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Contribution of SLQ, C)SSL(2,C) poles to scalar bosons and nX scattering amplitudes
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An SL(2, C)(3SL(2, C)-symmetric model for calculating direct-channel pole diagrams for m, m;+m, , vr,

and n'N-+mN is given. The angular dependence of the scattering amplitudes comes out in the form

of O(4) rotation matrices. In order to include all angular momentum states of O(4) multiplets,

intermediate particles of even and odd intrinsic parities have been introduced. Certain expressions of
O(4) rotation matrices and their connections arith the Gegenbauer polynomials are given in the

Appendix.

INTRODUCTION

Shortly after the demonstration by Freedman and
Wang' of the O(4) symmetry of the scattering am-
plitude at the energy t=0, propagators showing
O(4) symmetry in the direct-channel pole diagrams
were investigated. ' Later, Iwasaki' and Harnad'
gave a prescription for writing down spin-j boson
propagators and used it to calculate the direct-
channel pole diagram for the scattering of spinless
bosons of equal masses. The scattering amplitude
thus obtained exhibited O(4) symmetry (at f= 0), in
the sense that there the angular dependence was
given by the Gegenbauer polynomial Cz" (8).

In the present work we consider a model which
gives O(4)-symmetric scattering amplitudes using
the direct-channel pole diagrams with no restric-
tion on the energy t. If we consider the O(4, 2)
weight diagram (shown in Fig. 2) which is a plot
of the principal quantum number n' against the
angular momentum I, we see that each O(4) state
characterized by a particular value of n' contains
angular momentum states L =0, 1, 2, . . . , n'- l. Our
object is to obtain O(4} symmetric amplitudes for
direct channel pole diagrams which will depend on
n' and contain contributions from all the angular
momentum states mentioned above. A summation
over n' would then include contributions from all
the points in the weight diagram, and a Van Hove
model can then be made based on the Reggeization
in the complex n' plane. Two scattering processes
have been considered:

(a) m, +m, —n, +p, ,

(b) v+N-v+N.

In {a) the masses of the two pions may be different.
The intermediate particle belongs to a representa-
tion of SL(2, C)SSL(2, C) and is represented by a
generalized Wigner -Bargmann' field

~ ~ ~ cf ~ 8 g ~ ~ 0 8 ~ $- )

This multispinor field is completely symmetric in

the indices e,o.„.. . , n2f y
and p, p». . ., p„,sepa-

rately, and obeys the Dirac equation in all the in-
dices. In the momentum representation the spinors
are characterized by the two eigenvalue numbers

j, and j, of the Casimir operators J ' ' and J "' of
O(4) and the two eigenvalues m, and m, of Ji," and

J,', respectively. S ' and J ', as is well known, e

are related to the generator J„,of O(4) by Ji"
= i(L+A) and J ' = —,'(L —A) with L, = —,

' e,,,J» and

A; = J«. We have defined the O(4} rotation matrix
d,Jj J2, (8) as the matrix element of e '"2 in the

~ j,j„lm)basis, l(l+1) and m are the eigenvalues
of L' and L„respectively. This is different from
the rotation matrix defined by Biedenharn' and
Freedman and Wang' which is the matrix element
of e '"~ in the

~ j,j„lm) basis and is diagonal in
mo

For the mg scattering we write an effective La-
grangian

and calculate the direct-channel pole diagram
shown in Fig. 1(a). We find the angular dependence
of the amplitude is given by d,', »(8) = C,&'(8).' The
expansion of C,", (8) in terms of the Legendre poly-
nomials' P, (cos8) contains only even or odd I val-
ues according to whether 2j = n is even or odd, re-
spectively. To include the missing angular mo-
mentum states occurring in the n'= 2j+ = n+ 1 state
as shown in Fig. 2, we must introduce another
Lagrangian which is obtained by replacing one
(C 'y&, )„8factor in the Lagrangian mentioned
above by (C 'y, y„;)~~ . We find that this new La-
grangian gives an angular dependence in the form
d,'0. »(8) whose expansion in P, (cos8) contains only
odd or even l values according to whether n=2j is
even or odd, respectively. Assuming space re-
flection invariance of the effective Lagrangians we

introduce two P'~(x) fields describing bosons of
even and odd intrinsic parities and write down four
parity invariance effective Lagrangians, two for
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FIG. 2. Multiplets and towers of 0{4,2).

FIG. 1. {a) Feynm~~ diagram for ~~ ~& with the
propagator corresponding to a boson belonging to the
D~~ representation of Q{4). {b) Feynman diagram for
xN —~1V with the propagator corresponding to a baryon
belonging to the D 2'" '/2 representation of O(4).

even n and two for odd n. For any given n all the
states L = 0, 1, 2, . . ., n = n'- 1 then contribute to the
scattering amplitude. A summation over n' (or n)
would then include the contribution of all the states
of the O(4, 2) spectrum. "

The case of mN- mN has been treated in a similar
fashion. The helicity amplitudes contain d/&'I'&(8)
rotation matrices. An ambiguity coming from off-
mass-shell continuation of the propagator momen-
tum has been discussed. As in the case of spin-j
poles, "the highest order term in cos8 is shown
to be free of the ambiguity in the present case
also.

The scattering amplitudes obtained in the text
are in the form of certain summations involving
the Clebsch-Gordan (C.G.) coefficients and the

O(3) rotation matrices d' „(e).In Appendix A

these summations have been related to the O(4)
rotation matrices and these in turn have been ex-
pressed in terms of the Gegenbauer polynomials
and their derivatives.

