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A natural and unambiguous generalization of the boundary condition formalism previously proposed by
this author is shown to result in a practical set of equations for describing relativistic three-particle
scattering. These equations are exactly unitary, and can be readily generalized to the n-body case.
Applied to the 0 and 1 states of the 3m system (I = 0, 1, 2}, they yield the m and eo as natural

consequences of the n-m s- and p-wave phases; there are no spurious predictions. The equations appear
ideal for relativistic data analysis.

I ~ INTRODUCTION

One of the most striking unsolved problems of
elementary particle physics is the surprisingly
rich spectrum of meson and baryon resonances.
Although unitary symmetry and Regge theory have
been very useful concepts in classifying these
"particles, " there is no theory capable of provid-
ing a truly fundamental interpretation. In this
circumstance, it is natural to ask whether a less
ambitious approach incorporating a certain a,mount
of empirical information might not prove highly
useful. In particular, is there some set of input
from which one can predict at least a subset of the
hadron spectroscopy'P An obvious choice for such
input would be the observed one- and two-particle
properties of those particles deemed "elementary"
for this purpose (e.g. , particles such as N and w

which are stable under the strong interaction}.
That is, the input would consist of the masses and
pairwise scattering data of the "elementary" par-
ticles. Of course, this program is not a new con-
cept; for example, it was suggested by Chew in

1960 that the z might exist as a. natural conse-
quence of the p. ' The natural impediment has
always been the absence of a calculable relativ-
istic n-body scattering theory (n ~ 3).

The obvious analogy is to nuclear physics, in
which interactions constructed empirically to pro-
duce N-N phase shifts and the deuteron are em-
ployed to calculate the properties of nuclei. In
this case, for nuclei light enough for this program
to be practicable, the results have been very im-
pressive. Previous attempts to construct relativ-
istic scattering theories have leaned heavily on
the highly successful procedures employed in this
nonrelativistic problem. Thus, in analogy to the
rigorous equations developed by Faddeev, ' a num-
ber of authors have proposed covariant theories
for three-body scattering. ' The basic ingredients
of these treatments include (1) summing the two-
particle graphs into (off-shell) two-body scatter-

ing amplitudes, (3) solving the disconnectedness
problem according to the prescription of Faddeev,
(3} introducing a separable approximation to the
two-body amplitudes, and (4) eliminating the rela-
tive energies as variables via the technique of
Blankenbecler a.nd Sugar. ' The result of this pro-
cedure is a set of covariant one-variable integral
equations which can easily be solved on modern
computers; solutions exactly satisfy (elastic)
three-body unitarity.

However, despite the profusion of potentially
interesting applications, the history of these equa-
tions has been short and inglorious. In large part
this can be traced to the very disappointing results
reported by Basdevant and Kreps for the Sm sys-
tem. ' They searched for 3m resonances (realiz-
able in such formalisms as actual poles in the cal-
culated amplitudes) in all isospin states with
J ~ 2. Unfortunately, the theory was unable to
produce the (d, A„or A„predicting instead a
considerable number of spurious "resonances"
in total conflict with experiment. Subsequent
work by Mennessier, Pasquier, and Pasquier
demonstrated that these results were to some
extent dependent on the choice of a rather un-
realistic p form factor, but they reported similar
qualitative features. ' Thus, although they found a
specific choice of form factor (also unrealistic)
which produced an "~"of mass 850 MeV, the
continued proliferation of spurious levels does
not inspire much confidence in this prediction.
Moreover, if one seeks to establish a natural con-
nection between the p and the ~, a result depend-
ing crucially on the choice of an (unknown) form
factor is not very informative. If the theory is to
be predictive in the sense that the nonrelativistic
theory is predictive, the results must be stable
given any reasonable guess as to the off-shell
characteristics.

There has been somewhat greater success with
respect to meson-baryon calculations (where at
least one particle is nonrelativistic). Thus Aaron,
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Amado, and Young' have reported three-body
treatments of the mNP and d waves. But in gen-
eral the program outlined above has not proved
viable. However, as shall be demonstrated be-
low, equations constructed to imitate potential
theory (a Hamiltonian approach) are not the only
alternative one can employ. A completely dis-
tinct set of equations will be presented which
follow in a natural way from simple physical con-
siderations, and which can be applied in order to
realize the same goals. In particular, calcula-
tions in the 3m system result in a plausible u
while producing no spurious effects.

