
P HYSICAL RE VIE W D VOLUME 11, NUMBER S 1 MAY 1g75

Moving daughter Regge trajectories in the Van Hove mofie]

vrith SL(2 C)I3SL(2, C) symmetry

K. Ahrned
Department of Physics, University of Islamabad, Islamabad, Pakistan

A. Qadir
Department of Mathematics, University of Islamabad, Islamabad, Pakistan

Arif-uz-Zaman
Department of Physics, University of Islamabad, Islamabad, Pakistan

(Received 25 April 1974)

A Van-Hove —type model with SL(2, C) ISSL(2,C) symmetry is constructed for the elastic scattering of
pseudoscalar bosons. Reggeization in the complex plane of the principal quantum number of the little

group O(4) is performed. Two Lorentz pole trajectories with opposite "Lorentz signatures" and opposite

intrinsic parities are shown to give rise to moving Regge daughters without the explicit introduction of
unitarity. This result is independent of the choice of 4-momentum squared or the mass squared in the

numerator of the spin-1 propagator. The results are the same in the equal-mass case as well.

I. INTRODUCTION

Several authors have considered the Van Hove
model for the scattering of spinless bosons. ' '
For example, Sugar and Sullivan' obtain the con-
tribution of a spin-J particle pole in the t channel
as

T(J) =g~'(2J+1)

v
Pv f f

where f„ is the propagator momentum, "then

T(J) is simply given by'

T (J) =g~'(2J+ 1),(J' (1.2)

and no daughters are obtained in the usual con-
struction of the Van Hove model.

In the present work we consider a Van Hove
model based on the SL(2, C) SL(2, C) symmetry,

On account of the choice of m'(J) in the numerator
of the spin-1 propagator, '

q and ~ = cos 6 occur in-
stead of the c.m. momentum q and the cosine of
the scattering angle z =cos6. Writing the expan-
sion of q' Pgz) in terms of P, (z), where
/=J, J —1,J —2, .. . , and then making a Sommer-
feld-Watson (S-W) transform, they obtain fixed
Regge daughters in addition to the moving Regge
trajectory. For equal external masses, these
daughters disappear. To make the daughters move

they introduce unitarity by dressing the spin-J
propagators. If the spin-1 propagator is written
in the Landau gauge, i.e., its numerator part is
taken as

which gives moving Regge daughters when analytic
continuation is performed in the complex n plane
of the 0{4}principal quantum number, without

having to introduce unitarity. Also, this result
does not depend upon the choice of m'(J) or of

f~fq in the-numerator (1.1). Further, the final
result of the appearance of moving daughters in

this field theoretic model is not affected if the
incoming masses in the scattering are taken to be
equal.

The plan of the paper is as follows. In Sec. II,
some preliminary considerations related to this
model are given. Section III is divided into two

parts and deals with the actual construction of the
Van Hove model and the consequent Reggeization
in the n plane. The conclusion and discussion fol-
low in Sec. IV, where a qualitative comparison of
our result with that of Freedman and Wang' is
also given.

Il. PRELIMINARY CONSIDERATIONS

Consider the single-particle t-channel {direct)
exchange diagram (Fig. 1) for the scattering of
pseudoscalar bosons with momenta and masses
given by

p(q)+q(m)- p'(q)+q'(m).

Just as in the SL(2, C) —symmetric (Lorentz-
invariant} case the exchange particle is labeled
by the eigenvalue of the 0{3)Casimir operator J',
in the SL(2, C) SL(2, C)-symmetric case the ex-
change particle will be labeled by the eigenvalues
of the two O(4) Casimir operators. '' Thus, in
the scattering of spinless bosons considered here,
the exchange particle belongs to the D' '-D" '
2647
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=D"' (n=2j) representation' of O(4), where n+1 is
the principal quantum number. In a previous work

by one of us, ' two effective interaction Lagrangians
2'"'(x) and 2," (x) were considered:

&'"'(x)=g.'"(C 'r„) 8 (C 'r„,) z,
' '(C 'r„) s„

x)l/'. ..~, ... , (x)y,(x)s„~ .s„y,(x)+H.c.
(2.1)

2," (x) is obtained by replacing y& by y,y„ in
2" (x). In Eq. (2.1), )l/ ...~ z,... 8 (x) is the field
of the exchange boson which is completely symme-
tric in the n's and the P's, separately, and sat-
isfies the Dirac equation in each of the indices.
Further, i)),(x) and y, (x) are the pseudoscalar
fields with masses m and p, respectively. The
parity-conserving Lagrangians with coupling con-
stants and masses M„' and M„, corresponding
to even and odd intrinsic parity of the exchange
particle, are given in Table I. Then the ampli-
tudes for the above scattering process for even
n (T," ) and for odd n (To")) are given by'

(1)2 2n
T'"'= g" ~ C(

t + (M&+))'

(2)gp2(n - y)
+g"

( ), p,'x-,'[n(n+ I) —I.'(s)]C„'",(z),
&+ I(

(2.2)

43)2 2'T() & ~ C()(
t (+M&

- )')

(4)2p2( n -1)
+ " . . . p', x —,'[n(n+1) —L'(s)]CI",(z),

0 boson

)L
/

FIG. 1. Feynman diagram for ~&~2- ~&~2 with the
propagator corresponding to a boson belonging to the
D~~ representation of O(4).

=2j+1 against the angular momentum l. We see
that each O(4) state characterized by a given value
of n contains angular momentum states
l =0, 1, 2, . . . , n. Since C„' (z) can be9 expanded in
terms of P, (z) with l =n, n —2, n —4, . . . , 0 or 1,
according to whether n is an even or odd integer,
we notice from Eqs. (2.2) and (2.3) that if we had
not used the additional Lagrangian L," (x) with the
odd intrinsic parity of the D" particle, we would
have missed the contribution to the amplitude from
all the odd angular momentum states for the even
n and from all the even angular momentum states
for the odd n values. Now, summing up over all
n, i.e., calculating

(2.3)

where C„' (z) is the Gegenbauer polynomial (note
that z =cos&, ——s for s- —~), L'(s) (e =&/sz) is
the Legendre operator with the property

T = T~+T0 q

where

(2.5)

L'(s)P, (z) = l(l+ 1)P,(z), (2.4)

P =
~ p~ is the t-channel c.m. momentum, and Po

is the energy of the boson with mass p, . Now con-
sider the O(4, 2) weight diagram' (Fig. 2), which

is a plot of the principal quantum number e' =n+ 1

~ T(n)
0 ~ 0

godd

(2 6)

we obtain the contributions of all the points of the
O(4, 2) weight diagram. This is worked out in

the next section.

TABLE I. Lagrangians for the pole diagram in Fig. 1.

No. Lagrangian

g("+){x), n even

g(&" ) {x), n even

g(" ~ ) {x), n odd

g(5"') {x), n odd

Intrinsic parity
Pn Mass

~(-)

M')
n

Coupling constant

&(~)gn

(2)
ff

(3)

g (4)
gn
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III. CALCULATION OF POLE CONTRIBUTIONS

A. Amplitude representation

Let us start with a given even integer n. The
amplitude in this case is given by Eqs. (2.2) and
(2.4). Now, as remarked earlier, C„' (z) can be
expressed as a linear sum of O(3) I egendre
polynomials

O(4) multiplet

C(')( ) =

where

r= 0,2,4, ~ ~ . ,n

a„(")P„„(z), (3.1)

(2n —2r+1),(„„&,[[(2n r)/2]i]'
(2n —r+1)! '

I (r/2)!

(3.1')

—X—)l

l 2 3 4 5 6 7

FIG. 2. Multiplets and towers of 0(4, 2).