I. THE SCALAR BOSON SCATTERING

ylA D~~ BARYON POLES

In order to construct Lagrangians whose contri-
bution to the pole diagrams exhibits O(4) symme-
try in the scattering amplitudes, we introduce a
field g'I'2 which obeys a generalized Wigner-
Bargmann' equation and belongs to a direct-prod-
uct representation of two ordinary Wigner-Barg-
mann representations. The field

is completely symmetric in all the indices n, n„
. . ., n„and P,P„.. ., P„,separately, and obeys
the Dirac equation in each of the indices n; and P;.
In the momentum space the positive energy multi-
spinor is given by"

U/milli, /2 2 (y)

(I.lb)

L(f) are the well-known Lorentz boost operators
in the Dirac representation

I (y) en/2)g~a ' f taw (I f1/fo&

U&1~1 &2 2(0) —U& I 1X U~2 2 (l.2a)

U' form a completely symmetric and orthonormal
set defined by"

The momentum f is on the mass shell

(1.lc)
Pfm Q ul~ 2y. . .ul1

(2/ ( )1/2 (l.2b)

where M, &, is the mass of the particle associated
with the field g/&' 2. The rest spinors U &~&' ' 2(0)
in (l. la) are now written as a Kronecker product
of two completely symmetric Wigner-Bargmann
rest spinors:

u' and u' are spin up and down Dirac spinors sat-
isfying y,u''=u'', o,u'=u', o,u'= —u'. Z~ stands
for the sum over all distinguishable permutations
of u' and u' in (1.2b). If n, and n, are the numbers
of u' and u', respectively, in each term of U'
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then

n2 f-m= f+m ~ (1.4}

Hence, the normalization factor "Cf has been
introduced in the denominator of the right-hand
side of (1.2b), giving

U f nt'
U f Nt

ntm'

The spin operator in the Uf1 1 space is

j'" = —,'(»7X lxlx ~ ~ ~ x lp lxirx lx ~ ~ ~ xl
+ ~ ~ 2+ 1X 1X 1X ~ ~ ~ Xg )

and U'l l is an eigenvector of (j ' )' and j,' be-
longing to the eigenvalues j,(j,+ 1) and m„re-
spectively. Similar considerations hold for U j2 2.

It follows now that U" ' " '(0}are the eigen-

Pg1+n2 = 2)

1 n2 2m

where j and m are, respectively, the spin and the
third component of spin associated with the multi-
spinor Uf™.The number of distinguishable per-
mutations are

vectors of

J (1)2—

J(2)2 IX (2)2

(') = (1) Xy3 -23
g(2) Ix (2)

3
— 23

U'»'2 2(0) therefore represent the basis vectors
of the {j,j,) representation of O(4). Further rele-
vant discussion of these representations is given
in Appendix A.

It follows from the construction given above that

l»22 (f)a1 ~ ~ a2j, 81~ ~ ~ 82f
1 2

are completely symmetric in the n 's and P's
separately. The adjoint wave function is given by

U& lml »2m2(f )
—U ~lml »2m2(f ) y Xy X ~ ~ ~ Xy

(1.9)
The negative-energy wave function V'lm' " '(f) is
defined" in a similar way, the only difference be-
ing that U'1™1and U"2 2 are multiplied by 2j, —

and 2j, -fold Kronecker products of the charge-
conjugation matrix C '. The field ijt'l'2(x) is now

constructed in the usual way":

[Uilml, f»m2nmlm2 (f)eif 2+ If 1m', f2m2 (» ™lm2e—If'2] d»f (I 10)j1 j2

J2 f ~ 1/2

I et us now consider the scattering of two spinless bosons (e.g. , two pions) via a direct-channel pole
(diagram la} in which the intermediate particle is represented by i)i' (x) field. Let p, k be the momenta of
the ingoing particles and P', q the momenta of the outgoing particles. For the present we shall suppose
that all the external particles have the same mass p. An effective Lagrangian which will contribute to the
process shown in Fig. 1(a) is

(x)=g„"(C'y„,)„s,(C 'y„,),s, . . . (C 'y& )m„s„»jim,m, ..„„ss,. . s„(x)cp..(x)5„,s„,~ ~ ~ s„q(x)+H.c. , (l. lla}

where

n = 2j, an integer ~ 1. (1.11b)

Let us examine the space reflection invariance of
this Lagrangian. Under the parity operation the
pion field ii»(x) transforms as

6' 'ip(x)5'= —y(x'}, (1.12a)

where
~f
K = —X

f
X4 X4 2

(1.12b)

Also (P transforms ijif'(x) in the following way:

(P $Q ~ ~ ~ Q 8 ~ ~ ~ 8 (P
1 n» 1 n

= .(y, ) , ; (y„)
„

„(y.)s,e, (y, )s„s„
x fs

2 ~ ~ ~ f){ 82 ~ ~ ~ 82
I, n ~ 1 n

Pn Pj j + 1 is the intrinsic parity of the boson
field ijlff. In calculating iP 'g" (x)6' we notice
that each C 'y„(s/ax„)will combine with the two

y4 matrices, giving

~~ ax'
T C-1 g-1

ji
(1.14)

Since there are n such factors and there are two
pion fields,

(P
—IZ(n) (+)(P P ( 1)nZ(n) (~ f )

Hence, for n even and P„=+1the Lagrangian
(1.11) is parity invariant. For n even and Pn= —1,
2" (x) is not parity invariant, and as we are as-
suming parity invariance 2" (x) for P„=—1, n

even cannot be used. In this case we introduce a
y, with any one of the (C 'y„.) . 8. occurring in

(1.11) and call the Lagrangian 2," (x). The sym-
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metry of $" in the a's and the P's separately al-
lows us to replace C 'y„by C 'y,y„ to obtain

1 I
g(,")(x). Then

lg(ll)(x)$I P ( I)II—lg(ll)(xI) (1.16a)

=g,")(x') for n even, P„=—1.
(1.16b)

For n odd and P„=—1, Eq. (1.15) shows that 2" (x)
is parity invariant. For n odd and P„=—1, (1.15)
shows that 2"'(x) is invariant. For n odd and
P„=+1,(1.16a) shows that L,"'(x) is invariant.