The outline of this paper is as follows. Section
II is devoted to a detailed exposition of our under-
lying philosophy and its realization for a system
of three nonrelativistic particles. In Sec. III we
develop the appropriate relativistic generalization,
which is straightforward. Again a one-variable
integral equation is obtained, but in this approach
we are able to avoid making the more radical as-
sumptions noted above. In particular, it is un-
necessary to assume separable amplitudes or
"dominance" by the resonance pole; this is crucial
in channels such as the m-m s waves. The relation
of the amplitudes generated by this formalism to
the physical amplitudes is discussed in Sec. IV,
which also deals with three-body unitarity. Ap-
plications to the 3m system are presented in Sec.
V, and a general discussion of our results and

their implications is contained in Sec. VI.
In view of the length of this paper, a balance

had to be struck between presenting a special
case of our equations having limited utility vs
giving complicated (and totally opaque) formulas
for the general problem. The solution adopted
was to write the general equations in operator
form; these are presented in the Appendix. This
provides all the information necessary to employ
the formalism, but leaves the rather standard
algebraic manipulations to the reader. Since one
will typically be concerned with relatively simple
special cases this is not as callous as it sounds,
and more specifics will be provided in subsequent
articles. In any event, the quite similar equations
developed for the nonrelativistic problem are also
available for comparison. '

1I. BOUNDARY-CONDITION APPROACH

If one takes the one- and two-particle properties
as empirical input, it is clear that a three-body
system plays a pivotal role in the type of program
discussed above; it is the first level at which one

hopes to make predictions. This is also the level
at which one is first confronted with the major
technical question: How is one to build in the n&3

properties as constraints on n ~ 3 systems? The
classic response of nuclear physics to this ques-
tion is the introduction of a potentiat. , with param-
eters suitably adjusted to reproduce observables
from solutions of the two-body Schrodinger equa-
tion. The prescription is then to use this poten-
tial in the n-body Schrodinger equation, with the
implicit hope that specific three- and more-body
effects are a small perturbation. That this works
remarkably well is shown by the results of exten-
sive trinucleon calculations during the past decade.

However, as this author has recently demon-
strated, the potential prescription is not only non-
unique, but is unnecessary in order to achieve
these results. ' Thus, the success of these calcu-
lations does not provide a posteriori justification
of potential theory so much as it manifests the
nontrivial fashion in which two-particle observ-
ables constrain a three-body system. The choice
of a mechanism for building in these constraints
is thus to some extent open, and one may exercise
the resulting freedom in order to achieve certain
desired properties. In the context of the relativ-
istic three-body problem this is indeed fortunate,
in view of the previously noted difficulties asso-
ciated with the Hamiltonian approach. As we shall
demonstrate below, the boundary-condition (BC)
formalism developed by this author has an un-
ambiguous relativistic generalization, and appears
ideally suited for this purpose.

The philosophy of this appoach can be illustrated
by first examining a nonrelativistic problem. Con-
sider two spinless particles separated by a dis-
tance x, and described by a wave function g'(x) in

the region x&a. Assuming that we are dealing
with a particular partial wave, it is convenient to
write P,'(x) = gt"' (x) + $f"'(x), where

t}tt"'(x) =j,( )x+xi e"' sin6, h, (Kx),

0f"(x) = Xi(», x)4(x)

Here K is the c.m. momentum, and t, is the two-
particle t matrix, defined by

( )
e "& sin5,

8 PPlqK

X,(x)
0,(~)

'

For typical meson-theoretic potentials g, is a real
function proportional to exp(- ~) for large x (g is
the mass of the lightest exchanged particle). An

interior wave function g,'(x) may exist in the re-
gion x&a; its sole effect on the exterior solution
is via the matching BC

[4i"(x)&0~'(x)]. .= [4i"(x)&0i'(—x)],

p lilt
( 2)
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where the prime indicates derivative. One can
thus account for the effect of the interior by a
suitable A. ,

'"', without postulating either a wave-
function description or a short-range potential.
This point is of particular importance in the rela-
tivistic problem, for which a two-particle de-
scription at arbitrarily small separations is es-
sentially meaningless. The essence of the BC ap-
proach is to take advantage of the relatively simple
exterior representation at the cost of a phenome-
nological treatment of the interior.

