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An SL(2, C)® SL(2, C)-symmetric model for calculating direct-channel pole diagrams for m m,»>m m,
and #N->mN is given. The angular dependence of the scattering amplitudes comes out in the form
of O(4) rotation matrices. In order to include all angular momentum states of O(4) multiplets,
intermediate particles of even and odd intrinsic parities have been introduced. Certain expressions of
O(4) rotation matrices and their connections with the Gegenbauer polynomials are given in the

Appendix.

INTRODUCTION

Shortly after the demonstration by Freedman and
Wang' of the O(4) symmetry of the scattering am-
plitude at the energy ¢t=0, propagators showing
O(4) symmetry in the direct-channel pole diagrams
were investigated.? Later, Iwasaki® and Harnad*
gave a prescription for writing down spin-j boson
propagators and used it to calculate the direct-
channel pole diagram for the scattering of spinless
bosons of equal masses. The scattering amplitude
thus obtained exhibited O(4) symmetry (at ¢t=0), in
the sense that there the angular dependence was
given by the Gegenbauer polynomial C‘z‘,’(f)).

In the present work we consider a model which
gives O(4)-symmetric scattering amplitudes using
the direct-channel pole diagrams with no restric-
tion on the energy f. If we consider the O(4,2)
weight diagram (shown in Fig. 2) which is a plot
of the principal quantum number n’ against the
angular momentum [, we see that each O(4) state
characterized by a particular value of n’ contains
angular momentum states [=0,1,2,...,n'-1. Our
object is to obtain O(4) symmetric amplitudes for
direct channel pole diagrams which will depend on
n’ and contain contributions from all the angular
momentum states mentioned above. A summation
over n’ would then include contributions from all
the points in the weight diagram, and a Van Hove
model can then be made based on the Reggeization
in the complex n’ plane. Two scattering processes
have been considered:

(@) m +m,~—m +7,,

(b) "T+N-7+N.
In (a) the masses of the two pions may be different.
The intermediate particle belongs to a representa-

tion of SL(2, C)®SL(2, C) and is represented by a
generalized Wigner -Bargmann® field

ipda
“1"’2"'“2]1-5152"'82)‘2 (x) .

This multispinor field is completely symmetric in

the indices a,a,,..., &y, and B,B,,..., B,;, sepa-
rately, and obeys the Dirac equation in all the in-
dices. In the momentum representation the spinors
are characterized by the two eigenvalue numbers
4, and j, of the Casimir operators J 2 and J @2 of
O(4) and the two eigenvalues », and m, of J " and
J? | respectively. 3 and I?, as is well known,®
are related to the generator J,, of O(4) by Jw
=4L +A)and T® = 4L - A) with L;=3¢€;;,J,;, and
A;=J;,. We have defined the O(4) rotation matrix
djiiz, (6) as the matrix element of €429 in the
|7,72, Im) basis, I(l+1) and m are the eigenvalues
of L? and L,, respectively. This is different from
the rotation matrix defined by Biedenharn® and
Freedman and Wang' which is the matrix element
of e~*43% in the |j,j,, Im) basis and is diagonal in
m.

For the 77 scattering we write an effective La-
grangian

g(c_l')’u l)alel(c_l?’u 2)a2 [P (C—lyp”)azjﬂzj
X‘pél{“azj-ﬂr"ﬁz,- Q)3+ 28y, @(x)

and calculate the direct-channel pole diagram
shown in Fig. 1(a). We find the angular dependence

of the amplitude is given by dJ7 ,,(6)=C% (6).” The
expansion of c‘;}(e) in terms of the Legendre poly-
nomials* P;(cosf) contains only even or odd ! val-
ues according to whether 2j=# is even or odd, re-
spectively. To include the missing angular mo-
mentum states occurring in the n’=2j+=n+1 state
as shown in Fig. 2, we must introduce another
Lagrangian which is obtained by replacing one
(C"y“)aigi factor in the Lagrangian mentioned
above by (C™'¥y)a;s,» We find that this new La-
grangian gives an angular dependence in the form
d}i. ,(6) whose expansion in P,(cos6) contains only
odd or even [ values according to whether n=2j is
even or odd, respectively. Assuming space re-
flection invariance of the effective Lagrangians we
introduce two $7/(x) fields describing bosons of
even and odd intrinsic parities and write down four
parity invariance effective Lagrangians, two for
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FIG. 1. (a) Feynman diagram for nm — 7w with the

. . 1 .
propagator corresponding to a boson belonging to the O(3) rotation matrices d"’1"‘2(9)' In Appendix A

D% representation of O(4). (b) Feynman diagram for these summations have been related to the O(4)
7N — 7N with the propagator corresponding to a baryon rotation matrices and these in turn have been ex-
belonging to the D72*'/2:/2 representation of O(4). pressed in terms of the Gegenbauer polynomials

and their derivatives.

even n and two for odd n. For any given n all the I THE SCALAR BOSON SCATTERING

states 1=0,1,2,..., n=n’~1 then contribute to the VIA " BARYON POLES

scattering amplitude. A summation over n’ (or ») In order to construct Lagrangians whose contri-

would then include the contribution of all the states bution to the pole diagrams exhibits O(4) symme-

of the O(4, 2) spectrum.?® try in the scattering amplitudes, we introduce a
The case of TN— 7N has been treated in a similar field ¥ /72 which obeys a generalized Wigner -

fashion. The helicity amplitudes contain d;?;i;gi(ﬂ) Bargmann® equation and belongs to a direct-prod-

rotation matrices. An ambiguity coming from off- uct representation of two ordinary Wigner-Barg-

mass -shell continuation of the propagator momen- mann representations. The field

tum has been discussed. As in the case of spin-j ginia (x)

poles,'° the highest order term in cosé is shown gt @y, By Bytet Bajy

to be free of the ambiguity in the present case is completely symmetric in all the indices «,a,,

also. cey Qg and BBy, .. <y Baj,, Separately, and obeys
The scattering amplitudes obtained in the text the Dirac equation in each of the indices a; and B;.

are in the form of certain summations involving In the momentum space the positive energy multi-

the Clebsch-Gordan (C.G.) coefficients and the spinor is given by!!

jymy ., Jamy
U"‘l' T By ‘lez(f)

S[LOUVXLAf )X XL e e XL Moo gy By Byy g Ao Ay oo Tag, U;';f’:l,-{;j"l'{n,,‘,m(O). (1.12)

r

L(f) are the well-known Lorentz boost operators
in the Dirac representation )
W2 ys0- Ftanh =T /fg) U’™ form a completely symmetric and orthonormal

L(f)=e ° o (1.1b) set defined by!!

