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Magnetic-monopole solution of non-Abelian gauge theory in curved spacetime
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A magnetic-monopole solution of a non-Abelian gauge theory as proposed by 't Hooft is studied in
curved spacetime. Einstein’s equations are solved for the case of a magnetic point charge yielding a
metric identical to the Reissner-Nordstrom metric, except that a nonvanishing cosmological constant is

invoked.

1. INTRODUCTION

Recently there has been considerable interest
in classical solutions of non-Abelian gauge the-
ories. One of the main triggers was the obser-
vation by 't Hooft and others! that particlelike
solutions, having the properties of magnetic
monopoles, might exist in those theories with
spontaneous symmetry breaking. One reason for
studying these monopoles is their possible rele-
vance for the theory of strong interactions.? In
this paper we investigate 't Hooft-type solutions
in the arena of curved spacetime and obtain a
solution of Einstein’s equations for the magnetic
monopole. First we give the covariant Lagrangian;
then we derive the equations of motion and show
that 't Hooft-type solutions still exist in curved
spacetime. After that we solve for the stress-
energy of the system. We find a solution for
Einstein’s equations which is identical to the
Reissner-Nordstrom metric (the spherically sym-
metric static solution for a radial electric field),
in agreement with an extension of Birkhoff’s the-
orem.® In addition, our solution invokes a non-
vanishing cosmological constant. Finally we con-
sider implications of these results to other re-
lated problems.

II. THE EQUATIONS OF MOTION

Following 't Hooft, we consider an SO(3) gauge
theory with a triplet of Yang-Mills fields

W¢ (u=0,...,3 spacetime indices;
a=1,2 3 isospace indices)

and a Higgs triplet
o* (a=1,2,3).

The covariant Lagrangian is given by
N
-f ‘sTg[*%g“‘g“gzo%a—g“wmwm
2 A 4 4
- f—z(ﬂ]d x, (2.1)
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with

Ty =0 Wy — 8, W+ ee€ achfxwﬁ .
(2.2)
D¢ =0,¢% +e€p Wi ¢

where €,,. is the totally antisymmetric tensor.
Note that the (geometrical) covariant derivatives
have reduced to partial derivatives; this implies
that the general covariant Lagrangian still ex-
hibits gauge invariance. Choosing p? negative
corresponds to a broken symmetry of the vacuum
where the Higgs field has a nonzero vacuum ex-
pectation value:

Ko |=F, (2.3)
where

F2=-2u%/x . (2.4)
The mass of the Higgs particle is given by

My=VXF . (2.5)

In the gauge where the Higgs field points along
the positive 2z axis of isospace, two components
of the vector triplet acquire a mass

My, ,=eF . (2.6)

whereas the third component corresponds to the
usual photon field.

Varying the Lagrangian with respect to the
fields, we obtain the following equations of mo-
tion:

%g (85 V=8) —€apc8 “PSaW b — €€ 0 (0, 0") 9"
+EEP*Ws — Wi P =0,
(2.7)
= 0 (00 ¢ + e WhONF | —c0tg Wi WS o*
+ €458 (0,9 W — 129" - % ¢*¢"=0.
We look for solutions of the type*
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W?—‘ :€uuabnurbw(y) ’
(2.8)
=7t (1),

where 1,=(1, 0, 0, 0) is the timelike unit vector.
Furthermore, we assume a spherically sym-
metric time-independent metric:

-e2®* 0 o0 0
0 e o 0
0 0 »2 0
0

0 0 vZ2sin%0

g“u= B (2.9)

with ¢ and A functions of 7 only.

The functions W(7) and ¢(r) can then be deter-
mined by solving the resulting coupled radial
equations:

,y.WII +4W’ _ 36’VW2 —6273W3 — 67’(/72 - e273W¢2
+ W £ 2W) (¢’ +A) =0,
(2.10)

V(p"+4g0’+%YFz(p—zAVa(ps—zezVaquD

~4er W+ g’ + )¢ '+ A')=0 .