I
n =nil

Since r is even, the above curly bracket always
contains the ratio of two integers ~ Further, since
n is even, n —1 is odd and hence, C„',(z) can be
expanded using Eq. (3.1), in terms of odd-degree
Legendre polynomials. Thus,

g( Z) 2p2n

I+ (M(+&}' ' (3.4")

C(1) (z)
r-0 2y ~ ~ ~ n 2

(3.2)
(2)2~2(n -1)

~(2) +n & 2

t+(M(-&)' p' ' (3 4 tlf
)

where &„",can be calculated from {3.1'). Using
Eqs. (3.2) and (2.4), we immediately obtain Therefore, summing over all even integers n,

12(S)C( I) (z)
0' ~ ~ ~ ~ qn 2

a("),(n —r —l)(n —r) T(n)
e e

n=even integers

(3.5)

(3.3)

)g()()P
r= op ..., ,n

where

+Z(2)
n

r=0,2 ...i g-2
(3.4)

I&„",= 4[n(n+ 1) —(n —r —l)(n —r)]a('), , (3.4'}

&(P„„,(z) .
Then T," becomes, on substituting Eq. (3.3) into
Eq. (2.2),

(„) 1+ (-1)"
n= all integers

(3.6)

where n in T(n can now take all integral values
and hence, the above sum is over all integers.
Thus, the final expression for T, becomes

where T," is given by Eq. (3.4).
The above sum can be extended to include all

integers as well by the formal introduction of the
"signature factor" [[I+ (-1)"]/2]. Thus,

T, = P g If„")~(")P„„(z)+
n= all integers

( 1)n

r= 0,2.... ,n-2
(3.7)

Note that the two sums over n and r appearing in Eq. (3.7) as a double sum for T, must be dealt with as
follows, separately. In the terms containing P„„(even-degree polynomials), the summation over n must
start from r ranging over r, r+1, . . . , ~; for any allowed value of &, whereas, in the terms containing
P„„,(odd-degree polynomials), the summation over n must start from r+ 1 ranging over
r+ 1,~+2, . . . , ~, for a given allowed value of r. To obtain an expansion in P„(z) {where n ranges over all
integers) instead of P„„(z)and P„,(z) we make the change n- n r+in the first summation and n n+r 1-+
in the second summation, thereby obtaining

1)n+r

n = 0,1,2...., o -r = 0,2, . .. ,n r= 0,2, . ~ . ,n -2

g(2) y(r) + {
n+ r+]. n+r 2

P„(z) (3.8)

Notice that opposite signatures appear in the bvo sums over r in Eq. {3.8).



2650 K. AHM ED, A. QADIR, AND ARIF -U Z - ZAMAN

B. Sommerfeld-Watson transform in the n plane

Equation (3.8) is now ready for the Sommerfeld transform. We take the two types of &th terms for the
required continuation in n, and note that for any (even) r in the above equation (-1)' =+ 1 and (-1)"'= —1.
Then for Re n&N, we can perform the continuation" by replacing the sum over n by the integral in the
usual way:

1 n

n=all integers

dn K ' (n+r)a''(n+r) ", +K ' (n+r+1)t)(')(n+r)(i) (, ) 1+e "" P„-z)
2 c 2 sinttn 2 sin(in

(3 9)

" '"" d «n«'ons above can be obtained from (3.4 )—(3.4 ). Cons'de ow a 1 o e t trajectory
n=a(t) in the n Plane which passes through n for t=-M'(n). Then near n=a(t)

1 —[da(t)/dt], »& )

t+M'(n) n a(t}

which gives a pole at n= a(t) in the n plane. Thus, the factors

—[da'(t)/dt] ~,
t+ [M&.)(n+r)]' n+r —a'(t) (3.10)

and

—[da (t)/dt]~ t „(-)a(„,„„),
t+ [M& )(n+ r-+ 1)]' n+r+1 a (t)