Uiimiizme(Q)= yiimix yiame, (1.2a)

The momentum f is on the mass shell

1
- Uinz s WXEX eyt 1.2b
"fufu=f02‘ fa:M?ﬂz ’ (L.1c) (2jcf—m)”2 ; ( )
where M; ;, is the mass of the particle associated u' and %® are spin up and down Dirac spinors sat-
with the field ¢’r72, The rest spinors U71™u/2m2(Q) isfying yu2=u?, ou'=u!, o= -u> 2J, stands
in (1.1a) are now written as a Kronecker product for the sum over all distinguishable permutations
of two completely symmetric Wigner -Bargmann of u' and %% in (1.2b). If n, and n, are the numbers

rest spinors: of u' and %, respectively, in each term of U™,
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then

n,+n,=2j,
(1.3)
n,—-n,=2m,
where j and m are, respectively, the spin and the
third component of spin associated with the multi -
spinor U’™ The number of distinguishable per-
mutations are

"G, =HC =Y. (1.4)

Hence, the normalization factor ¥C,_,, has been
introduced in the denominator of the right-hand
side of (1.2b), giving

Uimyim=65, .. (1.5)

The spin operator in the U’1™ space is

FO=L(FX 1XIXe e e X1+ IXFXIX -0 o X1

-

oo+ IX1IX1IXe 0o XF), (1.6)

and U’1™ is an eigenvector of ()2 and i pe-
longing to the eigenvalues j,(j,+ 1) and m,, re-
spectively. Similar considerations hold for U‘z2™z,

It follows now that U’t™1-72m2(0) are the eigen-
J

vectors of
FWa_FWax
L (1.7)
F@e2_ rx ]-(2)2’
1) _ ;)
Ji' =453 XI,
o (1.8)

ng) - I><j(32) i

U’1m-72m2(0) therefore represent the basis vectors
of the (j,j,) representation of® O(4). Further rele-
vant discussion of these representations is given
in Appendix A.

It follows from the construction given above that

Ugn‘.":x.;,";j’:z'ﬁl...ﬂzjz(f)
are completely symmetric in the a’s and B’s
separately. The adjoint wave function is given by

Ui dame(f) = U*fl'"pfz’"z(f)hxyqx. ceXy,.

(1.9)
The negative-energy wave function V/1mi:72m2(f) js
defined'' in a similar way, the only difference be-
ing that U’1™1 and U’2° ™2 are multiplied by 2j,-
and 2j,-fold Kronecker products of the charge-
conjugation matrix C~%. The field ¥71'/2(x) is now
constructed in the usual way'2:

1 i My \Y2 ox i ; .
‘pwz(x):WZ 2 f<_fj"m> [Ufimidamagimz (f)e 4 y/imdzmap fmimae =¥ @%f . (1.10)

my==j) my=-jy (4]

Let us now consider the scattering of two spinless bosons (e.g., two pions) via a direct-channel pole
(diagram 1a) in which the intermediate particle is represented by ¢’'/(x) field. Let p,% be the momenta of
the ingoing particles and p’,g the momenta of the outgoing particles. For the present we shall suppose
that all the external particles have the same mass u. An effective Lagrangian which will contribute to the

process shown in Fig. 1(a) is

£Px)=gP(C Yy Dap,(CT Wy aysy -+ - (CT¥y Vans, ¥alap a8, 8y 8,X)@X) 3, 5,03, @(¥)+H.c., (l.1la)

where

n=2j, an integer = 1. (1.11b)

Let us examine the space reflection invariance of
this Lagrangian. Under the parity operation the
pion field ¢(x) transforms as

Cle(x)P= - p(x'), (1.12a)
where
X' =-%,
(1.12b)
X3=X,.

Also @ transforms ¢?/(x) in the following way:
® _I(Pé'g.. o, Bl'“ﬂn(P

=P, (Yg)oya; " (Yu)tx"a;'(yq)ﬂlﬂ’l s (vy) B, B},
i .
x‘pa‘g...uh'gi... B;, ’ (1-13)

r
P,=P;;=+1is the intrinsic parity of the boson
field ¢*/. In calculating ® ~'£"(x)® we notice
that each C~'y,(9/8x,) will combine with the two
Y, matrices, giving

_ ) _ P)
viC™ly, 5 7=-C v, R (1.14)
M I

Since there are n such factors and there are two
pion fields,

CeP(x)® =P (- 1)"2” (x"). (1.15)

Hence, for n even and P, =+ 1 the Lagrangian
(1.11) is parity invariant. For » even and P,=-1,
£ (x) is not parity invariant, and as we are as-
suming parity invariance £” (x) for P,= -1, n
even cannot be used. In this case we introduce a
¥s with any one of the (C_Lyui)o‘iei occurring in
(1.11) and call the Lagrangian £(5")(x). The sym-
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metry of ¢/ in the a’s and the ﬁ’s separately al- TABLE 1. Lagrangians for the pole diagram in Fig.
lows us to replace C™! Va, by C~ ysy“ to obtain 1(a).
£(")(x) Then =
Intrinsic parity Coupling
®- l£(5")(x)(P =P, (- 1)"‘1£(5") (x") (1.16a) No. Lagrangian P, Mass constant
=£(5")(x’) for n even, P,=-1. 1 £M9 k), n even 1 M g0
(1.16b) 2 £ «), n even -1 MO g®
For n odd and P,=-1, Eq. (1.15) shows that £"(x) 3 LM w), n odd -1 MO g®
is parity invariant. For n odd and P,=-1, (1.15) . t) ) @
shows that £ (x) is invariant. For x odd and 4 20, n odd 1 Mn &n
P,=+1, (1.16a) shows that £(5")(x) is invariant.
The masses of the intermediate particles denoted
by M (,,”) and M ‘,,') corresponding to the two intrinsic the four Lagrangians.
parity values P,=+1 and P,=-1, respectively, We now calculate the {-channel pole diagram 1la
will, in general, be different. The coupling con- via the Lagrangians £ (x) and £{"(x). The correct
stants of the four parity-invariant Lagrangians masses and coupling constants will be put in later
will also, in general, be different. In Table I the on. The T-matrix element for the pole diagram
coupling constants and the masses are given for la is given by'™ 13
]
T(n) ; M2 (C-lrupl:)alsl(c‘l.y . P’)stz s (C'l.y o Pl)anﬁn
i
X m;z::-, Udranin2s pees, () UATA G0N 2y coagr (F) (TP, C) oy * PCogayt +* (v PC)oy g, - (1.17)
r,=y,for £ (%) and sy, for £(5n) (x), respectively, of-mass frame. The vector P is along the x, axis
and and the scattering is supposed to take place in the

