coordinate wave function
and the center-of-mass wave function. Thus, if
there is a state-dependent interaction it is not
proper to move the center-of-mass part of this
relative motion through the interaction. This is
most easily seen by writing

Jax, [az@imtinuine- &)

in the form

A).

o=

[ aft [ ar e @p @@ @@ 6@ -3 47 +

We complete this section by commenting briefly
on the work on the “homework” problem by
Chakravarty, Miller, and Woo. The most strik-
ing feature of the state which they obtain is that
the “number of particles per particle” as mea-
sured by # is of order 10—20 (see Fig. 4). This
state is certainly not a solid. For example, it
has almost an order of magnitude less energy of
localization at a given density than a Fermi gas

—— ———————] —
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FIG. 13. The energy per particle in the Hartree-Fock
approximation with the Reid potentials. We show the
energy per particle as a function of &? for p =16x 10'4
g/cm® for the two model potentials and the Reid soft-
core potentials. For the Reid soft-core potentials we
show two curves that result from the several treatments
of the spin quantization described in Appendix A. The
curves labeled “(1)” and “(2)” correspond to methods
(1) and (2) of Appendix A. We note that the various
methods of treating the spin quantization produces little
difference in the outcome of the calculations. The energy
per particle for the Reid soft-core potentials is midway
between the results for the most repulsive case, vg(7),
and the most attractive case, vyg (7). We show the en-
ergy found by Canuto and Chitre at this density. The
similarity of their energy to ours suggests that the dis-
agreement between the two calculations has to do with
the self-consistency condition.

at that density. In fact, this state should be an
excellent approximation to a liquid. Thus the
solid energies found by Chakravarty, Miller,
and Woo should be essentially the same as those
they found for the liquid. The fact that they find
Es/E, =% is very puzzling. We find Eg/E; ~1 at
a?% 1 for reasonable potentials.

V. CONCLUSION

We have studied the solid-neutron-matter prob-
lem in a sequence of approximations: Hartree,
Hartree { matrix, Hartree-Fock, and Hartree-
Fock ¢t matrix. We have applied these approx-
imations extensively to two simplified problems:
neutrons interacting with the repulsive part of the
'S, potential and with the full 'S, potential. We
have carefully discussed the results of our calcu-
lations for the two model problems in order to
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establish the adequacy of our treatment in each
of the approximations we use. For the Hartree
and Hartree-Fock approximations we find self-
consistent solutions for a solid state. For the
Hartree ¢-matrix and Hartree-Fock {-matrix ap-
proximations we find no self-consistent solutions
or unphysical self-consistent solutions for the
solid state. These results are in reasonable
agreement'® with those of @stgaard!® and Canuto,
Chitre, and Lodenquai.® The formalism we have
developed for the Hartree-Fock f{-matrix approx-
imation is able to incorporate all of the features

found in the neutron matter problem when the
neutrons interact through the Reid soft-core po-
tentials. When this formalism is applied to this
problem we find no self-consistent solutions for
the solid state. Therefore we conclude that Reid
soft-core neutrons have no solid state.
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APPENDIX A

In this appendix we exhibit the detailed equations that are employed in the calculation of U and U, in the
Hartree-Fock ¢{-matrix approximation. Special considerations must be made to antisymmetrize properly
the pair wave functions and to account for the external spin quantization axis.

For U, the average value of the potential experienced by particle i, we have

U= (U (i5)0yy,45+ Ty (i)041,45] -
i=@)

We note that the index i is suppressed in U and U, since these quantities are independent of i. We ex-
amine both terms in this sum separately. First, we have

v (if) _ Jax [ax[¢* (1])X00+¢ (ENX oyt ()X 0 + ¥~ ()X o]
J (%0 + 6~ GHX o] [9° (1)Ko + U (I)X,

fdx{fdxj

where ¢*(ij) =0 R)p*F), ¥*(ij)=dR)Y*(F),

¢*@®= Y. R{0ML@), (A3)
PR

PEF) = Y. & RLYG,(Q), (A4)
L=042¢49000
L=143455000

and Xsus are the total spin wave functions for a
pair of spin-3 neutrons. The spin axis of quanti-
zation is chosen along some arbitrary external
direction. The Reid potentials are defined in
terms of matrix elements for pairs of particles
described by J and S, i.e.,

IS () =(r;IM,, LS|v|r;J' My, L'S’)

XéJJ"dMJMJI éssl GL'(LI or L'2) * (A5)

For J>2, we used the approximations of Canuto
and Chitre: v23(r)=v(’D,) for even L and the
central part of v2i(r)=v,(®P, - °F,) for odd L.

