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A nonlinear pion-nucleon interaction, first applied to nucleon-nucleon scattering by Gupta and his
collaborators, is reexamined in the context of a pion and meson-resonance model. It is shown that a
pion-nucleon interaction, bilinear in the pion field operators, is a sensible correction to the usual
one-pion-exchange, two-pion-exchange, and vector-resonance contributions in the intermediate range of
the nucleon interaction (L > 2) provided the scalar resonance € is strongly coupled to the nucleon.

I. INTRODUCTION

The two-pion-exchange (TPE) interaction has
been studied exhaustively in the last decade, and
it has been shown to improve the one-pion-ex-
change (OPE) interaction in the higher orbital-
angular-momentum states (L =2). Although there
is no ambiguity in defining OPE, the TPE inter-
action seems to depend on the method of evalua-
tion, and differences are especially noted in the
S and P states.

The focus of this paper is on TPE defined by
relativistic quantum field perturbation theory.
The usual TPE contribution arises from the exact
evaluation of all fourth-order diagrams from the
pseudoscalar interaction by Gupta.! The cor-
responding phase parameters show that TPE
corrects OPE for the set of phases with L>2.27*
The vector mesons w and p further inprove the
agreement to L =1, but the agreement is only
qualitative.® Moreover, the large size of TPE
precludes the introduction of the scalar resonance
€ with mass centered on 715 MeV. This effect if
strongly coupled to the nucleon would destroy the
reasonable agreement in the D state.

The TPE contribution has been evaluated in
other ways. Among the most successful are those
based on the dispersion-theoretical evaluation of
the scattering matrix,®*” and those based on the
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quantum field theory and the approximate solution
of the Bethe-Salpeter equation.?'® The same
general conclusions follow—TPE is a beneficial
correction to OPE, and the vector-meson res-
onances are needed to bring about better agree-
ment for the lower-L states. In contrast, the
scalar resonance strongly coupled to the nucleon
is also beneficial to some of these models. The
potential model described in the first of Refs. 8
uses an €-N coupling constant greater than g,2,
while the model of Binstock and Bryan® finds the
value g.2/4nchi=6.0 to be most suitable. The
model of Haracz and Thompson® requires g2/4nch
=20.0. All these models produce results that are
in good agreement with the phenomenological re-
sults for L= 2.

The TPE contribution derived in Refs. 1 con-
tains the crossed and uncrossed diagrams, Figs.
1(a) and 1(b), and the fourth-order radiative cor-
rections. The model of Binstock and Bryan®
employs the 77— NN amplitude represented by a
nucleon pole and by a nucleon-plus-A(1236) pole
with a width I'y =120 MeV. A cutoff in the mo-
mentum transfer variable is used with values
(3u)? and (4i)®. On comparing the TPE results
from these two approaches, one finds large dif-
ferences in the P state, with the field-theoretical
result generally larger. For example, the phase
shift 367 at 300 MeV is — 8.145° for the Binstock

2662



11 NONLINEAR MODEL FOR ELASTIC NUCLEON-NUCLEON... 2663

model (nucleon pole only), while the field-theo-
retical result is — 31.7°. The differences diminish
for the higher partial waves. In the construction
of the model of Haracz and Thompson,® it was
found that the field-theoretical TPE is too large
in the S and P states to be used along with the re-
sults arising from the reduced Bethe-Salpeter
equation. On the other hand, the exact field-theo-
retical TPE contribution improved the model for
the D state and above.

The P state is therefore strongly dependent on
the methods used for calculating TPE in these
models. Along with the obvious differences in
techniques used and approximations made, these
models differ in their means for identifying and
excluding higher-order effects and for suppress-
ing the TPE contributions from the crossed and
uncrossed diagrams. The model of Refs. 6, for
example, uses a cutoff that is kept small to avoid
intrusion into the domain of the p resonance and
the three-pion exchange. A larger cutoff is used
in the dispersion-theoretical model of Clemtob
and Riska,” and the TPE effect in this model is
quite close to the field-theoretical result for
L=2. The P state is not included in Refs. 7 be-
cause of the large size of the TPE contribution to
the phase shift 367, even though TPE is reduced
by S-wave subtractions generated from the helicity
amplitudes for NN—27.