Introducing the function

&~(~) = &I"'(&'}xi(~,~) —xl(~, &),

we can write Eq. (3) as

4l""(~) ~l '(~'—)O'I" (~) =~ i(~)tl(~) .

(4)

The content of Eq. (5) is that both interior and ex-
terior effects can be represented as effective BC's
on g,""', the asymptotic form of the wave function.
Since it is our intention to treat two-particle sys-
tems phenomenologically, it is sufficient to define

x, (x') = z'i"'(K') + z', "'(~');

one can then bring Eq. (5) into the form

(6)

Given the trivial form of P,'"', one sees clearly
that a suitable X,(v') can always be introduced so
as to reproduce the exact experimental phase
shifts via the solution of Eq. (7). The fact that
the HC may be applied at a radius for which (I)',

"
has no direct physical interpretation is essentially
irrelevant, since our purpose is merely to insure
the correct asymptotic behavior.

Taken together, A, and the radius (a} provide an
alternative representation of the two-particle
scattering data. An interesting empirical fact is
that for many systems there exists a particular
value of the radius for which A. , appears to ap-
proach a constant for large v. ' In the context of
potential theory one can easily verify that this
cannot come about via A. ,", which falls to zero;
it is a physical property of the interior. The con-
ventional explanation of this phenomenon is that
the huge interaction energy in the core is suffi-
cient to swamp even very large K, but it may also
come about as a natural consequence of an under-
lying composite structure (e.g. , quarks), as has
recently been pointed out by this author. " In any
event, it is natural to choose the BC radius singled
out in this fashion. The derivative function X, (K )
then has a particularly simple structure; it must
be a meromorphic function of z' (real for real K').

We shall thus take

x, (K') = x", + Q & -Pi, n
' (8)

G = Go —Got Go,

and write the formal solution

(12)

I P) = (1 —Got }Ie & ~

It follows that

(14)

with the parameters adjusted to fit the two-particle
data. In practice, one or two terms in the sum
are usually sufficient. It is important to note that
Eq. (8) defines a particular analytic continuation
of t, (~) via the explicit formulas which follow from
Eq (7):

N, (v) = (aX, —l )j,(am) +a Kj „,(at&),

D, (K) = 271K m„[(ax, —l )h, (aK) + aKh„,(az)j .
Therefore, although it is essential to build poles
into t, below threshold (K'& 0) at the physical en-
ergies of bound states, the residues at these poles
need not be identical with those generated in po-
tential theory (e.g. , via the analytic continuation
defined by the Lippmann-Schwinger equation). In
addition, of course, there will be no left-hand
cuts. Naturally, so long as we are concerned
only with the two-particle scattering state these
considerations are academic, but they are essen-
tial in the three-body treatment to follow. Other-
wise, one could easily show that the resulting
three-particle amplitude would violate unitarity.

In the above discussion we have made extensive
use of the asymptotic representation, P;"'(x), and
it is useful for the subsequent development to re-
state this in more formal terms. We therefore
denote an incoming (plane-wave) state of angular
momentum /, and c.m. momentum v by IQ) =

I l,v),

( fx I(p) = 5„(2)v)"'p'j, (zx) .

In this case we can define a free Hamiltonian
H, = —V„'/2m„; clearly (Ho E) Iy) = 0 if E-= z'/2m„.
Presumably, there is a total Hamiltonian H such
that (H E)I P) =0, whe-re

I P) denotes the physical
two-body scattering state. By introducing the
(outgoing wave) Green's functions

G = (H E —ie)-
G~ = (Ho E ie)--

one can formally define t as an operator by the
relation
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If the potential is generated by particle exchange,
and hence bounded by exp(- px), one can evaluate
the integral by the method of residues to obtain
Eq. (1) (up to the previously neglected normaliza-
tion), provided that one identifies t, (x) =(tel t l&p&.

One thus generates the exterior representation by
ignoring all singularities of (tpl t lp& in perform-
ing the P integration.