Proper antisymmetrization of the pair wave
function requires that even L be coupled to S=0
and odd L to S=1. Thus, we can write

(A1)
] ’ (A2)
(+ 0) (-1
Ty (i) = L) + Uy () (A6)

N“(z])+Nu(1J)

where the (+, =) and (0, 1) superscripts on the
Uy, (ij) refer to the parity of the partial waves
involved and the total spin S of the pair, respec-
tively. The normalization terms in the denomin-
ator are

4+
Nﬁ(ij):f ridr Z
0

L=0,2,..
L=1,34000

|RL(r)|2gL(r). (AT)

The even-L, S=0 contribution to Uy, (Zj) can be
expanded as

ﬁﬂ‘”(ijhf r2dr Z |R} ()| 2gt (rWwE2(r) .
o]

L=0,2,000
(A8)

When we examine the odd-L, S=1 contribution
to Uy (ij), however, we must rotate the spin
quantization axis, which has some fixed external
direction, to lie along the axis of quantization of
f, which is chosen to be along K,,, the direction
pointing from lattice site i to lattice site j (see
Pandharipande, Ref.5). Thus, if X5 is a spin
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state relative to the external quantization axis,
then

Xl;‘s = Z

mg ==1,0,1

D, m, (Bi)X my 5 (A9)

where the X, are spin-1 states relative to a
spin quantlzatmn axis parallel to the quantization
ams for L ;3“ is the angle between the external
S axis and the L axis of quantization, and

Dy, m, (B;;) are the elements of the rotation matrix
about an angle B;;. The rotation matrix is

(1)(2_1)—j+ rzdrz Z [ Z

JoL=1,3,... MgTTL0s1
L'=1,340e0

where m, =0 since we are considering an # pair.
The term in square brackets (sum over my) de-
serves special attention. We have examined it in
three different ways.

(1) We choose By; =0 for all pairs, i.e., the
axes of quantization for Sand T were chosen to
be along the same direction for each pair in the
sum in Eq. (Al). Thus,

o
RO f ridry. Y CLi'Chd R (r)RE: ()
0 =
O

x gL (r)vgys (r) .
(a12)

(2) We calculate the angular average over each
shell. A shell corresponds to those particles
which are equidistant from particle i. Thus,
since

% fdQ | D5, mg (B)]* =3 for all mg and m,,

where d§? =sinpdB d¢$, and since it can be shown
that

1 1/2J+1
§ E cf)nllsts clo‘mglms— 3 < 9L + 1 >6LL' ’
mg ==1,0,1
(A13)
then

—y e 2J+1>
(=1(;3) = -2
Uﬂl(”)‘,"o " 3<2L+1 |RZ ()]

X g (riviy (r).

(A14)

2d'rz: Z

J L=1,3,e0.

AND R. A. GUYER Ll_
cos*(3 B) —‘7% sing  sin2(3 B)
U S ) 1 .
D(B) = 73 sinB cosp -7 sinf

sin?(3 B) 71§-sim3 cos?*(zp)

(A10)

The odd-L, S=1 contribution can now be written
as

| D, m (B 12CE7, CEL ’ms} Ry 0R: gzl (), (A11)

This angular-averaging procedure distributes
the particles, located at discrete points on a
shell, uniformly over the shell. For a shell with
a large number of particles this procedure must
be a good approximation. But, it is even better
than that; see below.