X,%; plane with P’ making an angle 6 with the x,
axis. We now take the Lorentz transformations
P=p-k, (1.18) L(f) out of U™+/™(£) in (1.17) and combine them
with the C™'y+ P’ factors contracted with the in-

P’:p'_

- 2
t==(p+k). dices of U'™+/™2, (C~'y - P’) will combine with
The matrix element will be evaluated in the center- Loyx(f) Lg,r,(f) giving™
J
[LT()C™ v« P'L(H)] 5, r,=(CTVy =Py, (1.192)
=(CTF P +CT Y P ) e, (1.19b)
= (074008 P’ +¥4i037 P17 - (1.19¢)
- r
P’ in the above equation is the Lorentz-trans- gy rest spinors in U/™+/™2(0) vanishes and V4 in
formed vector the first term gets absorbed in the rest spinors.
Now, writing the Dirac matnx io, as ¢”!, we can
’ . l. 0 2 ’
P, =Bjay(f) (1.20) replace iy 40,0 * P’ by ¢G5+ P’ Further, y+ PC
In the metric we are using, the Lorentz boosts factors contracted with /™7 ™2(f) in (1.17) may
au,,(f) are given in Ref. 10. The second term in also be treated in a similar fashion and then the
(1.19¢) when contracted between the positive ener- matrix element T(") is written in the form

J

T&n) t+M: ”; { (™% - P )7\11'1 (c™%- 15) ...(C-l" P ))\n?"Ujml-l)\ll'le "'Tn(o)]
1m2
><[U""'1 2 peeery (0) (G I-’C))\'l,-i(a'ﬁC)xéfz'" . (6'150))\;.1,;”'; (1.21)

n:
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The factor within the first square brackets in (1.21) is denoted by X’™*/™2 and, using (1.2a), can be writ-

ten in the Kronecker product form as

X“"l-”"z=UT""'1c"‘6-5’><c“6-§’><---xc'l’- "yime, (1.22)
_15’ also lies in the x,x, plane and makes an angle ¢’ with the x, axis.'® Using the rotation matrix

R(p') =e /2029 (1.23a)
we have

c""c?--Ig’=c"R(<p')03Rf(qﬂ')13'. (1.23b)

Then, using the properties of the Kronecker products, (1.22) can be recast in the form
Ximpime= (P UTI™Me~ X7 x oo x e e R( ) XR (@)X *+* XR(p")
X OgX 0gX* X0y -R*((p’)XR*((p’)X- . ~R+((p’) yime, (1.24)

U™™ is obtained by replacing u! and #? in (1.2b) by
their transposes u'T and u?7, respectively. The
matrix ¢~ =40, acting from the right on #'T and

T not only changes them into #*T and — «'7, re-
spectively, but also alters their transformation
properties under rotations, i.e., uTc™! transforms

as 7=u*T. We write,
utTe =2,
(1.25)
wWlet==7",
and, as U™'™ contains j —m, factors »*T which get
changed into -7,
Uijlc_IXC'IX"'XC-1=(— 1)"”'1ﬁ’»""1. (1.26)

Now, using the rotation properties of U’™2 and
U’ =™ we obtain

xXimedma= N (P(= 1) "mdl, |, (@')d e 0,(@7)
%1%
X T1010,X 0 %+ Xa,U'%., (1.27)

Equation (1.2b) shows that the Kronecker product
of 0, matrices in (1.27) acting on U’ will give
U?°1 multiplied by (- 1)’~°1, as there are j —o,
factors of #? in U’°1, Hence,
Xf”‘l-f"'zz (Isl)n(_ l)j-m1+f-nl
C’;:z
Xd o (@ o (@850, . (1.28)

—

2 prapn
o(m _ Za PP ji1 jit’
1 A" - t+M?, Z Z a; le thom le mym

my,my Oy,1

The summations over m, and m, can be performed
using the well-known orthogonality properties of
the Clebsch-Gordan coefficients, and then, using
the result

dh o(@) =d}, u(= @), (1.34)

we obtain a rather compact form for T{:

iitl
cal-ol 0

Using the property (A11lb) of the O(3) rotation ma-
trices we get

Xj"‘x-f”lzzg(pl)n(-l zjd':nl,-n ((P ) mznl((p,)
! (1.29)

The two rotation matrices can be combined into
one by using the well-known formula (given in Ap-
pendix A). This gives

j
)(jml.jnIz: Z Z (P/)( l)wcijp:- mciéllnlo m,o(‘P’)=

o=-i 1
(1.30)
Similarly, we can show that the expression within

the second square bracket in (1.21) (denoted by
y/mi.im2) can be reduced to a similar form,

i
imy,imy jil jiiv’ v
yimp ime= Z Z,:C"'l"' mCloy020 o((!”),

0p=-j
(1.31)

where ¢ is the angle made by —}':’ with the x, axis,
P being the Lorentz transformed vector

P,=P,a,,(f). (1.32)

Substituting these expressions for X’™im2 and
y™./m2in (1.21) we obtain

Cll Loy 0dm,ol@") dm, ole) . (1.33)

2 mpn
(n) _ P P a
TA t+M2 Z IZ C(';lj-lolocjj-l-czo d(l)o(e)r

(1.35)
where

G=¢p'—¢ (1.36)

is the angle between E' and P. Now, as mentioned
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in a previous work,'® the magnitudes P’, P and the
angle § are given by