The masses of the intermediate particles denoted
by M„'and M „corresponding to the two intrinsic
parity values P„=+1and P„=—1, respectively,
will, in general, be different. The coupling con-
stants of the four parity-invariant Lagrangians
will also, in general, be different. In Table I the
coupling constants and the masses are given for

TABLE I. Lagrangians for the pole diagram in Fig.
&{a).

No. Lagrangian
Intrinsic parity

Pn
Coupling

Mass constant

2 "' {x), n even

2 Z(5" ) {x), n even

3 2"' (x), n odd

4 2("') (x), n odd

n

n

(t)
gn

g(&)gn
(3)g'n

(4)
gn

the four Lagrangians.
We now calculate the t-channel pole diagram la

via the Lagrangians 2"'(x) and d,")(x). The correct
masses and coupling constants will be put in later
on. The T-matrix element for the pole diagram
la is given by'

2", (C 'I'„P„')
(), (C 'y P') (C 'y'P')

U„',"~„;8;"8„(f)U„'," ~„,'s, " 8„(f)(FpPpc)~,'8'(y'Pc)~28, "''(y PC) „'8'„~
ttII ~ lll2=

(1.17)

I'„=y&for 2(")(x) and y,y„for L,")(x), respectively,
and

P'=P'- q

P=P —k,
I =-(P+k)'.

(1.18)

The matrix element will be evaluated in the center-

l

of-mass frame. The vector p is along the x, axis
and the scattering is supposed to take place in the
xyx3 plane with p' making an angle 8 with the x,
axis. We now take the Lorentz transformations
L(f) out of U) '~ 4(f) in (1.17) and combine them
with the C 'y ~ P' factors contracted with the in-
dices of U' &' 2. (C 'y P') will combine with

L,„,(f) Ls...(.f) giving'

[L"(f)C 'y P'L(f)] ~...=(C 'y P')),«,
=(c-'y P'+c-'y, P')„,
= (4y44o, c P' +y,so,y4P4)),

(1.19a)

(l.19b)

(1.19c)

P' in the above equation is the Lorentz-trans-
formed vector

P', =P„'a„„(f). (1.20)

In the metric we are using, the Lorentz boosts
a„„(f)are given in Ref. 10. The second term in
(1.19c) when contracted between the positive ener-

I

gy rest spinors in U) '~ '(0) vanishes and y, in
the first term gets absorbed in the rest spinors.
Now, writing the Dirac matrix io2 as c ', we can
replace iy, io25 ~ P' by c 'o'p'. Further, y ~ PC
factors contracted with U) )' 2(f) in (1.17) may
also be treated in a similar fashion and then the
matrix element T„"is written in the form

2
T'„"'= ", Q ([(c 'o P')&„,(c 'o P')~...'"(c '&'P')x. ,„U~,"'x '., ", (0)]

tl tn] tn 2

x[U~ „',....,. (0) (o ~ Pc)„...((r ~ Pc)), , (a ~ Pc) g...]}, (1.21)
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(1.22)

The factor within the first square brackets in (1.21) is denoted by X' &'j 2 and, using (1.2a), can be writ-
ten in the Kronecker product form as

-'g ptxc 'cr ~ p~x ~ ~ ~ xc '0 ~ PtUf

P' also lies in the ax, plane and makes an angle y' with the x, axis. ' Using the rotation matrix

R( i) -(i/2) narP'

we have

(1.23a)

c 'o ~ P'=c 'R(p')cr, R (y'}P'.

Then, using the properties of the Kronecker products, (1.22) can be recast in the form

Xj &' j 2=(p')" Urj jc x c x ~ xc ~ R(y') xR(y')x ~ ~ ~ xR(y')

x o, x o, x ~ ~ ~ x o, ~ R (y') x R"(qy') x R ((p') ~ U j

(1.23b)

(1.24)

u2~c ' = —u'
(1.25)

and, as V~f & contains j —m, factors u2~ which get
changed into —u',

Urj & is obtained by replacing u' and u' in (1.2b) by
their transposes u' and u, respectively. The
matrix c '=ia2 acting from the right on u' and
u' not only changes them into u' and —u', re-
spectively, but also alters their transformation
properties under rotations, i.e. , u c ' transforms
as u=u" . gfe write,

wibc i =u2

Using the property (Allb) of the 0(3} rotation ma-
trices we get

Xjmj, j mg Q (pi)n( 1)2j dj ( I) dj (~i)

(1.29)

The two rotation matrices can be combined into
one by using the well-known formula (given in Ap-
pendix A). This gives

Xjml, jm2 —g g (Ps)n( 1}2jgjj \ Cj j I dl (pt)Sa m ttt -Oi Oi 0 ttt, 0
Oi= -j t

U" i c-'x c-'x x c-' = (- ])j- j U'-mi. (1.26) (1.30)

Now, using the rotation properties of U 2 and
Uf & we obtain

g8m& jm2 g (Pi)n( 1)j-midj ( i) dj (tttg ~ O g ttt2, O2
OiO2

Similarly, we can show that the expression within
the second square bracket in (1.21) (denoted by
Yj 'j ') can be reduced to a similar form,

x U' Ia, xg, x ~ - ~ xg, U' 2. (1.27) Yjmi, jm2 Q Qcj j j' Cj j j' dj'
( I)

O2
—--f t

Equation (1.2b) shows that the Kronecker product
of o, matrices in (1.27) acting on Uj+ will give
Uj'j multiplied by (- 1) '&, as there are j —o,
factors of u' in U '&. Hence,

(1.31)

where y is the angle made by P with the x, axis,
P being the Lorentz transformed vector

i, jm2 g (p/)n( )1-jm+jj-o& P„=P„a„.(f ) . (1.32)

OZO2

xdj, (y') d', (jp')5, , (1.28)
Substituting these expressions for X' ~ ' 2 and
Y' & j 2 in (1.21) we obtain