An exact, but singular, solution of these equa-

tions is given by
Ta

go(r)=§, = F, (2.11)

J

and

r® 1
’ W?J:_eullabny 7 U (212)

1
W= -5 er

’VZ
That this solution corresponds to a magnetic
monopole can be seen if one inserts it into
't Hooft’s gauge-invariant generalization of the
electromagnetic field tensor:

Py o _ 1 ¢
My = m v T g €abe m (Du‘pb)(Du‘pc) , (2.13)

which becomes

F

ra
Fuy=—€u,, 73 - (2.14)

(Obviously F,, satisfies the general covariant
Maxwell equations, except at the origin.)
This corresponds to a radial magnetic field

- T

B=g 73 (2.15)
of a magnetic point charge with

g=1/e . (2.16)

I11. STRESS-ENERGY TENSOR

Varying the Lagrangian with respect to the
metric yields the stress-energy tensor

0L
TaB:—z@w +8q8L 3.1)

which in our case is

Tos= (/410 8" 6%,8%, — § 8488 " 8 T84S, + (D) (D" =35848 "" (D) (D, ¢°) =g plsn0?+ 1 /8) ¢} .

Inserting the solutions (2.11) of the field equations,
we obtain the following expression for the gauge
field tensor:

a _ 8y 2
py = 7,4\—2€uua7 —2€45,73 7,

+2€,0 Yy Vu €y Vo %) -

To evaluate the stress-energy tensor, we must
transform §J,, into spherical coordinates. Since

S50 = 00 =Smm =0,

we get, for example,

g (b s
99‘?‘9”<d9 dp = d6 d(p)+g’1‘

(b de_d dy)

dx dz _dz dx
2\d6 do  do do

r

The transformed tensors become

S5, = —gsin*6 cosy ,

y

Yo = —gsin’fsing , (3.2)
8%, = —&sinf cosé .

All the others vanish. Putting these into our ex-
pression for the stress-energy tensor, we find
the following result:

__ 1 /8
Trr“—@e<r4 —B>y
(3.3)
1 /g2
Tee_8_7r‘<‘;:§' +BVZ),
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where we have set
BEL“;/)*:%gzMﬂzsz . (3.4)

Note that, apart from the contribution of the
scalar field due to symmetry breaking, the
stress-energy of the system comes out the same
as in Abelian electrodynamics. The reason is
that, for our solution, D,¢® vanishes everywhere
(even though 3,¢ does not) and therefore does not
contribute to the stress-energy.

IV. SOLUTION OF EINSTEIN’S EQUATIONS
We now solve Einstein’s equations

G“U+7/gllu=8”kT}Ju ’ (4.1)

where G, is the Einstein tensor, k is the gravita-
tional constant, and where we have explicitly in-
cluded the cosmological constant y for the follow-
ing reason. Let us write T, as

Ty, =Tk, + TH) (4.2)
where
T(vuc)_ ﬁ_ TO (4 3)
Hy = gr uvt Ly - .

We interpret Tﬁ;““’ as the total stress-energy of
the vacuum, with (8/87)g,, as the contribution in-
duced by spontaneous symmetry breaking. In field
theory, the energy of the vacuum is an arbitrary
constant since it does not appear in any observable
quantity, and one conventionally chooses the
stress-energy of the symmetric vacuum 79, to

be zero. This leads in our case® to the relation

y/k=8, (4.4)

which shows that the stress-energy of the vacuum
with broken symmetry is directly related to the
observable cosmological constant.® From obser-
vations” one obtains an upper bound of 1072° g/cm?
for y/k, corresponding in our units (Z=c=1) to
~107%7 GeV*®. The quantity 8 contains the masses
of the scalar and vector fields which are as yet
unknown. Though the mass of the vector boson
can be estimated from theory, it is very model
dependent. We chose for simplicity the SO(3)
model corresponding to the Georgi-Glashow the-
ory of electromagnetic and weak interactions.
This model, however, has turned out to be incon-
sistent with observations because it does not in-
clude neutral currents.® On the other hand, in
the favorite Weinberg SU(2) X U(1) model, the mag-
netic monopole solution does not exist because the
gauge group is not compact.! This theory would
have to be extended to a bigger compact group—
for example, Georgi and Glashow have more re-
cently suggested SU(5) for a combined theory of