=z f fv
pz=ppp,,<6w+ —Af/-‘l-z—> (1.37a)

) Jufy
PP< + A ) (1.37b)
PP’ cosf=P, P, (5,,,, i;f") (1.37c)

In the center-of- mass frame f=5 +k =0 and for the
equal masses Py =Py =(p, - k,) =0. It follows then
from (1.37) that

P=P'=2p, (1.38)

cosf=cosb. (1.39)

In the case of elastic scattering and unequal mass-
es of the ingoing particles, we remove the arrows
over the derivatives in the Lagrangian (1.11a) and
also replace M3 in Egs. (1.372)-(1.37c) by ~f,, f,.
(6, +f, f,/ M3) is the numerator of the spin-one
propagator, and the replacement Mf,-o--f,u f, means
that we are now using the Landau gauge'® which
removes the spin-zero part of the propagator. P’
and P will now be given by P’ =p’, P=p, and

D/ =D =

P 1_3 b (1.40)

cosf=cosf.

When we use the Lagrangian £ (x), r, in (1.17) is
¥sy, and then, as far as this factor is concerned, it
gives an additional y, matrix in each term of Eqs.
(1.19). Then, the first term on the right-hand side
of (1.19¢c) involving ¢ - P’ gives a vanishing contri-
bution and the contribution of the second term will
be just ¢™!P,. In the equation corresponding to
(1.22), the first factor in the Kronecker product
will not be c¢~}5+ B’ but only ¢~ 'P), the other factors
will remain the same, and if X,™'/™2 corresponds
to X'™+/m2  then instead of (1.24) we will have

J

)n I.Pl

Ximuims z;

- (__ 1)2}

0,8 0, (@ )dm,, o (9))(= 1) "m0

)n IP/ L ,
2 Z (Gt mClate o 0idh ol@")]

Xélml..izm:(pr)n-llsé UTimic=1X e 1x. . Xt

XR(P')XR(@")X+++XR(@')X1Xqg Xg, X+

Xay+RT(@")XRT(¢")X++ - xR (p" U™,
(1.41)

Treating this equation in the same way as (1.24)

we obtain

Ximedme= N (BY'PLAL, o (@) e, (@) (= 1) 7™
0192

X [U7°11Xg Xg X+ = Xg U’ %],

(1.42)

To proceed further it becomes necessary to break
up U7 2 in the following way. From (1.2b) it fol-

lows that
U.i o2

1
(—_—_ZJC )1/2 <u XZu Xu X e )(u
+“2XZ u‘><u2><---><u‘>.

P

i-op
(1.43)

The first permutation sum contains 2""C,_a2 terms
and, comparing with (1.2b) and (1.4), it is easily
seen that it is the normalized spinor Uittioz-
multiplied by (¥~!C;_ 02)”2. Similar considerations
show that the second permutation in (1.43) is
U"'%"’z*%(”"ch%)‘/g. Simplifying these combina-
tion factors we find that

Uio2= 4 X P-4 02 -%<j+_°z>”2

(1.44)

Now 1X0,Xgy X+ - Xg, operating on u’X Ui-toemt
gives u’XU" b0y-4(—1)-92 and operating on

WX o2t gives XU - 02t ix (= 179271, The
multxsplnor U°1 may also be broken in the same
form as (1.44) and the quantity within the square
brackets in (1.42) is easily calculated, resulting in

(1.45a)

(1.45b)

as before. The factor corresponding to ¥'™+/™2 is denoted by Y.™:''™2 and is calculated in the same way

as Xi™i+/™2, The result is

. . pr-lp , ,
Y”"l'”"2= ~-1)¥ 14 Cclit CJII
! (= 1) — Z

my mgm 0y -0g

1
002dm o

(1.46)

The contribution of £<5") (x) to the diagram (la) can now easily be calculated. The result is
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(n) Z Z: ijl Jm2yjml L im, g!l

e & t+ MIZ
1 n-
:? t+M’2 s (PP PP, Z Z (’élj—lc o(/”—n 00102dgo(8). (1.47)

0,0,

Now since we take P’ =p'=p, P=p=p, it is easy to find P ,=p, and P/=p, in terms of p and the mass p of
the particle to which p|, and p, correspond. From Lorentz invariance

.51151/:[’11?11: - ’

pyby=pibl=-u?.
Hence,

ﬁ0=50= ('pz+#2)1/2 =Py,

B == (p? 4122 =p,

(1.48a)

(1.48b)

In Appendix A summations over [, 0,, and o0, occurring in (1.36) and (1.47) have been evaluated in terms

of the rotation matrices of O(4).

Using these results we are now able to write down the contributions to

the pole diagram 1(a) by the four Lagrangians given in Table I,

(1)242n (
n) - g P n/2,n/2
740 n even)= il diinnl6)e Ei )2

i;s)i,zpzndn/z.n/z + (g8

T (n odd) = s 00

The two O(4) rotation matrices occurring in the
above equation have been shown to be connected
with the Gegenbauer polynomial C{"(cosé) by the
following equations:

d33%5/2(8) = CLP (cosb) , (1.50a)
3 (g +1> (n+1)d"/%2/2(6)
=i[nn+1)-L3(3)]CX (), (1.500)

where L?(9) is the Legendre operator with the
property L?(3)P,;(cos6)=1(I+1)P,(cos). Now con-
sider the O(4, 2) weight diagram® (shown in Fig. 2),
particularly the O(4) multiplet in it. The “princi-
pal quantum number” is n'=n+ 1=2j +1. Any state
belonging to the D?+/= [?/:°= p""-1:° representa -
tion''® of O(4) can be expanded in the form
‘=1

muimg =3 Citl, aiibm) (1.51)
where [(I +1) is the eigenvalue of fz L being the
0(3) angular momentum operator given in terms of
5@ and T® (mentioned earlier) by L =J"x 1+ 1x7®,
As shown in Fig. 2 and by (1.17), any state charac-
terized by D’*/=D"~"9 contains angular momentum
states 1=0,1,2+-+,n’~1=n. For even n=2j the
expansion of the Gegenbauer polynomial Cf,”(cose)
in terms of the Legendre polynomials P, (cos#6)

—on__ p2n-llp 2 —< +1> (n+1)dn22/2(6) ,

00;00 ‘+ (M ))2 pz("_l)P ? ;< +1> ("+1)d"/2'"/2(9) .