(3) We treat the sum over m, exactly. This
exact treatment, however, produces results
nearly identical to those of method (2) where we
calculated the angular average. This can be
shown by a detailed examination of the terms of
the summation over m,. First, we note that

CRHL CEAL = (-1 CE (-1 p -7 gl
—Cé’li.lcg‘llll"' (A15)

The last equality holds since we are considering
only odd L and L’. Thus the sum over m, may be
expanded to yield

Z , Dm I 2Cém;Jms C(fm; {ns

mg==1,0,1

:[‘D1|2+‘D—1l ]CL”CL'“’ 'D IchlJcLllJ

o Cont 000 Co00” »
(A16)

where
Dp =D5 g (Biy), (a17)

and for convenience we have suppressed the
and B;; dependence in writing D"‘s . We must eval-
uate this sum [Eq. (A16)] for all allowed combin-
ations of (L, L’,J). Table I shows the results for
L and L’ equal to 1 or 3 after the relevant
Clebsch-Gordan coefficients have been evaluated.
[For all odd L>5, a purely central potential is
used—see immediately after Eq. (A5) whence a
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TABLE I. Contribution of various (L,L’, J) terms to the sum over mg of Eq. (A16) and the
angular-averaged results, +[(2J+1)/(2L+1)16,;,, of Eq. (A13).

Method (3) Method (2)
’ ! s

(L,L’,J) Z:ID,,‘s I2C§,‘ISJMSC§‘M;""|S Angular averaging

ms
(1,1,0) 1D, +
(1,1,1) +UD; P+ Dy H $
,1,2) FUD P+ Doy D+ Dy [? 3
(1,3,2) 2 2 2

(WT4)(| Dy |*+| D1 |9 =~ @A14) | Dy | 0

3,1,2)
3,3,2) 1Dy P+ Doy B+ Dy [ %
(3,3,3) 2UD P+ Dy H %
3,3,4) E(|Dy |2+ |D_y [ +4 | Dy |2 b

simplified form like Eq. (A8) results:

UPilns= [ rar T IR0 6)

L=5,Tgees
X v,(°P, = °F,) . (A18)

Thus, we need to only concern ourseives with the
noncentral L <3 terms.] The angular-averaged
results which are also presented in Table I are
those obtained in method (2) by assuming a uni-
form particle density for a given shell. For the
present case where the particles are treated as
discrete particles on lattice sites, we must eval-
uate |Dy|? and [|D,|2 +|D_,|?] for each particle
of a given shell. We note that the sum over m
would be identically equal to the angular-averaged
results of method (2) if

IDo|?= D5 oB8i;)]2

(X

(A19)
and

ID,|?+[D_,|*= D5 ,Biy)I* + D5 _ (B I?
=% . (A20)

This, of course, does not hold for each pair of
particles 7 and j. However, if we take the average
value of |D,[?and [|D,|?+|D_,|?] over all the
particles of a given shell, then this result holds
exactly. The proof of this is given in Appendix D.
Note that this is a discrete average over all of
the particles of a given shell and not an angular
average over a uniform particle density as in
method (2).

Averaging over all of the particles in a shell
is not, however, entirely legitimate since the
correlation function gz (r) differs for different
pairs in the same shell. This difference reflects

the changing amounts of the v}, (r) that interact
as B;; varies. This difference produces small
corrections, however, since the partial waves
R;(r) already possess strong correlations due

to the large angular momentum repulsive barrier
(for L>1). The g, (r) produce small corrections
(for L=>1) in the calculation of U, and U. There-
fore to good approximation, method (3) is iden-
tical to method (2).

In the main body of this paper we have pre-
sented the results using methods (1) and (2) when
appropriate, that is, when we use the full set of
state- and spin-dependent potentials (see Figs. 12
and 13). We note that an insubstantial change in
all features of the calculation results when
method (2) or (3) of treating the spin quantization
is used in place of method (1).