2 t tt tt .", ~.. ."'. . ",-'; 0 '2'-'. , od-'. 0(v') d', o(V')
n tttg ~ ttt2 Og, t O2

(1.33)

The summations over m, and ~ can be performed
using the well-known orthogonality properties of
the Clebsch-Gordan coefficients, and then, using
the result

2 I tt

Tx" = f" M2 Q Q &ni-n, oC '
o n dnn(8),

I, +M n 1 2

(1.35)
where

d', .(y) =d.', (-q),
we obtain a rather compact form for 7„"':

(1.34) (1.36)

is the angle between P' and P. Now, as mentioned
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in a previous work, ' the magnitudes P', P and the
angle 8 are given by

(1.37a)

XJ J l J2m2 —(Pt)"-JP Urjmt C-J XC —J X. . .Xg. —
&

5

xft (J/Jt) xft (yt) x ~ ~ ~ xft (y') x I xg, xg, x ~ ~ ~

xg, R1 (yt)xft t(yt) x, , x ft (yt)UJlll2

(1.41)

pt2 pt pt 5 + f2 ftt
Ij p Il M2

PP' cos8 =P„P„'6„,+ M„

(1.37b)

(1.37c)

Treating this equation in the same way as (1.24)
we obtain

XJ mt, Jm2 P (P )tt1Pt dJ (+t) dj (~t)( I)j-mt
ol a2

X [UJ l 1Xg Xg X ~ ~ ~ Xg UJ~2] .
In the center-of-mass frame t =p+k =0 and for the
equal masses P, =p,'=(P, —k,}=0. It follows then
from (1.37) that

p pI 2p

cos8 = Gos8 ~

(1.38)

(1.39)

In the case of elastic scattering and unequal mass-
es of the ingoing particles, we remove the arrows
over the derivatives in the Lagrangian (l.1 la) and
also replace M'„in Eqs. (1.3'la)-(1.37c) by —f„f„.(5„„f„+f„/M'„)is the numerator of the spin-one
propagator, and the replacement M'„--f„f„means
that we are now using the Landau gauge" which
removes the spin-zero part of the propagator. P'
and P will now be given by P' =P', P=P, and

cos8 = cos8.
(1.40)

When we use the Lagrangian 2~2~ (x), I'„in (1.1'I) is
ysy& and then, as far as this factor is concerned, it
gives an additional y, matrix in each term of Eqs.
(1.19). Then, the first term on the right-hand side
of (1.19c} involving g P gives a vanishing contri-
bution and the contribution of the second term will
be just c 'P4. In the equation corresponding to
(1.22), the first factor in the Kronecker product
will not be c 'v ~ P' but only c 'P,', the other factors
will remain the same, and if X', & ~ & corresponds
to Xj 'j 2, then instead of (1.24) we will have

(1.42)

To proceed further it becomes necessary to break
up Uj" in the following way. From (1.2b) it fol-
lows that

1
y a2 gIX Zgl X g2X. . .X

(2JC )JJ2

1/2
2X U&-k. &2'-'+Q 2 {1.44)

Now 1 x03 g3 g3 operating on u'x U'

gives u'XU' ''2 *(-I) ", and operating on
u'xU'--. ~2 -'gives u'xUJ-2 '2+ix( I)'-~2 ' The
multispinor U' ' may also be broken in the same
form as (1.44) and the quantity within the square
brackets in (1.42) is easily calculated, resulting in

(1.43)

The first permutation sum contains 'C& „,terms
and, comparing with (1.2b) and (1.4), it is easily
seen that it is the normalized spinor U'

multiplied by (" 'C, , )'". Similar considerations
show that the second permutation in (1.43) is
U' -""''( j 'Cj„)'".Simplifying these combina-
tion factors we find that

I/2
UP&2 +1XPJ —z, &p -y 4 2

2j

(Pt )ll —JP t

Xtm J, m2 Q 'J g d (~ )dt (~ )( 1) j-mt-ttt
OI

(1.45a)

=(-1)" .
' g g[C',' ', C','', , g, d', (tjJ')]

I

(1.45b)

as before. The factor corresponding to V j. ~ 2 is denoted by P, " ' and is calculated in the same way
as X~ j ~2. The result is

n-I ™
l' a2

(1.46)

The contribution of Z," {x)to the diagram {la) can now easily be calculated. The result is
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/2
T( ) ~ ~pm, , gm2pm, , gm2 g n

t+M„'
2

(1.47)

Now since we take P' = p' =p, P=p =p, it is easy to findp, = p, and P,' =p,' in terms of p and the mass p. of
the particle to which P'„and p„correspond. From Zorentz invariance

Pv Pv =Pv Pu = -P,2

PvPv =Pvpu= -g

Hence,

P0=P, = (P'+)1 ) =P0,

P'=P0=(P +P, )' =P0 .

(1.48a)

(1.48b)

In Appendix A summations over l, o„ando, occurring in (1.36} and (1.47) have been evaluated in terms
of the rotation matrices of O(4). Using these results we are now able to write down the contributions to
the pole diagram 1(a) by the four Lagrangians given in Table I,

+(1)2p2n
Tln)(& even) n dn/0, n/0(8)+ n Pn(n-1)P 2 + I (s+ 1)d 0/2, n/2(8}

A l + (Af+ )0 00;00 l+ (I„)' 10l10 (1.49a)

(1.49b)

The two O(4) rotation matrices occurring in the
above equation have been shown to be connected
with the Gegenbauer polynomial d')(cos8) by the

following equations:

d" '" '(8) =C'"(cos8), (1.50a)

—+1 n+1 d,"0~~,'0" ~ (9

rl 1

~jm„jmg = g C''' ~jjlm), (1.51)

where l(l+1) is the eigenvalue of L', L being the

O(3) angular momentum operator given in terms of

j
' and Si" (mentioned earlier) by L =+j')&& 1+ 1XP).