(1.49a)

(1.49b)

r
contains® only the even values of [, i.e
1=0,2,4,...,n=2,n=n"-1, and C'¥, contains only
the odd ! values, i.e., [=1,3,...,n-3, n-1=n"-2,
Hence, the (g“)) square term in (1.49a) gives

the contribution of all the even angular momentum
states and the g{? term in (1.49a) gives the con-
tribution of all the odd angular momentum states.
Therefore, for even n values the introduction of
the Lagrangian £g"' -) (x) is necessary for obtain-
ing the contributions to odd angular momentum
states. Similarly, the Lagrangian £{™*)(x) is
necessary to obtain nonvanishing contributions to
even angular momentum state. Hence, if we sum
up over all , 3, T given by Egs. (1.49) will
contain the contribution from all the angular mo-
mentum states of all the O(4) multiplets shown in
Fig. 2. In a future paper we shall consider the
Reggeization of the amplitude T,=3, T(") in the
principal quantum number n’'=n+1.

II. PION-NUCLEON SCATTERING
VIA D/2*1/2./2 BARYON POLES

For the pion-nucleon scattering diagram given
in Fig. 1(b) we write an effective Lagrangian

Liriz2(x) =g, Jzaa(x)(cﬂy“x)al B, (C'l’rus)asﬁs

xlp{xoltfaz crag, BBy Bs(x)aul"'aysqo(x)
+H.c., (2.1a)
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where the integer s is related toj, andj, by
jzzﬂ;’s , (2'1b)
Ji=ie*+3=3S+3, (2.1¢)

and y,(x), ¢(x) stand for the nucleon and pion
fields, respectively. If P,l, . is the parity of the
baryon field y’1’2 relative to the nucleon field
P4(x), then it can be shown as before that
P18z (x)® = —lejz(—l PaLiriz(x’), 2.2)
For s =2j, odd and P; ;, =+1, £/12(x) is parity in-
variant, and for s odd P; ;, =-1; the Lagrangian
£1172(x) obtained by replacing ¥(x) in (2.12) by
i(x)y5 will be parity invariant. Similar considera-
tions hold for the case when s is even. The cou-
pling constants, parities, and the masses of the

Jj1

TABLE II. Lagrangians for the pole diagram in Fig.
1(b).

Parity Coupling

No. Lagrangian P; 12 Mass  constant
1 £ith2(x)s =2j, odd +1 M g
2 £1iY2(x)s =25 odd -1 M g®
3 £i2(x)s=2j even -1 M g®
4 < l72(x)s =2 even +1 M(;) g(s‘n

D72*1/2:32 haryons are given in Table II.

Let us first calculate diagram 1b via the La-
grangian £/172(x). As for the scalar boson case,
the matrix element 77172 is given by'°

]
— - - i ¥
Tz 30 30 (@) Doy, (€17 a5, VAT s ()]

my==jy mp==Jp

g2

—J 1My dgmg . j
[Uat ottt 6008, (S ) RC)agay =+ (v * RC) g gy b (P)] 7:1“151225‘ . (2.3)

p and p’ are the momenta of the initial and final nucleons and k,q are those of the initial and final pions,
respectively. As before, we shall calculate 771’2 by taking the Lorentz boosts L(f) out of the multispinors
and combining them with C”'y+q and y* kC factors. Only oné L(f) from U(f) and one from U(f) will not
be combined with these but with #(p’) and u(p). The expression within the first square brackets in (2.3)
denoted by X’1™+72™ is easily seen to reduce to the Kronecker product form,

xmedam =g (p )L () UTAT e e X e e x et

XR(@")XR(@")X*++XR(@’')* 0, X0 X+ X0, RT(9")RT(¢") X+ + xR (9" U2, (2.4)

The dots in UT1™ above stand for the indices on which the s-fold Kronecker products of the matrices

operate. Now, writing
UTM = U R R (0" ][R (07)c)on,
we have

U:’:Yl.’"l cTIXCTIX o X CTIR (@)X R(p') X+ XR(¢")

(2.5)

=R (@")c)on U;f}:"‘[c"xc’lx' c e XcTIR(@")XR(p" )% XR(@")]geur goer (2.6)

=R (@"))or (1)1 ™ Y

di, (TR . 2.7

-m,0y

U%1°1 is now broken up according to (1.44); then, substituting (2.7) in (2.4) and proceeding as before, we

obtain after some calculation

xhmnm = 3 a(p LR (pe) T (L
%1

7y

- 2 R LR () Tr (L5

We notice further that
[RT(p")c)"@'T = -R(p")u?,
[R(@")c]" @ =R(p") !

1/2 i+ N ad ,
) rpt o, (018 om0

1/2 j N i
) P 0, (@) oy @) (2.8)

(2.9a)
(2.9b)

and combine the two d’ matrices after changing o, to —0, in the summation over o;, obtaining
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12 _ .
Xllml.izmz._-(_(Zjl%,zq:[u(p/)L(f)R((p/)uzz:; (j,-0,) 1/2c11121 C]‘J-zoll-g-gdri__gW')
1

. ﬁ(P’)MﬂRW’W'ZE (Gy+0,)V2Ch f2!,.Ch 028 Ly \dh, 4 (e )} (2.10)

The expression within the second square brackets in (2.3) is calculated in the same way and is given by
m m 1072k = - ;
Yhmoizme = (TZ%[ 'RT(@)L 1()‘)“([’)}2; (j,+0, ”ZC{,l,l’?,,; C’l"z‘tJ2 .3 idm @)

Og =

02'02

+ R Q)L NP, Z (o= op)V2CHi2t Ciz L) _%df,,',_i(q))] . @.11)
Substituting in (2.3) and proceeding as before, we obtained four terms for T4 72:

~1)4
T‘g 2= g?; i2 ( 21]') tq_:ljw 2 (“(p JL(N)R(p’ )uZEIRt((P JL™Y(fiu( p)
1

XZ 2 MG =0 )Uy + 02 C 25 Ly 402 6,04 4d), 400}

0103

+%(p")L(HR (@ u?@R (¢ )L~ fu( p)

XZ Z { (]1—01)(]1"02)]1/2Chj2 -1 -%cjol _02 -%dl_%,-%(o)}

l %

+3(p")L(NR(¢" @R (¢)L ™ (Nu( p)
XZ 2 A LU+ 0 )G+ o2 CR2 Ly O, Ly ydY (6}

+ %(p")L(NR(p @R (@)L (Nu( p)

XZ D Al +o)Gy —a)I2C it in !y 4 4O 20 oy ydly 9)}) (2.12)
0102
The expression on the right-hand side in the above equation can be simplified further by interchanging

0,0, and by writing d},, _,,, (8) = =d.,2)1/2)(8) in the first term and combining it with the fourth term.