The second term in Eq. Al can be treated sim-
ilarly to the first term. We have

Uy (i) = [ax, [ax,[o=(i))X v, (¥ ()X ]
)= TraR Tax o X, e )X,
(A21)

or

_ "(-)(i i)

Uy (i) = 42 A22

Q’( ]) fog(l]) ) ( )

where U4i2(ij) is given by Eq. (A11) with m,=1.
We again handle the summation over m, using
methods (1) and (2) as we discussed earlier. The
normalization term is similar to Eq. (A7) with
only the odd L’s taken in the sum. For U, we
have

Up= 9 [Uots (7)814,45+ Uott (i7)0,45] ,  (A23)
=)

where
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Ui (1= (£ )™ Jax, Ja%[o (11)%gg+ ¢ () X gl vy (1)K + 3~ (i)X, ) [0GE, = R)+6(i, Rl
oty (47) =

fdx‘fdx,

(i)Xoo+ ¢~ (U)Xm—[‘l) (45) Xoo+ y- (1.7)

(A24)
Using ¢*(ij) = 0(R)p*(r), ¥*(ij)=¢([R)¢*(F) and the b functions in the form
6(;-R;) + 6%, -R,) =R -d - 3(F- R) + (R -d - 3(F + &) (A25)
we have
S(RN6G;- R,) + 6~ R;)] = 49" (). (A26)

Thus we can write Eq. (A24) in the form

U (1) 16< 2>-3/2 fdr¢' (.)[4) (.)X +¢” ( 1(1]1)(7' [ZP G’XQQ""P (-.)Xm](p (.
ot (2] [dT(9* ()Xop + 9~ (0)X 0] [47 ()Xo + ¥ (F)X o]

The overlap term contains ¢*(t) + ¢~(¥) and

¢*(r) - ¢~(F) in place of the two ¢ (r) produced by
the center-of-mass wave function. In the physical
region this overlap is small and can be neglected.
Now to use the Reid potentials we need to find

the partial-wave decomposition of the relative
motion described by ¢*¢*, ¢* ¢~ and ¢*y*, ¢*y”
on the left and right of v(r), respectively. We
define

Bi(r)= T [

47(2L + 1)

L'= 0424000 L''=0,2400
L''=1,34000

X (CLE"LPR}(r)R ()
(A28)
Similar to Eq. (A6) for Ty, (éj), we can now write

UStP(i5) + UG(E5)
NE (i) + N1y (d5) -

Ugti (i) = (A29)
The normalization terms N, (ij) are those given
by Eq. (A7). The Uy, (ij) terms are similar to the
corresponding Uy, (ij) terms given in Eqs. (A8),
(A11), (A12), and (A14) except that all the R/ (r)
terms are replaced with their corresponding B; (r)
terms defined above.

Finally, U,y (j) is handled in the same manner
as Uy (ij). Thus

o UGP3S)

UOH(l])— Nii(ij) (A30)
where the normalization term is the same as that
used in Eq. (A22) and U$3P(45) is given by Eq.
(A11) with m, =1 and with all the RL (r) replaced
with their corresponding B (r).

In our numerical computations involving the
partial-wave sums described in this appendix, we
used 10 partial waves, L= 0,2, 4, 6, 8 for the even
sums and L=1,3,5,7,9 for the odd sums.

+ an overlap term .

(A27)

APPENDIX B

In this appendix we discuss a few of the impor-
tant features of the partial-wave decomposition
of the relative-coordinate wave function. A pair
of particles separated by distance A have their
relative motion described by

¢*(x.')= GE(—E):;G‘ (r) , (B1)

where
2\ 3/4 2 -
6, &(T) =<%> exp[— % (r+ A)z] . (B2)

For this relative-coordinate wave function we have
(following a lengthy but straightforward calcula-
tion)

nPatA?