As shown in Fig. 2 and by (1.17), any state charac-
terized by D~'=—D" ' contains angular momentum
states l = 0, 1, 2 ~ ~,n'- 1 = n. For even n = 2j the
expansion of the Gegenbauer polynomial Ci„"(cos8)
in terms of the Legendre polynomials P, (cos8)

=!(s(a+1)-L'(s)]C'„",(8), (1.50b)

where L'(&) is the Legendre operator with the

property L'(8}P,(cos8) =l(l+1)P, (cos). Now con-
sider the O(4, 2) weight diagram' (shown in Fig. 2),
particularly the O(4) multiplet in it. The "princi-
pal quantum number" is n'=n+ 1=2j+1. Any state
belonging to the D '=D ' =D" ' representa-
tion" of O(4) can be expanded in the form

contains' only the even values of /, i.e. ,
L=O, 2, 4, . . . , n —2, n=n' —1, and C„',contains only
the odd L values, i.e., L=1, 3, . . . , n —3, n —1=n'-2.
Hence, the (gl'))0 square term in (1.49a) gives
the contribution of all the even angular momentum
states and the g„')term in (1.49a) gives the con-
tribution of all the odd angular momentum states.
Therefore, for even n values the introduction of
the Lagrangian 2,"' ) (x) is necessary for obtain-
ing the contributions to odd angular momentum
states. Similarly, the Lagrangian 2',"")(x)is
necessary to obtain nonvanishing contributions to
even angular momentum state. Hence, if we sum

up over all n, Q „T'„")given by Eqs. (1.49) will
contain the contribution from all the angular mo-
mentum states of all the O(4} multiplets shown in

Fig. 2. In a future paper we shall consider the
Reggeization of the amplitude T„=Q„T„")in the

principal quantum number n' = n+ 1.

II. PION-NUCLEON SCATTERING

GAIA Df 2+ j/2 I2 BARYON POLES

For the pion-nucleon scattering diagram given
in Fig. 1(b) we write an effective Lagrangian

&" '"(&)=Z. ..T)(&)(c)'r„,),0, (c 'w„)

+H.c. , (2.1a}
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where the integer s is related to j, and j, by

(2.1b)

TABLE II. Lagrangians for the pole diagram in Fig.
1{b).

(2.1c)
No. Lagrangian

Parity
I .

Coupling
Mass constant

and (()„(x),y(x) stand for the nucleon and pion
fields, respectively. If P, , is the parity of the

~1~ 2
baryon field g'1'2 relative to the nucleon field

(x), then it can be shown as before that

(P 2~). 2(x)6 =-P (-1) ~22 "s(x'). (2.2)~1~2

For s =2j, odd and Pq q =+1, 2'&'&(x) is parity in-
variant, and for s odd P1&2 -1; the Lagrangian
2,'&'&(x) obtained by replacing (()(x) in (2.1a) by
(C)(x)y, will be parity invariant. Similar considera-
tions hold for the case when s is even. The cou-
pling constants, parities, and the masses of the

1 Z ~~~2{x)s =2 j2 odd

2 Zf(~2(x)s =2j odd3,C~&~2{x)s =2j even

4 ~ f('2(x)s = 2j even

S

S

S

&(1)
S

&(~)
S

g(3)
S

g(4)
S

D~2" '~2 baryons are given in Table II.
Let us first calculate diagram 1b via the La-

grangian 2'&~'(x). As for the scalar boson case,
the matrix element T'1'2 is given by'

()")( 'r q), ( 'w s) 8 () -'.* „8- ~ II (f))

~2j1 1,J2m2
x[U~ ~. „().(). (f..).(y k C)„() (y kC)~ s u„(P}]

S

(2 4)

P and P' are the momenta of the initial and final nucleons and k, q are those of the initial and final pions,
respectively. As before, we shall calculate T'&'& by taking the Lorentz boosts L(f) out of the multispinors
and combining them with C 'y q and y'kC factors. Only one L(f) from U(f) and one from U(f) will not

be combined with these but with u(P') and u(P). The expression within the first square brackets in (2.3)
denoted by X 1 1' 2 2 is easily seen to reduce to the Kronecker product form,

X""'" =q'[u(p')L(f)]~U""'c 'xc 'x" « '

xR((()')xR((p')x ~ ~ ~ xR((p') ~ g xg, x ~ ~ ~ xg, ~ Rt(y')Rt((p')x ~ ~ ~ xRt((()')U4 s

The dots in U~'1 1 above stand for the indices on which the s-fold Kronecker products of the matrices
operate. Now, writing

' '[c 'R(V")) ()[R ((()')c)

we have

(2.5)

U~~.'. 'c 'xc 'x ~ ~ ~ xc 'R((p')xR((()')x ~ ~ ~ xR(y')
—(Rt(~')c) „U'. .. '[c 'xc 'x ~ ~ ~ xc 'R((p')xR((()')x ~ ~ xR(9)')] ... , ... (2.6)

= (R (y')c)e ~(-I)'& & g d",~(9)')Ue'. ..' . (2 7)
O1

U~&') is now broken up according to (1.44); then, substituting (2.7} in (2.4) and proceeding as before, we

obtain after some calculation
1!2

&'~ ~'s s= g q' (p'u)L(f)[R'(V') )'c"u' ' (-I}'""d-'.—.4')~-'.. -ii2(&')
O I 1

1/2
+ g q'u(p')L(f)[R'(~ ')c) 'u" '2

' (-1}'"~",.-., «')"'-'s ...i/s «')
O1 1

(2.S)

%'e notice further that

[Rt ((p')c]r u'r = -R(q)') u',

[R'(q ')c]'u ' =R(y') u'

and combine the two d matrices after changing o, to -v, in the summation over O„obtaining

(2»)
(2.9b)
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(2.10)

/2ys-
u'R'(W)L '(f)u(l )gg (j, + o,)'"C"."'.C"."'. , i td' l(V)

o2

-1+/zr)), /2~2 u(p')L(f)R(~&)um p (j o ) )/2C/I /2/ CJi/2)
t td/ ~(qp )

)] Og

+ u(p')L(f)R(e')u' g (j, + o,)'"C".
,".,'.C".,".', , i td'. , ;(9 ') .