Similarly, the second and third terms can be combined. The combination of the first and the fourth terms
contains a common factor,

W —lu = io,(1+ v,),

(2.13a)
and that of the second and the third term contains a factor
wal+ Bwt = (1+v,). (2.13b)
Thus, we are led to
iz — &1_’2_ qz =K ; -1
Thiz= FeME 27, (u(P JL(IR(8)io,(1 + v )L™ (Nu( p)
x E Z {[(71 +0,)(j, =0 )]1/2c11 jzo +4 éc i'01 - id-i !(9)}
4 0102
+A(p")L(NIR(6 )1 + v, )L™ Nu( p)
xz Z {[(Jn+°1)(11+02)]”2C’1 iz x+ 4 icg,{ 12°‘t+ s 5‘1‘;,&(9)}) . (2.14)
0102

The factors involving the Dirac spinors in the last equation have been discussed in a previous paper.’® It
is well known that

LNk v =3 (10 ) = e, (2.15)

and since the scattering takes place in x,x, plane, L(f) contains y,0, and y,0, which anticommute with i0,;
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hence,
L(fio,L™'(f) = L*(f)io, (2.16a)
- i%%u"s?:i io, (2.16b)
= :Mj V480 - (2.16¢)

S

For off-mass-shell continuations we shall use the form (2.16b) for L(f)io,L™'(f). Then, sincef =p+k=0
and fo= po+ k,= vt ,

L(f)io, L™ f) = io,, (2.17a)
L(AHR(OIL™(f)=R(O), (2.17b)
A = % (1 ; %) . 2.17¢)

The summations over [/, o,, and 6, occurring in (2.14) have been evaluated in the Appendix. These are
just the O(4) rotation matrices diz.;%%%";?(e) multiplied by 2j,(j, + 1). Using these relations
. _
o i1 1 Vi j1i
iz = Bivia_ pes( s i b P Yqvl o iy
T} t+M§q (]2+1)[u(p )R(9)1022<1+ M, )u(p)d;  1(8)

24=23202

— 1 i
’ = Ya¥V° id
+u(p’)R(6) 3 (1 + A )“(p)d;fﬁ;.;(e)] (2.18)
The direction of spin quantization in u(p) and #(p’) has been taken to be the x, axis. If we use the helicity
states for these Dirac spinors, %(p’) should be replaced by

7™ p) = aM(0)e=1/D s 03 I p(g)
=uMNp", 3)RT(6). (2.19)

This RY(6) will cancel the R(6) occurring on the right of #(p’) in (2.18) and then the angular dependence in
(2.18) will be given purely by the O(4) rotation matrices. This is the advantage of using (- f2)"2 rather
than M in the denominator of (2.16b). When we calculate diagram 1b using the Lagrangian £21j2(x), then
u(p’) and u( p) are replaced by %(p)ys and y,u(p), respectively. This would lead to changing the sign of v,
in (1+,/t /M) in (2.18). Now, using the helicity states, calculating the spinor parts, and applying the
Lagrangians and masses according to Table II, we can easily write down the result for the helicity ampli-
tudes T92* /2:¥2(x’, X, s odd) in the following form:

a¥® Vi eF 1 Vi 2 : .
ot 12,05 (L L 8 l( t ﬁq> _8 _< _ ¢ !’41)] S+ 2 asgia s 122
T% 2(2;2730dd) [t+(M;)2 2 1+M; m + t+(Ms')2 2 1 Ms- m 2 q di:i:%.% (6)’

(2.20a)

) a4 Vi e? 1 Vi ) )

do+ 1/2,dg(_1 L | &8s 1 by ___> s L3 _l_)g_ ¢ >13+2 s 3ig+ 1/2,dp
T4 (=22, s odd) [t+ (M3P 2 (m ) oy a\m Tuz )l T2 ALY, 2.200)
The amplitudes T%*1/2+72(+% 1) for s even are obtained by replacing M3 by M;, gV by g%, and g? by g
in the expressions given above for Ts(+3, 3, s odd). Results similar to the 77 scattering mentioned at the
end of Sec. I are obtained at threshold for the following amplitudes:

T2t /2002 (4 4 5) = (V2 cosd )~ Tiz* /20 92(4, 3, s) ¥ (=10 (V2 sin) ' T /292(- 3, 3, 5) . (2.21)

The amplitudes defined above are [apart from the factor (-1)**!=(~1)¥1 in the second term in (2.21)] just
the parity-conserving amplitudes defined by Gell-Mann ef al.'® At the threshold, p,=m and then (2.20),
(2.21) together with (A43) and (A44) show that TG 71923, 4, s odd) contains the factor d/dcosé C(cos6)
which for 2j=s odd contains only even values of ! in its expansion in P;(cos6). Similarly, on the threshold
T$)192(34, s odd) contains the common factor 2(j + 1)C(6) + cost d/dcosé C ), (cos6) which contains only
odd values of ! in its expansion in P,(cos6). Similar results hold for Tj(3, 3 even) at the threshold.