(L= 22

(B3)
In achieving this result we have assumed that the
pair of particles are far enough apart that an over-
lap contribution to (L ? is negligible. This result
can be understood by the argument

(Ar2) AP =T2,

where (A72) is a measure of the size of the rel-
ative-coordinate wave function and (Ap? is the
momentum perpendicular to A. Since (A7?)
~2/a? and ( L?) = (pA)? we have
- 2 2A2

SONLEES (B4)
in agreement with Eq. (B3). If we write Eq. (B3)
in the form ( L?) =#?T(T+ 1) we have a measure of
the average angular momentum associated with
the relative motion; i.e.,

a’a® 2A2

T(T+1) - - (B5)
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As a pair of particles are further away from one
another, A increases and the angular momentum
decomposition of the relative-coordinate wave
function involves more partial waves. As the
relative motion becomes more localized a? be-
comes larger, the momentum uncertainty be-
comes larger, and so does 7. This result places
a practical limit on the accuracy of a partial-
wave description of the relative motion (see for
example the comment in the text about the large-
a? behavior of the Hartree-Fock calculations in
Fig. 5). If the range of the interaction is well
defined, we must consider pairs of particles only
within a certain distance of one another. If the
range of the interaction is b, then 7 for the im-
portant pairs of particles is about

T~ab. (B6)

For the nuclear problem d<1 F so that l=a.
This number is of order 5 for the worst case. Re-
taining partial waves with / much greater than 5
should produce no dramatic changes.

The angular momentum can also be calculated
from

(L9 =TT+ 1)
=Y le 2101+ 1),
1=o

where |c;|? is a measure of how much of a given
partial wave is in the realtive-coordinate wave
function. It is again straightforward but tedious
to calculate |c;|? for ¢*(F) of Eq. (B1). We obtain
the results shown in Table II. In all cases,

>3 lc,[21(1+1) agrees with the results of Eq. (B3)
to within 1%. We note that although 3 @2A? changes
by a factor of 4 and 7 by a factor of about 2, the
amplitudes |c, |2 remain largest for relatively
small values of . For a2A%=20 and T=v20
~4.5, well over 60% of the amplitude is in the
1=2 and =4 partial waves.

(BT)

APPENDIX C
Consider

b= AP Xy, + BE7X,,, (C1)
where

®" ()= LZE:ER“”Y”(“)’ (C2)

& (F)= Z RI(n)Y,(), (C3)
and

Xy a(l)B(Z}_% B1)a(2) ’ (C4)

fom rlar |R () |2

|Cl|2

is a measure of how much of a given partial wave is in the relative-

[e; 2

a’A?,

In terms of the partial-wave decomposition given by Eq. (A3),

1
2

TABLE IL |c, |? for even and odd partial waves for four different values of

coordinate wave function ¢* (T).

20

10

a’A?
2

l lcI?

lc, |2

l lc,|? l [C; |? l [C;|? l ¢ ? l ¢ |?

XNk

0.2518
0.3622
0.2390
0.0937
0.0236
0.0039
0.0004
0.0000

1
3
5
7

0.0925
0.3458
0.3165
0.1587
0.0496
0.0101
0.0014
0.0001

0
2
4

0.3169
0.3914
0.1968
0.0525
0.0081
0.0007
0.0000

1
3
5
7
9

11

0.1200
0.4094
0.3030
0.1093
0.0220
0.0026
0,0002

0
2
4
6
8
10
12

)

0.4239
0.3923
0.1176
0.0152
0.0009
0.0000

1
3
5
7

0.1700
0.4880
0.2411
0.0465
0.0041
0.0019

0
2
4

0.6141
0.2662
0.0197

1
3
5
7

0.2802
0.5286
0.0873
0.0033

6
8
10
12

[

0.0003

9
11
13
15

9
11

10

13

14

| C; |2=0.9750
=20.009

(L%)

| €, |*=0.9750
=20.009

(LY

|C,12=0.9666
=15.014

(L%

=15.014

| €, |>=0.9666
L%

(

[ €, 2=0.9500
=10.02

(L%

|C,1?=0.9500
=10.02

(LY

C,1?=0.9005
(L?)=5.038

>l

=5.057

(L%

>lc,|*=0.8995
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a(1)8(2) + B(1)a(2)
V2

X10= , (C5)

where a(1) and B(1) are the spin-5 wave functions
for particle 1. In the summation, L € E and

L € O restrict the sums to even or odd L. We take
®"(T) and &~(T) to be separately normalized to 1.
Since