(3.11)

j to o po d g to ' t ' '
p 'ty (odd t

' '
p 'ty)

f Regge pole families f
4 ' ' ') The above factors {3.10) and {3.11) occur 'n the integral in Eq {

the continued function K" (n+r) and K ' (n+r+1) [see Eqs. (3.4") and (3.4")]. lf the cou 1 „(i)()
g '

( ) are sufficientlY smooth, one can deform the n-plane contour C (enclosing the positive real axis) a d
shift it to a line parallel to a certain vertical line in the left half plane (Ren) N) picking up contributions
over the sets of Regge daughters a'(t) —r (r=i), 2, 4, ) and a (t) r 1 (r=0, 2, 4, ~ ~ ') ( =0
parents) as

d y +e -im( n+(t)-r)
[g'"(a'(t))]'[ta'"'(a+(t))] ) + an+(t) Pn'(t) r( z)-

sin[a(a'(t) —r) ]

de ~&t)
-im( 0&"(i) -r -I)

+[g'"(a (t))]'(h'"'(a (t) —1))p,' a(n (t)- )1n (t)-r- (Z)t
sin[))(a (t) —r 1))

We may rewrite the above &th-Regge daughters' contributions by introducing the energy-dependent cou-
plings (form-factor type). This is done here to emphasize the asymptotic behavior, as usual, in the di-
mensionless variable z which occurs as an argument of the Legendre functions. Thus, the above becomes

+ -iff( 0&+(g) -r)
[) (t)( . a+(t))]a[a(r)(a+(t))] a ( +e a(n+(t)~) n+(t)r-

d& (t) -iff(n (t)-r-y)
+[)(&a)( p; a (t))]a[tt(")(a (t) -1)]Pa' pa(n (t) r-t) n (t) m-a(-

sin[(&(a {t)-r —1)]]'

(3.12)

where

( p; a (t)) = p g (a (t))

)&,"(p;a (t)) = p"g ' (a (t))

(r =0, 2, 4 ').

(3.12')
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Carrying out the same analysis as above for odd integers n, we obtain the rth Regge daughters' con-
tributions to T, as

)

-i V(CI (t) -r)
[) (3)( . & -(t))]2[+(r)(&-(I))] + ( ) e r( a (() -r) a (t) ~( Z)

da" t' 1+e "
+ [~'"(p; ~'(t))]'[&"(~'(t) —1)]po' 2( a+( () r-z) -a(() r-z( Z-)

sin[z(a'(t) r 1)]] '

(3.13)

where

X,' ( p; a (t)) = p'g" (n (t)),
)(„' ( p; a'(t)) = p"g (a'(t))

(r =0, 2, 4, ~ ~ ~
) .

(S.1S')

Then, substituting the ~th Regge daughters' con-
tributions (3.12) and (3.13) to T, a.nd T„respec-
tively, in Eqs. (2.5) and (2.6}, we can obtain the

net contribution of the rth Regge daughters to the
total amplitude T.

after summing over n and on carrying out the S-W
transform, to four sets of moving Regge daughters
as before. Hence, the result is independent of the
choice of the spin-1 propagator used. This result
is essentially a consequence of the invariance of
the Lagrangian under SL(2, C) SL(2, C) whose
little group is O(4). Further, our model is con-
sistent with the predictions of the O(4)-symmetric
theory of Freedman and Wang. ' In their work O(4)
symmetry is shown to hold in pairwise equal mass
scattering in the forenamed direction. In particular,
for the case of NN- NN (equal mass) they obtain

IV. CONCLUSION AND DISCUSSION n=j+k, k=0, 2, 4, . . . , (4.4)

and

~P

n n

(4.1}

(4.2)

Using Eqs. (4.1) and (4.2}, and the expansion of
the Gegenbauer polynomials' in powers of the
argument, we obtain in the same way as Sugar
and Sullivan have done for the Legendre polyno-
mials'

P~C„' (z) =P "C„' (z)+lower-degree polynomials .