If in (2.16b) M,, rather than (-f,f,)"?, is used in the denominator, we obtain (2.16c). vf/(iM,) com-
mutes with y,i0, and is absorbed in A*(f). Proceeding in the same way as in Ref. 10 and using the results
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(A43) and (A44) we arrive at

T“’z—li]—- g3.1, t+M2 u(p ')[C‘;} (cosb) +3i0,7,sin6 —
1

The previous continuation using (2.16b) would lead
to almost the same equation as (2.22), the only
difference being that there would be no %, occurring
with Z0, in the second term on the right-hand side
of (2.22). This means that these two continuations
give the same result as far as the highest-order
term in cosf is concerned.

Equation (49) of Ref. 10 gives the contribution
of spin j=1 +3 baryon pole to TN—-7N and is sim-
ilar to (2.22) given above. It contains P;(cos6)
instead of C‘;}(cose); otherwise, it is essentially
the same as (2.22). Carlitz and Kislinger’s re-
sult’® was the P,(cos6) term in Eq. (49) of Ref. 10.
Equation (2.22) is thus a generalization to O(4)
symmetry of their O(3) symmetric result.
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APPENDIX A

In this appendix we derive certain results con-
nected with the representation of the O(4) group,
which have been used in the text. It is well known®
that from the six generators

ARIF-UZ-ZAMAN

n
1 _d WL ],
j,+ 1 dcosb C ('OS(’)] {“ M, ().
(2.22)
Ay =dyy (A2)

of O(4), another set of generators JY and T® are
formed by writing

3‘”:§(ﬁ+K),

+ - - (A3)
J@=3(@L-4).

J(i‘) amd Js-z‘ commute with each other and individu-
ally they satisfy the commutation relations of

O(3) generators. The simultaneous eigenvectors

of W2 g, F®2 and J? are

[jim) X | jymy) = | jymy, jom,) . (A4)

As pointed out by Biedenharn® the simultaneous
eigenvectors of JV'2, F®2 T2 and L, are ob-
tained from the previous set of simultaneous eigen-
vectors with the help of Clebsch-Gordan coeffi-
cients,

ljvjplm)= Y. Chizl,

my, my

[jmy, Jm,) (A5)
where j,(j,+1), ]2(]2+ 1) lil+ 1), and m are the
eigenvalues of § V2, J 2)2 L%, and L,, respective-
ly. The Aj}J2, (6) and dfl,,{zm(e) rotation ma-

trices of Biedenharn® and Freedman and Wang!
are the matrix elements of exp(-:A4,6)

=exp(- iV - J(Z)) in the |j,j,lm) representations.
From (A4) it is easily seen that these matrices
are diagonal in m’, m. The matrices which we ob-
tained in the text are, however, different from
the rotation matrices mentioned above. These
are special cases of the matrix elements of

exp(—iA4,0)=exp[-i (L -=dP)0] in |j, j,Im) basis.

Li=3 €9, (A1) We define, therefore, a matrix dj}/? , (6) by
—J
djx',,,'lm( ):<j1j2l'm',e—iA28ljljzlm> (AB)
1) @
mzm g {C’i‘l 1'::2": cf'lllj’"z2’" <]1”11’-72”12 Ie—‘(l 26 |.71 1’j2m2>}' (A7)
1m2 172
From (A4), (A7), and the definition of the O(3) rotation matrices d?, ,,,2(9) we obtain
as O= 30 3 {Cwa L Cllaln diyn, Oy, (O} (A8)
172 1™2
r
We shall now calculate the 0O(4) rotation matrices ji=d=
dli oo(8), di. o(6), and d% v 11, 1(6) from (A8). Ve =m0 (A9)

The matrix element di), ,,(6). Setting

in (A8),
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Saiool8)= D Ch20 Ch Lo o ds o, 0V, _, (6).

01,02
(A10)

From'” C}/°%  =(-1Y~" and the symmetry properties
of the d’ matrices'’

Aoy omy (0) = (= D)™ ™2 ) (Alla)
=(=Dmmdl, (Allb)
=dL . -m (6), (Allc)

it follows at once that

(=10 a] , (6)dd,, (6) (- 1)
9192

Z( 12(; Ol)d] (29)

dog'o0(6)

Z 43,0,20) (a12)
Also, using the symmetry property (Allc),
Zdolal(ze)— 3 ddo,(0)d, o () . (A13)

0,92

=1+ jy+
chht (=D
mymgm ™~ 9T+ i+ ip+1
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Now, using the formula for combining two d’
matrices, which has been used quite often in this
work', i.e.,

i J
At m,(8) d? . ()

i jy ¥ 1
= E [C:nlljrﬁz m{+m} C”‘ll 312 my+my dmi+mé.ml+m2(0)] ’
(A14)

together with (A12) and (A13), immediately gives

A o0 =" S Chit, (Chit, (dgg(0) .

1 0,0,
(A15)

We will now show that the last expression is just
the expansion of the Gegenbauer polynomials C‘;;(G)
in terms of the Legendre polynomials d}.(6)
=P;(cos6). To this end we use the following for-
mula for the Clebsch-Gordan coefficients'®

(20 +1) (L +my +m)! (Jy +Jo = D) (jy +j, +1 +1)!

"[(1‘1 =) s +m)! (7,
I—ml—m

+1
xf dx(1 = x)17™1 (1 + x)27™2
-1

dx’_"‘l""z

—my)! (Jy +my)! (L =m,

(=2t it (1))

]1/2
_mg)l (l +j1 ‘jz)! (l _jl +j2)!

(A16)

On calculating 3}, C]Z%  from the above formulawe obtaina binomial expansion giving 227x2//(2j)!, and
further using the Rodrigues’ formula for the Legendre polynomial we obtain

+1
Z Cill o =amom 2(2 5 (20 +1) (25 -2)1 (2] +2 +1)!]‘/2f x? Py(x)dx . (A17)
-1
The above integral is given by'®
+1
f x2/ Py(x)dx=0 for 2j -1 odd or negative,
-1
2/25)!  [(2i+1)/2]! ) .
= . - . Al8
@i+l+D (2 =D/2)! for (2j —1) even and nonnegative ( )
Equations (A17) and (A18) give
(20 +1) 224 (2 = 1)! f(2j+l)/2]!12
zf ! jil
Z Z Z ChiL, o Cill,, o Pilcosh) = Z @i+ 1)] [[(2]—1)/2]! Py(cos¥) , (A19)
(’1 2
with
1=0,2,4---2j for 2j even,

=1,3,5-+-2j for 2j odd .