This procedure is readily extended to (non-
relativistic) three-particle states in the following
manner. We denote the position of particle a by
r (@=1,2, 3), and define the reduced masses

'=ms '+my ', andM '=m„'+(m8+m&) ',
acP cy. It is useful to introduce the vectors

R= m8r8 m8

(19) masks a considerable complexity. In par-
ticular, consistency with the two-particle de-
scription requires that for each a = (1, 2, 3)

&x.y. le& = &x„ly)(y. ly&, (20)

I+&= I+&++14 &,

where Ig& describes the two-body scattering of P
and y, and lp& represents u as a noninteracting
spectator. In what follows we shall refer to this
as the quasi-Aeo-body limit. It was in order to
simplify this situation that Faddeev introduced the
channel decomposition, T = Z T„; one can then
write

xfy =r8 —ry,

y = r —(m s r 8 + my r z)/(m 8+ mz),
In contrast to I4&, the channel state

I
P"

& need
only satisfy Eq. (20) for y -~, inasmuch as

and the corresponding momenta (x y I q'&/(x„y
I

y"
&
—0 (22)

P= k8,
8

p~ = p„(k 8/m8 —kz/my),

q„= M„[k./m. —(k 8+k, )/(m, + m, )],
(16)

where k8 is the momentum of particle p, and
(apy) are cyclic permutations of (123). It follows
that

(17)

Ho= —V„'/2p, ~ -V, '/2M~,

and an incoming plane wave
I 4) satisfies

(Ho —W)I4& =0, where Wis the total (kinetic)
energy. A three-particle scattering state can
be written formally as

(16)

~~ ~

~~ ~ ~~r 8
~ k8= R P+xot 'pa+ya 'qa ~

In addition to the total momentum P, any two of
the six momenta p, q are linearly independent
and serve to completely characterize the three-
body state. The free Hamiltonian in the c.m.
frame is now

in that limit.
It is convenient a.t this point to make an angular

momentum decomposition. Assuming an initial
state of definite momenta (p„q ), we may cou-
ple T,(p ) and A,(q ) to form the state I4&
=

I LM I,A, p p ) . Correspondingly, we expand
0 0

&x.y~lg ) = g Yz~»(~. ,i.)PLlk(~n x ) {23)
LNl )l

where

Y~„,„(x,y) =g C(AIL;m, M-m)Y~ (y)Y» „(2).

(24)

For practical applications, the following alterna-
tive expression for YL»„ turns out to be quite use-
ful. Let n denote an arbitrary direction in the
p q plane characterized by the Euler angles
(nPy), and let 6, be defined by cos8, =2 ~ n for any
vector z. Then"

Y~~, „(2,$') =g C(klL; mtj) D„*,&(@ay)Yz (6„0)
I e& = (I-G, T)l ~ &, (19)

where G0=(H0 —8'-ie) ', and T is the three-body
t matrix.

In view of the relation of 2' to the total Green's
function, it is clear that the formal nature of Eq,

x y, „(g„,0). (25)

The three-particle generalization of Eq. (14) in
this basis follows immediately from Eq. (21). We
obtain

2 &+& 2 dpp j &(px~)(LMLAp& I T~ I 4&
p'/2p +q'/2M —W- se0 0

(26)
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where we have dropped indices on the dummy var-
iables, (p~q, ) - (Pg). Defining the on-shell value
ofP tobe

=t 2il, (IV- q '!2M )]'", (27)

with the square-root branch cut chosen such that
Irnw ~ 0, the exterior representation again fol-
lows from ignoring the P singularities of the T
matrix element. We thus arrive at the expression

Qr, ,'q (}»y ) = —2p. z dqq j ~ q y t& h, (z~x )

&g„+il'l(ll~, .~'. ) —~nl+g'l'~(ll~, V~) =+ill(ya, '&)