One might conclude that it is not as yet meaning-
ful to take the P state seriously in theoretical
models for nucleon-nucleon scattering. This leads
us to speculate again about a nonlinear pion-
nucleon interaction.

II. THE NONLINEAR MODEL

Nonlinear pion-nucleon interactions were studied
by Gupta and Weihofen!® with the requirement that
the source functions in the pion field equations be
expressible as a complete divergence. The inter-
action energy density

HﬂN=ig1r:_‘p75Tl wUM: _(ng/zM):$¢Uwi2: (1)

is applied to nucleon-nucleon scattering, and it is
shown that in addition to the usual OPE and TPE
results the nonlinear term gives rise to a TPE
contribution that is as large as the usual TPE
result.!! In Eq. (1), ¢ is the nucleon and U,; the
pion field operator, M is the average of the pro-
ton and neutron masses, and ¢=#=1. The con-
tributions to TPE from the nonlinear term are
derived exactly from the diagrams of Figs. 1(c)
and 1(d). The partial-wave analysis of these re-
sults'? indicates that the nonlinear TPE (TPE’)
is especially large in the P state, where it gen-
erally worsens the agreement with the phenomeno-
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FIG. 1. Interaction diagrams. Diagrams (a) and (b)
refer to the TPE effect from the usual pseudoscalar
interaction, while diagrams (c) and (d) refer to the non-
linear TPE' interaction. Diagram (e) refers to the m4
interaction evaluated in Ref. 13.

logical phase parameters. On the other hand, it
partially cancels TPE in the higher partial waves,
and OPE + TPE + TPE’ converges more rapidly to
OPE than does OPE + TPE for the higher values
of L.

The meson resonances are added through the
interaction energy density

Hey =08y vdUn t + & I% PUuy: + 18, P% T Upy:

f —
+ 4—1\'(2"‘ : lpouy(/)(%v.p_ L{o‘upl‘)

fo =
+ 4—1&' : ‘PouuTllp(Upw,p - Up(u.v): , (2)

where oy, =(1/249)(y, v, = 7vu¥,), and Uy, Uy, Uy,
are the n pseudoscalar-isoscalar, w vector-iso-
scalar, and p vector-isovector field operators,
respectively. Following the model of Binstock
and Bryan,® reasonable estimations of the ex-
perimental values for the coupling constants are

&n°/41=0,
g.,2/4r=5.0, f,/8,=-0.12,
&,°/An=0.53, f,/8,=3.7,

and a nominal value of 14.0 is taken for the pion-
nucleon coupling constant.

The scalar resonance is centered at 715 MeV
with a width of 370 MeV. Binstock and Bryan,®
present an interesting model for this resonance
by taking a Breit-Wigner mass distribution and
approximating this by a two-pole representation
due to Gersten. They thus take

Hw:gﬁWUeﬁ*ngWUegi, (3)
where £,°=0.275 g.%, g£,°=0.725 g., m,=508 MeV,
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and m, =1180 MeV. This representation is fascin-
ating since the lower-mass pole contribution is
nearly the same as that produced by the nonlinear
pion-pion interaction,

Hya=4nf: Uy, Uy, Uy, Uy, : . (4)

The contribution from H,s corresponding to the
diagram of Fig. 1(e) was evaluated’® and found to
closely resemble a scalar particle of mass 552
MeV provided

(8e/8x)=-5.2f.

Thus, the scalar resonance with broad width as
depicted in Ref. 6 may also be described as a
pion-pion resonance and a heavy scalar particle.

The nonlinear model is then based on the energy
density

H=H,y+Hpy+Hy, (5)

and it contains the one-boson-exchange, OPE,
TPE, and TPE’ contributions.