[aa v @71u@= 50, (C6)

this means

LZF:Ef |RL (r) Pridr = 1 (€
and

I;)_[‘mlRE(r)lzrzdr: 1. (C8)
Thus

Wailwn) = (A2 + |BF) =

If we want to attach a particular spin to a parti-
cular lattice site, as we do in considering a lat-
tice with a particular spin arrangement, then from
Egs. (C1)-(C5) we have

bh = [A ;RZ(‘)’)YM(Q )+B _R{(r) YLo(Q)] a(1)8(2)

Le O

(AL R L@ BT R0
(c9)

To have a particular spin associated with a parti-
cular site requires (1) that when T points toward
A= 'ﬁ _ﬁj the coefficient of a(1)3(2) is nonzero
and the coefficient of B(l)a(Z) is zero, and (2) that
when T points toward -A= (R R ) the coefficient
of a(1)B(2) is zero and the coefficient of 8(1)a(2)
is nonzero. In the absence of specific formulas
for the R, (r) we must argue qualitatively. Assum-
ing the even and odd R, () to be approximately
equal we have AxB~1/V2.

Now, however, if we want to attach a particular
particle to a particular lattice site we must write
$y, S0 that it vanishes for T near -A and it is non-
zero for T near &; i.e.,

. [A D RI()@)+B Y. R,j(r)Ym(Q):| a(1)8(2),
LeE LeO
(C10)

withA~B=~1/Y2. From Egs. (C2)-(C5) this re-
quires

Py = 71'2' [A ; R (r)Y Q)+ B:;o RL_(r)Ym(Q)]Xoo

AL P <r>Ym(sz>+B;R;(r)Ym(m]x

(C11)

Thus unphysical wave functions (not properly
antisymmetrized) are introduced into the problem.

A calculation of the pair wave function with a
biased single- partlcle potential forces the wave
function away from -4 and toward A. A definite
constraint on the sharing of the wave function be-
tween the even and odd partial waves is introduced
through the biased single-particle potential.
Should the biased single-particle potential be re-
moved there is no way in a two-particle calcula-
tion to prevent the pair wave function from con-
densing into a single energetically favorable state,
e.g., 'S,.

We have done our Hartree-Fock {-matrix calcu-
lation with a particular spin associated with a
particular lattice site. Our wave functions are
like Eq. (C1) with A~B~1/Y2. This constraint
prevents the condensation of the wave function into
the most energetically favorable state. It is not
possible to prevent this condensation within an un-
constrained two-body calculation.

APPENDIX D

In this appendix we consider the problem of
evaluating the average value of |D,|? and
(|D,|?+ |D_,|?) over the particles of the various
shells of a bee crystal (see Appendix A), where

ID, 2= D5, o(By;) |2

cos®g;; for m, =0,

3sin’g,, form,=1, (D1)
and
[D,|?+[D_,[*= D7, (Bi))|* + | D7 - (Bij) |

sin?g,, for m,=0,

3(1 + cos?By;) for mg=1.
(D2)

Let us recall that 8;; represents the angle between
some externally chosen direction for the spin
quantization axis and the direction of 4,;, which
points from particle ¢ to particle j. In particular,
we wish to show that

(IDo|? qen =3 (D3)
and

CID 2+ 1D g = 3, (D4)
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where (***) ., represents an averaging over the
particles in any shell of a bce lattice. This is
equivalent to the vanishing of the quadrupole
moment of particle density for each shell. That
is, we must show that

A
23" [Beos?(8,,) - 11=0, (D5)

where A represents the number of particles in a
given shell surrounding particle ;. If this is true,

then Eqs. (D3) and (D4) are valid for both 7, =0
and 1. The vanishing of the quadrupole moment
of particle density is guaranteed by the cubic
symmetry of the bee lattice. Equations (D3) and
(D4) thus are valid for all shells in a bec lattice.
We use this result in Appendix A to show that the
contributions of a given shell towards the compu-
tation of U and U, in the Hartree-Fock ¢{-matrix
approximation can be replaced by an angular
average over a uniform particle distribution.

*This work was supported in part by the National Sci-
ence Foundation.
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