(32)

will automatically build in the two-particle con-
straints, provided that FJ» tends to zero suffi-
ciently rapidly for large p . With somewhat more
effort one can show that F~, „(y~; W) lx: exp(- ily~),
if p. is the mass of the lightest particle exchanged
in the pairwise interactions. If one also considers
the requirements of three-body unitarity, it turns
out that E~» must have the form

where we have defined

x T~»( (28) +z»(y„;&)= g Jl dqq'B, „'; „(y„,q;&)T, „(q),
8l') ' 0

T,"„(q„)=«M{lK.q. l T. i 4) . (29)

q'""'(x. , y )= Z(x y. lk""')+{x.y. l+),
P

then

»m le*. ill(x~, yn)&@ill(xn, yn)1*~a~=~el(Ka"),
y

(30)

where ~' is the value of P in the incoming state.
Here A. , {K') is the same function defined in Eq.
(6) with a channel index appended. To make this
result more transparent, we note that if {2 is re-
garded as the entrance channel (n = n, ),

0' 6(q, -q „)
Tzl l(qo} 6ll 6ll tel {Ka)0 0 q

2

o;L,+M ]~~0),, (q. , qe0) )

where M arises from multiple scattering terms.
In the large-y limit the 5{q -q ) term domi-
nates, producing the behavior noted in Eq. {20).

We thus deduce that any BC of the form

(3 I)

Due to the exponential damping provided by
h, {K„x ) when K is (positive) imaginary, it is
clear that the only waves which can propagate to
large x arise from q such that ~ is real; i.e. ,

q, '~2M~W. For such q„, Tz, „(q ) is precisely
the on-shell (in the nonrelativistic sense) channel
amplitude. Comparing Eqs. (I) and (28), we see
that the asymptotic form is always specified pre-
cisely by appropriate matrix elements of the t
operator, which is no surprise.

We now seek a set of BC's which, in analogy to
the two-body problem, will enable us to deter-
mine the TL, & {and hence all scattering observ-
ables). It is at this point that the constraints
arising from our assumed knowledge of two-
particle properties enter the picture. Recalling the
quasi-two-body limit of Etl. (20), we have im-
mediately that, if

in which 8 is an arbitrary real-valued function.
Together, Eqs. (32) and (33) provide a natural
generalization of Eq. (5). It should be apparent
that the result is an impl. icit integral equation for
the T~» (q); for a discussion of this and some
fine points associated with the applicability of Eq.
(32) we refer the reader to BCA.

In the context of potential theory, the author
has recently shown that for a given set of two-
particle phase shifts, a function 8 with the stated
properties can always be defined so as to repro-
duce the results of the conventional theory (e.g. ,

the Faddeev equations}. " A specific choice for
8 is thus equivalent to stating the "off-shell"
characteristics of the theory. In particular, a
model in which 8 =-0 corresponds to a picture
in which the interaction is compressed to the
surface of an impenetrable boundary, outside of
which the behavior is immediately asymptotic.
This is equivalent to the BC model of Feshbach
and Lomon applied in the three-particle sector. "
If one simultaneously goes to the zero range limit
(a -0), one obtains the "minimal" three-body
equations of Amado. " As Amado points out,
equations of this degree of complexity are a ne-
cessity if one is to achieve an exact solution of
the three-body unitarity relations.

In concluding this section, we stress two related
aspects of this approach. The first is that even
for a crude approximation to B" (say B =-0), we

expect to produce reasonable three-body predic-
tions in many cases. The reason for this expecta-
tion is primarily the short-range nature of the
strong interaction. For systems with n ~ 3, the
longest-range effect is due to single-particle ex-
change involving one of the real scattering par-
ticles; this is sandwiched between quasi-two-
body scattering dominated by on-shell behavior.
Thus, the fact that physical wave functions decay
exponentially to their asymptotic form rather than
switch abruptly at some radius has the character
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of a perturbation. The existence of this effect in
the trinucleon system is exemplified by the equi-
valent success of simple separable models (or the
BC model) in fitting the data, as compared to
"realistic" models of the nuclear force. '

The second point is that a meaningful analysis
of three-particle data should involve the careful
separation of features which are a natural conse-
quence of previously known information. Thus, if
certain properties of the data require the introduc-
tion of explicit parameters into I3 in order to
achieve a fit, these parameters are truly signifi-
cant in the sense of summarizing the content of
new information in the experiment. This would be
the case, for example, if strong three-body forces
were present. As was shown in BCA, the BC for-
malism is especially efficient for such an analysis.