We have seen that in (3.12) and (3.13) we obtain
evenly spaced in angular momentum moving Regge
daughters contributing to the amplitude seithout

having to introduce unitarity. The above results
are obtained in the Landau gauge in which the
numerator part of the spin-1 propagator is given

by (1.1). If now we take the usual propagator in

which M„' occurs instead of f),f), in (1.1)-, we

have to replace P, PD and z =cos6}, by P, P0 and
z = cos8, in Eqs. (2.2)-(2.4), where

where n is the principal quantum number and j
and k a,re the ordinary angular momenta. Now

consider two Lorentz poles n' in the n plane cor-
responding to opposite "Lorentz signatures" at
t =0. These poles give rise to two evenly spaced
families of fixed daughters in the j plane because
of Eqs. (4.4):

j=n'(0) -k, k=0, 2, 4, . . . . (4.5)

l—=j=n —r, x=0, 2, 4, . . . , n

In our model where O(4) symmetry is built in
for all t, we have considered the expansion of
resulting polynomials C„' (z) and C„'),(z) in the
calculation for the amplitude T "' [where (n+ 1) is
the principal quantum number and n is even, say]
in terms of the even and odd degree Legendre
polynomials as given in Eqs. (3.1) and (3.2). In

these expansions, we have implicitly used the
following transformations which connect the O(3)
quantum number l (or what is the same here, the
angular momentum j), with the O(4} quantum num-

ber n:

(4.3)
and (4.6)

Thus, the transformed quantities P, P„and z when

substituted in Eqs. (2.2)-(2.4} will again result
in leading terms like P'"C„' (z} and P' " ' C„',(z)
because of Eq. (4.3). In addition to these terms
there will be lower-degree polynomials which may
be ignored because we are interested in the leading
singularities in the n plane. These polynomials,
thus retained in the amplitude, will again lead us,

l=j =n —r —1, x=0, 2, 4, . . . , n —2.
Now, in our model for spinless bosons where con-
servation of parity is also taken into account, the
two trajectories n'(t) and e (t) (having even in-
trinsic parity and even "Lorentz signature, " and
odd intrinsic parity and odd "Lorentz signature, "
respectively) automatically give rise to two sets
of moving Regge daughters because of Eqs. (4.6):
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j=a'(t) r and j=a (t)-r-1
(r=0, 2, 4, . . . ). (4.7)

Similarly, as seen before, two more sets of daugh-
ters contribute to the odd-integral n part of T.
Further, the Regge daughters in a family have
exactly the same signature (-1)' as the "Lorentz
signature" of the parent trajectory wherein r =0.
Although, strictly speaking, a comparison of Eqs.
(4.5) and (4.7) cannot be made because the two
results relate to two different processes, we may
conclude that our model is consistent with the pre-
dictions of the theory of Freedman and Vifang, ' at
least qualitatively.

Finally, in our model the calculation of the ratio
of the residues of Regge daughters having the same
intrinsic parity, Lorentz signature (say positive)
and coupling can be explicitly done for all t. For
example, the required residue ratio for the &th

and (r+2)nd daughters (successive} can be written

using (3.12) as

)).„' ( p; a'(t)) ' a'")(a'(t})
g(1)( p a (t)) g(r+ 2)(a+(t))

1 2a'(t) —2r + 1 (2a'(t) r} r + 2
(p')' 2a'(t) —2r —3 (2a'(t) —r+1) r+1

(4.3)

Similar results can be derived for the correspond-
ing ratios of odd parity and odd "Lorentz signa-
ture" daughter residues.
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this model is based on the S-W representation and not
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care of the analyticity of the amplitude. The F-G
representation would in the usual way result in two
scattering functions interpolating between even n and
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emphasize the fact that the total amplitude in the Van
Hove model in the framework of the complex Lorentz
symmetry [SL(2,C) (3 SL(2, C) =—complex Lorentz sym-
metry] naturally leads to incorporation of the "signa-
ture" without recourse to the explicit assumption of the
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