Oy

The expression within the second square brackets in (2.3}is calculated in the same way and is given by

Substituting in (2.3) and

+ u R (/(())L '(f)u(P)g g (j, —o, )'"C'„')'2~ C",,",', t td' &(y)
l o

proceeding as before, we obtained four terms for T~g'2:

(2.11)

-1 ")
„M,l u(p')L(f)R(V')u'u'R'(V )L '(f)u(P)

Q G(jl o))(J) o2)] C()) —0)- 1 -$C()2- t)2 y$ 1 $, -$(8))~

~

Oy02

+ u(P')L(f}R(/p')u'u R (y)L '(f)u(P}

xQ Q [[(j,—o,)(j, -cr, )]'"C~)",' 1 )C'g, '2,', 1 id' 1 t(8})
1 OyO

+ u(P')L(f)R(V')u'u'R'(e)L '(f)u(P)

g {[(j,+ o, )(j,+,)1"'C'. ".'„»C'.,".'„»d&,(8)j
1~2

+ u(p')L(f)R( /)')(u'iPRt(y)L '(f)u(p)

(2.12)

The expression on the right-hand side in the above equation can be simplified further by interchanging

o, o, and by writing d'„, », (8) = -d'
&»,) &„»(8)in the first term and combining it with the fourth term

Similarly, the second and third terms can be combined. The combination of the first and the fourth terms
contains a common factor,

u'u' —u'u' = io, (1+ y, ),
and that of the second and the third term contains a factor

u'u'+ u'u' = (1+ y, ).
Thus, we are led to

~

-
(pu') (fL)(R) 8~( 1y+.)L-'(f)u(p)

(2.13a)

(2.13b)

x g g [[(i +~, )(i —o))]' C.')" '
& &C,

"' '
&

&&'& &(8))
1 2

+ u(p')I(f}R(8)(1+ y, )L '(f)u(p}

(2.14)xQ Q {[(j,+o,)(j,+o,))'"C,"",', t tC', ', ', t id') t(8)j
~

.

The factors involving the Dirac spinors in the last equation have been discussed in a previous paper. " lt
is well known that

(/)-(1+ yL)L '(i)= —()
" ")= A'(f), (2.15)

and since the scattering takes place in x,x, plane, L(f} contains y,o) and y,o, which anticommute with ia„
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hence,

L(f)f& L (f)= L (f)&o

fo+rqv' f
(2.16a)

{2.16b)

{2.16c)

For off-mass-shell continuations we shall use the form (2.16b) for L(f)i o, L '(f). Then, since I = p+ k= 0
and fo = P, + ko = ~t,

L(j )ic,L '( f) = ic, ,

L(f)R(8)L '(f) = R(e),

Av)= —
(1

'
) .

(2.17a)

(2.17b)

(2.17c)

The summations over &, c„ando, occurring in (2.14) have been evaluated in the Appendix. These are
just the O(4) rotation matrices F2,'&,&'2(8) multiplied by 2 j,( j, + 1). Using these relations

2

q (j2+ 1) P(p')R(8)t' c—
2 1 + t4( p)df t. I |(8)

S S

(P')R(e)
2 (1+ ) (P)&~'t. ~

B)
S

(2.18)

The direction of spin quantization in u(p) and Q(p }has been taken to be the x, axis. If we use the helicity
states for these Dirac spinors, u(p') should be replaced by

g(x')(p) g(k')(0)e-{i)2) y5 o3 ~anh 0'/P t(8)

(2.19)

This Rt(8) will cancel the R(8) occurring on the right of u(P') in (2.18}and then the angular dependence in

(2.16) will be given purely by the O(4) rotation matrices. This is the advantage of using (-f')'" rather
than M, in the denominator of (2.16b). When we calculate diagram 1b using the Lagrangian g', ~'2{x), then

u(p') and M(p) are replaced by u(p)y, and r,u(p), respectively. This would lead to changing the sign of y,

in (1+ y, v t /M, ) in (2.18). Now, using the helicity states, calculating the spinor parts, and applying the

Lagrangians and masses according to Table II, we can easily write down the result for the helicity ampli-
tudes T~' ' "'~'(A', X, s odd) in the following form:

(iH (2)

t+{M, j S

(2.20a)

Wi "~ 1 Wt s+ 2Z'2' '"'&(--,' —,
' s odd) = ', — a+, + ', — ~ — q"d ' . i 'i'(8). (2.20b)

The amplitudes T'2""'2(+-,', —,') for s even are obtained by replacing M', by M, , g,' by g',", and g,"by 8',
in the expressions given above for Ts(+ ~, 2, s odd). Results similar to the vw scattering mentioned at the

end of Sec. I are obtained at threshold for the following amplitudes:

Te"~2" "2(-', —,', s}=(icos-,'6) 'T'g" '"(-,' —,', s)v (-I)"'(v2 sin&) 'T'"' "'( —,', -'„s). (2.21)

The amplitudes defined above are [apart from the factor (-1}"' = (-I)~' in the second term in (2.21)] just
the parity-conserving amplitudes defined by Gell-Mann ef af." At the threshold, P, =m and then (2.20),
(2.21) together with (A43) and (A44) show that T~~' "~2(2, —,', s odd) contains the factor d/d cos& C ~~~(cos&)

which for 2j=s odd contains only even values of I in its expansion in P, (cos&). Similarly, on the threshold

T3 ~'~ (-,'2-,', s odd) contains the common factor 2(j+ 1)C~2&'(8)+ cos& d/dcos& C,",,(cos&) which contains only

odd values of I in its expansion in P, (cos&}. Similar results hold for Ts (-,', —,
' s even) at the threshold.