(3) We define the total 4-vector momentum
operator P =Zs(ts/a te, —i(p't)), and require that

P'I e'"
&

= s
I
q '" ), (3 5)

where s is the square of the c.m. energy (Ws

=2 m„+II').
For the purposes of this paper we shall regard
these assumptions as physically defensible and
be concerned only with their consequences.

One consequence is immediately apparent if we

go to a momentum representation in which
k„= (e. „,k„) is the 4-momentum of particle u.
Up to numerical factors, which we introduce for
convenience, we then deduce that the relativistic
generalization of the three-particle propagator
(G,) is the operator 9O-=9,(s), where

III. RELATIVISTIC GENERALIZATION

i
I
4 '"'& = H

I
9 ""'

&
8

(34)

In contrast to the Faddeev theory, the BC for-
malism described in the last section has a re-
markably simple extension to relativistic systems.
If we denote the 4-vector displacement of particle
o. by r = (t, r„), our principal assumptions can
be stated as follows:

(1) As a consequence of the short-range nature
of the strong interaction, it is meaningful to de-
fine an exterior region by the requirements
(rs —r )'& —a„', n=(1, 2, 3). Once in the ex-
terior, particle number is fixed and a wave-
function description is valid.

(2) Each particle propagates in the exterior ac-
cording to the appropriate free Hamiltonian with
its physical mass (we deal with "out-states"). For
a scalar particle we take H = (m '- |p'~')'"; for a
spin-& particle we would use 0 =io. ~ V' +Pm . If
I)I('"'& describes the exterior, we thus require

( (
2ZsmsII 2m„6(k„' —m„')8(c )

p' —s —ie

The presence of 9, as a factor puts V' on the mass
shell, e„=(m„'+k„')'", for which

&k, k, k, I
7'I@& = 5(P -P')&p. q. i TI@&. (38)

Note that Eqs. (15)-(17) remain valid in this con-
text, although the values of the various 3-vectors
will be different in diffe ent Lorentz frames. The
outgoing exterior wave i. then

It is clear that 9, has an obvious extension to the
n-body case.

Given 9„a suitable exterior representation can
be derived as follows. In analogy to Eq. (19), we
take

I4'& = (1-9.9')I@&,
(3 7)

p(e) p~e e fii
(Z() kt)) —s —ie

(39)

Just as in the nonrelativistic case (and for the same reason) it is useful to expand 9=2~@,;it is t'hen,
convenient to evaluate the 'E~ portion in the (instantaneous) c.m. of the t3r subsystem. In this frame
P'= m~q„/M~, where q~ is given in terms of the kt) by Eq. (16). We then obtain

2K/mB TT mz exp(-tent)~8tt)+i[ y +(m„/kf )It] ~ q +ix ~ p ) (p q I T 1pk&

where we have used II8dk8=d Pdp dq and defined the quantities

(40)
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(4 I)

(42}

corresponding to the single-particle energies and the invariant momentum squared as evaluated in this
frame (note that p~, q are only 3-vectors, so we can continue to use P„q for their magnitudes with no

ambiguity). The notation, (p q„~ T ~4) refers to the operator T defined in Eq. (38) as evaluated in the

Py c.m. frame; in that frame it is clearly a function of the two independent 3-momenta p, q .
We now observe that in the vicinity of the pole [(f (p„q }= s]

2ZsmsIIymz/e „ I'„(q, s)2p, tu (x )

where

&n (&a) = Pa(&as +&ay ) ~

r.(q, )= ™Q
~8&S

(43 a.)

(43b)

and K is the relativistic on-shell value of P defined by f„(x„q )=s. Specifically, x„ is the solution of

2 I/2 2 1/2

(44)

Note that the functions I', &u go independently to unity in the nonrelativistic limit. If 7«(K„}is the
proper relativistic two-particle c.m. amplitude, &u„(x„) defines the relativistic correction to Eq. (2);
i.e. ,

(45)

As usual, the exterior representation is obtained by evaluating the P~ integral of Eq. (40) while ignoring
the singularities of T . If we choose the origin such that R=O, and make the angular momentum decom-
position introduced earlier, we arrive at the expression

gh ( &, $&' 1 2 3) = —
&
i""" dq q'2„(q3'~} exp —i g e~8f s x~ hi(a~ x~)TL i x(q),

27r 0 8

where we have defined

(46)

T",&(q, ) =I',(q, )&u,s(~„),(LMlax, q„] T„~ 4 ) .