The right*-hand ~ide of the previous equation is exactly the expansion of C(‘)(G) as mentioned by Harnad*

which can b

ce. [fied by expanding Cg})(cos.i\‘ in terms of P(cos#f), calculating the expansion coefficients
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by using the following formulas®®:
C\(z) = sinf(2j +1)x] with Z = cosx (A20)

siny

and

2j+z>, I(3(2j-1)+3)

m
f sin[(2j +1)x] P,(cosx) dx =< 5 for 2j+1>! and 2j+I+1 o0dd ,
0

T I(3(2 +1+2)+1)
=0 otherwise , (A21)
and simplifying the I" function by using
T(n+3)= L/z—(z—n—;,ﬁl’)—' (A22)
Collecting the results
dhloo(6) = C43(6) (A23a)
- E di (26) (A23Db)
o
z Ciilylo C{,’ Lo,0Pilcosd) . (A23c)

a,0,

These together with expansion (A19) complete the formulas needed in this work. (A23b) is implied by Eq.
(7) of Ref. 6.
The matrix element dj’,,(6). On setting

J1=J2=7 ,
I'=1=1, (A24)
m'=m=0,

in (A8) and using"’

1 o 4
Cll,,=V3 (=1 @G+DGj] (A25)
we obtain
10 10(9) Z Z ]+1) (2]+1) o G dgloz(e) ay0 l(9) . (AZG)

Writing dJ , (6) =dl,  _, (6) and using (A14), we obtain

10 10 9)‘2 E Z](]_”_) 2]+1) o:xl—alo(7 co;l—ozo éo(e), (A27)

which is the summation occurring in the text. Again we calculate EOGC{,’_QO using the integral formula
(A16) and substitute the results in (A27). The result is

3 S22 +1) =1l [”2"‘1*”/2“}2(zj-z)(2j+z+1)p,(coso) (A28)
I

4iotol) = T @D @i-1+1+0)1 | [2i=1=0/2]!

with 2j - odd and nonnegative integer. Now
(2j-1)(2j+1+1)=2j(2j+1)=2( +1), (A29)

and we know that!’



11 CONTRIBUTION OF SL(2,C)®SL(2C) POLES TO SCALAR... 2645

L+ P <[ - 5 =50 1] P (A30a)
= £(3) Py(x) . (A30b)

Hence, using (A30) and comparing with the expansion (A19) of C“)(cosG) we obtain the following form for
the rotation matrix d/ (6) in terms of the Gegenbauer polynomial C{}. (6):

1

4mrm‘zm [2j(25 +1) - £(2)] C{iL (cosO) . (A31)

10 10( 0)

We have seen that >, dJ,(26) = C(‘)(9) From the symmetry properties (A11) it follows that for odd 7,
33,07 dd,(6)=0. 1t is interesting to note that 33, 02dJ,(26) is connected with d;}’,,(6), and this can be shown
as follows:

2. 0.0, d 0, (), (6)= D (jo,le 2 |ja,) (joyle 20 | jo,)

G103 0,0,

=Y (jo,le 2 |jo,)(jo,| (J;cos6 -, sind)J;jo )

0,02
=Y 0.2d} . (26)cosb - Y o,sinbd) ,,(6)(jo,]J,|jo,). (A32)
9, 0,02

The matrix element jo,|J,|jo,) is well known,'” and using the formula®!

L N

+ucotds ) ,(6) (A33)

and simplifying, we arrive at the result

. 1 :
2 0.0.d o 6)d3201(9)=a;§2; a2d! (6). (A34)

0,02
Hence, from (A26)
2j+1 1)j ;
S 0% d),(26)= Mcos@d’lé:w(e). (A35)
o

The present method, however, becomes too complicated for computing
207 dlo(6), 7>2.
Y

The matrix elements dj?1:{2,(6). In the formula (A8) we put

ji=j.+3%, j,an integer =0,

l'=l=%, (A36)
m'=%3, m=3,
and obtain
dflia_“(e)f[, Clzt Gt e, (0)d %y 44(6). (A37)
1

The Clebsch-Gordan coefficients occurring above are easily obtained from the table of Wigner’s 35 sym-
bols given in Ref. 17. The result is

CJ]_Jg 3 _‘/_( 1)12*0'- JL_ e (A38)
0 -0%3%} (27, +2)(2j,+1) ’

Substituting this in (A37), using the symmetry property (Alla) and remembering that (20, - 1) is always
even, we arrive at the result
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) (1,790 (j, +0,)"
@i 6) = 179 179
b () 021;2 (o + (22 + 1)

o102 (ja+ 1)(2j,+1) =172

. . 2j2+1/2
L(JL¢U1)(]1+02)]U2 g Citiz}
0] ~01¥;

o (0)d2, oy o, (6) (A39)

cag —nz*i 4 d;‘ 1(0)- (A40)

d 1112 . 1(9) can also be expressed in terms of the polynomial C(Z‘j)(e) and its first derivative. This is most
2

easﬂy done by using the following formula?'

(j,+0) 2 di2s 1 (6) = (j,+0,) 2 di2_,

0102 CITER

Substituting this in (A39)

(jo+ D27, + l)d; f

L
H

0,02

+(j1 —01)1/2 (j, +01)1/2dé";+%

On settingo, -3=0, 0,~-3=

0;,-1(8) 0836 +(j, =0 ,)""*dl2,

" in the first term, ando,+3=0, 0,— 3

1(6) sinz6. (A41)

» 02— z

)" E (]1+01)d -1 ,03-4% (e)digl-h} -0, +1(9)C052

’oz_i(e)d o141, _024,;(9)511’129 (A42)

=0’ in the second term on the right-

hand side of (A42), and using (A33) for dﬁ,, 0-1(26), we obtain after some simple calculation

2+ Do+ Dl {2(6)=costo] (j+ 1Y), (cos6) -

Similarly, we obtain

(2], + 1)(jp + l)d’z*i 13 (6)=sinz6 l:(j2 +1)CY) (cos) +

1- (4 d -
% Jeost (,(25-)2 (COSQ)] . (A43)
liszo_s—ai dcgse C(Z);)z (cose)]. (A44)
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