If in (2.16b}M, , rather than (-f„f„)'~',is used in the denominator, we obtain (2.16c). 7 f/(iM, ) com-
mutes with y~ic, and is absorbed in A'(f). Proceeding in the same way as in Ref. 10 and using the results
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(A43} and (A44) we arrive at

y4 t
T~~'~'= ' . g&, &, , a(P') Cl2~), (cos8)+~iv, y, sin6 . Cl2~), (cos6) 1+ ' u(P).

(2.22)

The previous continuation using (2.18b) would lead
to almost the same equation as (2.22), the only
difference being that there would be no y4 occurring
with i02 in the second term on the right-hand side
of (2.22}. This means that these two continuations
give the same result as far as the highest-order
term in cos0 is concerned.

Equation (49) of Ref. 10 gives the contribution
of spin j= l + 2 baryon pole to wN-wN and is sim-
ilar to (2.22) given above. It contains P, (cos8)
instead of Cl,",(cos8); otherwise, it is essentially
the same as (2.22). Carlitz and Kislinger's re-
sult" was the P, (cos6) term in Eq. (49) of Ref. 10.
Equation (2.22) is thus a generalization to O(4)
symmetry of their O(3) symmetric result.
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APPENDIX A

In this appendix we derive certain results con-
nected with the representation of the O(4) group,
which have been used in the text. It is well known'
that from the six generators

(Al)

(A2)

of O(4), another set of generators J "and J " are
formed by writing

J ' = 2(L+A),

J ' = 2 (L —A).
(A3)

Ij &m &x I j,m, &
-=I j,m„j,m, &. (A4)

As pointed out by Biedenharn' the simultaneous
eigenvectors of J "', J ' ', L', and L, are ob-
tained from the previous set of simultaneous eigen-
vectors with the help of Clebsch-Gordan coeffi-
cients,

~j,j, im&= g C'j, '2,'. [j,m„j,m, &,
m1, m2

(A5)

where j,(j, + 1), j,( j, + 1), lgl + 1), and m are the
eigenvalues of J ' ', J "', L', and I „respective-
ly. The A'&",., (8) and d", ,,~'„(8)rotation ma-
trices of Biedenharn' and Freedman and Wang'
are the matrix elements of exp(-iA, 8)
= exp(- i(J,' —J,' ) in the

~ j,j,l m& representations.
From (A4) it is easily seen that these matrices
are diagonal in m', ere. The matrices which we ob-
tained in the text are, however, different from
the rotation matrices mentioned above. These
are special cases of the matrix elements of
exp(-iA, 8)=expl-i(J, ' —Jl,'~)8] in

~ j,j,lm& basis.
We define, therefore, a matrix d', l'I, (6) by

J 1 amd J, commute with each other and individu-
ally they satisfy the commutation relations of
O(3) generators. The simultaneous eigenvectors
pf J J J 2 and J

O'V', (6) = (j,j,l'm'
~
e '"2 )j,j,l m&

.&, (,1~,(2)
„

m1m2 m 1m2

From (A4), (A7), and the definition of the O(3) rotation matrices d„{6)we obtain

(A6)

(A7)

d', " (8)= g &C', '~,', C' '" d', (8)d 2, (6)&.1'm', lm 1 m2 m™1+2 mlml m2 ~ m2
m Im2

{A8)

We shall now calculate the O(4) rotation matrices
d'' (8), d', ~, , (8), and d&~', i. , t(8) from (A8).

The matrix element d', ~o. ,o(8). getting

21 22 27

l'= l = m'= m=0

in (A8),

(A9)
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a, , a2

(A10)

Now, using the formula for combining two d~

matrices, which has been used quite often in this
work", i.e.,

From" C,"'„=( —1)' " and the symmetry properties
of the dj matrices"

d'} (8) d '
(8)

d', (8)=(-l) i "& d',

( I)my
—mo

-ml, -m2., (8),

(A 1 la)

(A 1 lb)

(Al lc)

l
[Cm! mg m'+ m~ Cm mo mg+ mo m(+mo, my+ m2(8)]

l

(A14)

it follows at once that

d."...(8) = P (-I)" " "d.',. (8) d.'...(8)(-1)"
1 2

= Q (- 1)"' '~' d' (28)

= Q d', (28) (A12)
a1

Also, using the symmetry property (Allc),

Q do o,(28) = Q do, (8) d Jo o (8} . (A13)
a 1a2

together with (A12) and (A13), immediately gives

d,", „(8)= g g C', ' ', , C,"', ,d,',(8) .
l a102

(A15)

We will now show that the last expression is just
the expansion of the Gegenbauer polynomials C',",. (8)
in terms of the Legendre polynomials d~(8)
=P, (cos8). To this end we use the following for-
mula for the Clebsch-Gordan coefficients"

1)
—I+ i~+ m&

~1 ~2 m 2 l+ j1+ j2+1

(2l + 1) (l +m, +m )!(j, +j, —l )!( j, +j, + l + 1)!
( j, —m, )!( j, +m, )!( j, —m, )!( j, +m, )!(l —m, —m, )!(l +j, —j,)!(l —j, +j,)!

+1 d l tfi1 F2
x dx(1 —x)" "'(1+x)'&™&, [(1—x)' '~+'o(I+x)'+'& '2] .

-1 dx'

1/2

(A16)

On calculating P C,'', ', , from the aboveformulaweobtaina binomial expansion giving 2"x"/(2j). , and

further using the Rodrigues' formula for the Legendre polynomial we obtain

+1

P C', ' 'oo= . , [(2l +1)(2j—l)! (2j+l +1)!]'l' x JP (x) dx.
2 2j)! -1

(A17)

The above integral is given by'

+1x"P,(x) dx = 0
—1

for 2j —l odd or negative,

for (2j —l) even and nonnegative.
2 '(2j)! [(2j + l}/2]! (A18)

Equations (A17) and (A18) give

(2l +1) 2" (2j —l)! [(2j+l)/2]!p Co o o Co' 'oo o,(cos8) = p (2 l I)~ [(2. 1}/2]~
P,(cos8),

l a a2 l

with

(A19)

l =0, 2, 4 ~ ~ 2j for 2j even,

=1, 3, 5 ~ ~ 2j for 2j odd .