(47)

Comparing to Eqs. (28) and (29), we observe that
aside from the presence of the exponential involv-
ing the times t~ the only difference in the rela-
tivistic version lies in the kinematical relation
between g and K and the relationship between
T»„and the physical amplitude ] the extra factor
of (2v) ' is common to

~
4) and can be ignored].

In the nonrelativistic limit (m large compared to
the momenta), it is apparent that the time depen-
dence can also be factored out and the resultant
expressions are identical.

Having established the exterior representation,
our next step is to apply BC's of the type discussed
earlier in order to derive an equation for the TJ».
It is perhaps obvious that the natural generaliza-

tion is to apply the BC stated in Eq. (32) at equal
times t = t in the Py c.m. One can then establish
that the resultant amplitudes do not depend on t,
so we can simply set t =0. The net result is a set
of coupled one-variable integral equations, differ-
ing from those stated in BCA primarily by the
relativistic kinematics. %e defer the specifics to
the Appendix.

The input to these equations is again the em-
pirical function X,(x'), which is related to the two-
particle phase shifts via Eqs. (l) and (7). Since
both of these expressions are regarded as apply-
ing in the two-body c.m. frame, no difference in
interpretation arises except the different kine-
matical relationship between ~ and the two-particle
invariant energy. There is one new feature, how-
ever, in the structure of the integral equations as
a result of Eq. (44). Since q is a real spectator
momentum, it is clear that the right-hand side of
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Eq. (44) is real and positive for Ws& m . In par-
ticular, as q -0, the right-hand side approaches
v s —m . Inasmuch as the left-hand side is a sum
of two square roots, with the branch cut taken
along the negative real axis, it is clear that the
equality can be satisfied only if ~ '& —Min(mB',

mz'). We thus distinguish two cases: (a) mB= mz,
in which case we can allow any q on the interval
(0, ~), and (b) mBkm, in which case q is re-
stricted to a finite range (0, Q ), with Q„defined
by Eq. (44), with K„' set equal to its minimum
value. Specifically,

M ' [S —(m„+ ImB' —m, 'I"')'] [S—(m —I mB' —m, 'I'")']
(48)

This behavior is significantly different from the
nonrelativistic version, in which ~ '- -~ and

-+~ regardless of the mass ratios. It is clear,
of course, that the differences arise at momenta
for which the nonrelativistic approximation is in-
valid. For example, if we were to consider md

scattering at threshold in the mN channel with a
nucleon spectator, we would obtain q
= (pM)'", corresponding to a momentum of
=2(pM)'" for the spectator in the wN c.m. frame
(0.7 GeV/c). What is more interesting is that
there are also differences with the Faddeev-type
relativistic equations discussed earlier. Thus, if
we denote the invariant energy squared of parti-
cles P and y by cr, our formalism requires that

~
mB' - m, '~ ~ o, ~ (WB —m. )', (48)

whereas cr - -~ in the equations of Lovelace or
Qmnes. This is very convenient for us in that the
analytic continuation defined by Eq. (8) need not be
employed too far from the physical region; the ex-
tent to which it may be responsible for the rather
different results we shall report is unclear at this
time (we shall return to this point in Sec. VI).

The structure of Eq. (44) has also another,
rather amusing consequence. We note that if
v s & m, the right-hand side becomes real and
negative for all ff7 and the equality cannot be
satisfied. Thus, if we were to use the equations
to define an analytic continuation of the three-
body amplitude below the scattering threshold
(II'=0), the contribution of channel n would vanish
for v s & m~. In particular, for v s & Min(m„) all
of the T vanish identically; there is no exterior
rePresentation. It then follows that if a three-
body system is more tightly bound than its lightest
constituent, there is no smooth continuation to the
domain in which the particles are asymptotically
free. This point becomes less academic if we
treat the scattering of such a particle with some
"elementary" particle as a four-body problem ac-
cording to the n =4 realization of this formalism.
The resultant wave function would contain no out-
going piece corresponding to the three constituents
as free particles. Thus, if the lightest nonstrange
quark were to have a mass in excess of I, the nu-

cleon could not be decomposed by scattering. The
description of such quarks would require the natu-
ral complement of this formalism: a purely in-
teri or representation.