Phase parameters are defined in a completely
covariant manner by employing the method of
K-matrix unitarization described by Bock and
Haracz.® The partial-wave coefficients follow
from H as a sum of the various effects,

a=a(OPE) + a(n) + a(w) + a(p) + a(e)
+a(TPE)+ a(TPE’), (6)

and the partial-wave amplitudes are related to
these as
, _ , 1I7+sl _
Sa,ll'= Sa’L.L i Z SaJLI saJT,,;,. G
L= 1J-5|

The phase parameters in the Yale notation follow
as

O, 77 = 2%— [exp(2iK,)-1],

1 .
1y Hd o 357 ) _
a, 27 [exp(2i367,)-1], @)

1 .
a2 (1 - p ) e exp(2i 267 )] - 1

la.r"“'” ‘=3 exP[i(seJ”J"' 30’-11)] .

III. RESULTS AND CONCLUSIONS

The phase shifts calculated from the nonlinear
interaction energy density are shown in radians in
Figs. 2, 3, and 4 for the P, D, and F states, re-
spectively. The phase shift 39”1 is excluded as it
is coupled to the S state, and the coupling param-
eters p; are not presented as neither TPE’ nor €
contribute significantly to these parameters. The
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FIG. 2. The P-state phase shifts in radians versus
the incident lab energy in MeV. The nonlinear model is
shown as a solid line, while the linear model is a dashed
line. The phenomenological points are those of Refs.

15 and 16.

Yale phase shifts are shown at 10, 150, 250, and
350 MeV with their parallel-shift uncertainties.'®
Also shown are the two phase-shift solutions of
Signell and Holdeman'® at 330 MeV, where solu-
tion 1 is shown as an open circle and solution 2
as a dot.

The nonlinear model is shown in Figs. 2—4 by
a solid line. It includes the effects listed in Eq.
(6) with the coupling constants given in Sec. II.
The scalar resonance is included in the form of
Eq. (3) with

82=84=14.0.

For reference, the model of Ref. 5 is shown in
the figures by a dashed line. It includes the vec-
tor resonances, OPE, and TPE, but there is no
TPE’ contribution and gZ2=0. This model is
called the linear model.

We first note that the linear model gives a qual-
itative fit to the P-state phase shifts, while the
nonlinear model only suggests the P state for the
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FIG. 3. The D-state phase shifts, in radians.

lowest energies. The D-state phase shifts from
both models are nearly the same, and the fit is
good from 10 to about 250 MeV. The F state is
well established by both models. However, the
nonlinear model is noticeably superior. This is
especially evident for the phase shift 36",. The
nonlinear model continues to be better for the
higher values of L as TPE’ cancels TPE and pro-
vides accelerated convergence to OPE.!?

We conclude that the nonlinear TPE’ contribu-
tion is a sensible correction to the usual OPE,
TPE, and vector-resonance contributions provided
the P state is only considered to be meaningful at
low energies. It is also necessary for the €
resonance to be coupled strongly to the nucleon.

It seems reasonable to expect the P state at
the higher energies to be affected significantly by
many effects as yet uncalculated. Among these
are the three-pion-exchange effect, the effect of
the differing methods of unitarization, the effect
of an exact inclusion of the A(1236) resonance,
double-counting effects, and the infinite number
of higher-order radiative corrections to TPE.
One should note, however, that more recent TPE
calculations'? than those of Refs. 6 and 7 do, in

0 100 200 300
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FIG. 4. The F -state phase shifts, in radians.

fact, include the continuum of 7N and 77 inter-
actions, automatically including the experimental
forms of such resonances as A and €, and do
apparently eliminate the problem of double count-
ing. However, we can see no clear connection
between such state-of-the-art dispersion TPE
calculations and those reported here.

The nonlinear interaction given in Eq. (1) is re-
garded as a fundamental interaction for a special
purpose. We wanted to show that it could be ap-
plied to elastic nucleon-nucleon scattering with
some success once it is admitted that the core
and near-core regions are really beyond prediction
by theoretical methods that do not insert the core
phenomenologically. The identification of funda-
mental and effective interactions cannot as yet
be made as the nature of the meson resonances
and their relationship to multipion processes is
not clearly understood. It is not the purpose of
this paper to claim that Eq. (1) is fundamental.
We merely want to make the point that the state
of the art has not progressed to the extent that one
can unequivocally judge the validity of such an
effect.
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