Th~ rich -ha, d "~~e of the previous equation is exactly the expansion of Co!~ (8) as mentioned by Harnado

which can b. . e. .".ed by expanding C, ~ (cos, ' in terms of P(cos8}, calculating the expansion coefficients
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by using the following formulas':

C '(Z)= . ' withZ=cosX.sin[ 2j + 1}X]
slnX

and

sin[(2j+1)X] P,(cosX) dX = | .
l 2, for 2j +1)l and 2j +l +1 odd,l 2j+l F(&(2j-1)+~)

= 0 otherwise,

and simplifying the F function by using

w' '2 '"(2n)!
I'(n+-2) =

(A20)

(A21)

(A22)

Collecting the results

= Q d', (28}

(A23a)

(A23b)

0y02
(A23c)

These together with expansion (A19) complete the formulas needed in this work. (A23b) is implied by Eq.
(7) of Ref. 6.

The matrix element d,~;,0(8). On setting

l'=I=1

m'=m=0,

in (A8) and using"

(A24)

we obtain

[(2j+ 1) ( j+1)j] (A25)

d,', '. „(8)= Q Q . . )( .
)

v,v, d,~,, (8) dJ, (8) .
01 02

(A26)

Writing d,', (8}= d'. ..(8) and using (A14), we obtain

3
10;10( } Q Q Q j(j+1)(2' 1) 1 a| Ogo 2 02 020 00(8)

a, a2
(A27)

which is the summation occurring in the tex'. Again we calculate Q a CP,', using the integral formula
(A16) and substitute the results in (A2V). The result is

l (2j —1 -l)! I [(2j—1+l)/2]!
4'( '+1) (2' 1) + (2' —1+l +1)! [(2'- 1 l)/2] ~

with 2j —l odd and nonnegative integer. Now

(2j —1) (2j+l +1)=2j(2j+1)—l (l + 1),
and we know that"

(A29)
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d, d
l (l + 1) P,(x) = ——(I-x')

d Pg(x)

=-Z(S) P,(x) .

(A30a)

(A30b)

Hence, using (A30) and comparing with the expansion (A19} of Cmi~&l(cos8), we obtain the following form for
the rotation matrix d,", „(.8) in terms of the Gegenbauer polynomial C, ', ,(8):

d~, '.„(8)= —, , , }
[2j(2j+I) —Z(S)] C,"~',(cosB) .

4 j ( j+1j(2j+1 (A31)

We have seen that Q, d,', (28) = C2~&'(8). From the symmetry properties (A11) it follows that for odd r,
p, o" d,~,(8) = 0. It is interesting to note that p, o' d,', (28) is connected with d~~, ~»(8), and this can be shown
as follows:

g, g, d.'. 8 d.'. 8 = jg, e-'2eJ3 jg2 jg2 e-,eJ3 jgl

= g (jz, )e " (ja,)(jo,)(J3cosB-J,sinB) J,)jo,)
G I Q2

=g o,'d,', (28) cosB —g o, sinBd,', (8)(jo,~&, l j&2&. (A32)

The matrix element (ja, ~ J, ~ jo,) is well known, "and using the formula"

8
I (j*t +1}(j+~)]'"4,„., = . + a co«+ —4„(8)sin& 88 (A33)

and simplifying, we arrive at the result

Q (x,o, d,', (8)d,', (8)= Q o'd,',(8). (A34)

Hence, from (A26)

g 'd.'„(28)=(2j"}('"}'o Bd,, „(8). (A35)

The present method, however, becomes too complicated for computing

Q a '" d,', (8), r & 2 .
'y

The matrix elements d&~2,'I'", , (8). In the formula (A8) we put

j,=j, + 2, j2 an integer - o

(A36)

and obtain

d' i 2 . .(8) = g C "' '.. ., C""'
+ & &

da'a, (8) d'-'a + I;-a ~ I (8}~

1 2

(A37)

The Clebsch-Qordan coefficients occurring above are easily obtained from the table of %signer's 3j sym-
bols given in Ref. 17. The result is

1/2

(2j,+ 2}(2j,+ 1)
(A38)

Substituting this in (A37), using the symmetry property (Alla) and remembering that (2a, —1) is always

even, we arrive at the result
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~ ~1/2 /
.

+ ql/2

(A39)

~
~

l. (jl 1)(jl 2)1 CJg22 l C/| f2 l dl 6 (A40)

d', &'2, , (6) can also be expressed in terms of the polynomial C,",'(8) and its first derivative. This is most
2~

easily done by using the following formula. ":
(j, + o)'"d,'", '( 6) = (j,+o,)'"d,", (8) cos-,'6+(j, -o,)"'d,", , i(6) sin-,'6.

Substituting this in (A39)

(A41)

(j,+ 1)(2j,+ 1)d', ~&", , (8) = P (j,+o,)d", , (8)d",i, ,i (8) cos-,' 8

+(j, -o,)"'(j,+o,)"'d 2,i „(6)d"„,„,i(8)sin-,'6.

On setting ay Q (T (xp p
o'' in the first term, and o, +-,'=cr, o, —&=a'' in the second term on the right-

hand side of (A42), and using (A33) for d~, ,(26), we obtain after some simple calculation

(2j, +1)(j,+ 1)dI2', '&'(8) =cos~8 (j,+1)C~, (cos6) — C,',. (cos8) (A43)

Similarly, we obtain

(2j, + 1)(j,+ 1) d', "", , ', (6) = sin-,'8 (j, + 1)C",,', (cos8)+ C",,', (cos6) (A44)
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