strong, electromagnetic, and weak interactions.®
An implication of this particular model, however,
is that the mass of the heaviest vector boson
would become at least 10'° GeV, instead of ~20
GeV in the above theories.

Now one can use relation (4.4) to find an upper
limit for the mass of the Higgs particle!® (we take
My=~20 GeV): Mys 107'° GeV. Being practically
massless, this Higgs particle would give rise to
a long-range scalar coupling many orders of mag-
nitude greater than the gravitational tensor cou-
pling, and clearly inconsistent with experiment.

Another possibility is to abandon the assumption
that 79, is zero, and thus relax our restriction
on the mass of the Higgs particle. This alternative
implies a large negative curvature for the early
universe, before a possible transition to the pres-
ent state with broken symmetry.!!

Returning to Einstein’s equations, we must now
solve

Gy =8TkTY, . (4.5)

Because of the spherical symmetry of T},
Birkhoff’s theorem?® predicts that the solution will
be a piece of the Reissner-Nordstrom spacetime
(4.10). In spherical coordinates, the equations
(4.5) take the following simple form:
ez(d>-/\) <?A’ 1) + e? gzk ezcb

v re ¥ rt ’
2¢’ 1 e2h 2k
‘,(,L Py ol A (4.8)
2
rze—zA[¢/2_¢1A/+¢u+ %((bI_AI)} = _ngk
The first equation can be solved for e™2":
d -2Ay _ g%k
dr(re )=1 rz
—-2A Ak g2k (47)
=1l -—+ =5
v 2

Clearly, the second and third equations are sat-
isfied by

¢,-_-_A. (4.8)

By looking at orbits of a neutral test particle, one
can determine the constant A as

A ="2Mmonopole' (4-9)

Hence, the metric for the magnetic monopole in
curved spacetime is

2
ds2=—<1— Z—Ai’mf+:"-§f)dzz
v a v

2 -1
+ <1— 21%11]?+ %f) dv?+v2dQ? . (4.10)
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Since

g2 109
Pz~ L,

the solution has no norizons.

V. CONCLUSION

We have found that an explicit solution of
Einstein’s equations for a non-Abelian gauge the-
ory yields the same result as one would expect
for a point charge in the Abelian theory. There
are two features of the system we studied which
caused this simplicity. First of all, the Lagran-
gian of the system only contains a scalar field
and antisymmetric combinations of the momenta
of the vector fields, so that the affine connections
vanish as we noted following Eq. (2.2). Secondly,
since the singular solution of the non-Abelian field
equations represents a purely electromagnetic
solution and hence the stress-energy possess
spherical symmetry and time independence, it fol-
lows that

=—A. (5.1)

This means that the Einstein equations (4.6) de-
couple from the field equations (2.10); the latter

then become identical to the flat-space equations.
(Note that in our particular solution, this de-
coupling takes place independently of the relation
between ¢ and A.)

Another monopole solution was proposed by
’t Hooft which behaves in flat space for large »
like the solution discussed here, but which is
nonsingular at the origin. This solution is more
physical since it has a finite self-energy. It too
will exist in curved spacetime, but it will be es-
sentially different to construct. Since this solution
is not purely electromagnetic, one expects that
Einstein’s equations will not decouple from the
other field equations as was the case in our cal-
culation.

Finally, for the dyon'? (a pole with both electric
and magnetic charge) with spherically symmetric
charge distributions about a common origin, solu-
tions of Einstein’s equations outside the distribu-
tions will take the form (4.10) with

gl-g24e?
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