All the information necessary to compute the
T«z functions is given explicitly in the Appendix.
As we shall demonstrate elsewhere, the use of the
Dirac Hamiltonian for H does not affect things in
a material way; one can again derive an exterior
representation which leads to precisely the same
equations except for the usual spin-recoupling co-
efficients familiar in Faddeev theory. The neces-
sary modifications will be indicated in Sec. V when
we put isospin into the 3m problem.

{~pq [Ilp'q') = 5 B5(P —p')5(q —q'),
with the corresponding completeness relation

(50)

dpdq Ppq Ppq =1. (51)

We define an operator I on this space which "in-
terconnects" the various channels by

IV. PHYSICAL AMPLITUDES AND UNITARITY

In this section we present the necessary formu-
las for calculating the physical amplitudes from
our formalism. We also employ a concise opera-
tor notation and some earlier results in order to
provide an explicit proof of the three-particle
unitarity relations.

If we first consider the description of the scat-
tering process in the three-body c.m. , it is clear
that any pair (p'B, qB ') of the six vectors defined
by Eq. (16) in this frame can be used as indepen-
dent variables they are of course restricted by
the condition BeB= v s. On the other hand, f' has
been written as the sum of the 1' channel am-
plitudes, which are most easily expressed in
terms of the corresponding pair (p' ', q' ). It
is thus convenient to define a transformation be-
tween these different labels in a given frame of
reference. We therefore introduce a Hilbert
space of states

~
o, pq), where the u index tells

us that (p, q) are to be interpreted as the numeri-
cal values of (p, q ). These states are taken to
satisfy the normalization condition"
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(cp'ii'~l y~lppii) = —C(p+ —p' " C' C iT —p' ~ 'ii') ii cpy e e cyclic,

p+~p' — q' 5 q+p'+ q' if Pay are cyclic.
m~

(52)

I=I
I '=-,'(1+I),
(1 —I ) = 3(1 I)'. —

If we now consider an initial state
I

yk&

=
I aop, qo) in the three-body c.m. , and write

(53)

The interpretation of I is that if (p', q') are the
values of (p„q, ), then (p, q} are the values of

(ps, qs) in that frame. As a consequence of Eq.
(52), one can deduce that

(k, k k, l
q'I4& = 5(P)& npql Tl o.,p, q, &

for the c.m. amplitude T, it follows that

T = (1 —1)T,
where

& fl p'q'I ~1 ~.p. q. & =& li p'q'I T sl ~.p.q. &

is the channel amplitude.
The integral equations given in the Appendix

provide a means of calculating the (on-shell)
operator t. Thus, expanding

(54)

(55)

&l)pql&l n, p, q, ) =g g y, „,„(p, q) I;„,„(p,„,q,„) &l3LMlzpqI r
I a, LMl, zp, q, &,

LN 1XlpXp
(56)

we have

& ELM la~, q I vl a, LMl, z,p„q«& = T~, &(q)-. (57)

Mu yuu s
q = ~ q', ',

(58)

~ Cale
pa =pa

~c~.
~
~cm.

( I) p ''qu '
ynbu es ~~ can.

where

P =q'. /(es+~„),

y =(I ll ') "', - (59)

and the cs are expressed in terms of (p'u, q' ')

via

Here (p«, q, u} are the values of (pu, qu ) in the

P,y, c.m. , provided their values in the three-body
c.m. are (p„q,). The amplitude T~, y, (q) is the
same quantity defined in Eq. (47) of this paper,
and in Eq. (19) of BCA.

We must thus provide the connection between
the operators ~ and 7, for which it is necessary
to introduce the appropriate Lorentz transforma-
tions. Assuming that the vectors describing the
on-shell state are (p', q'„'), it is straightfor-
ward to show that the corresponding quantities in
the Py c.m. are

(qcyyc. 2 ~ 2)l/2

2 I /2

y

1/2

mg

(60)

oPy cyclic. To incorporate this information into
our operator notation, we define the functions

&lip'q'IA 'I ~pq&

= 5 zv, ' II " 6(p -p'-u q'}o{q- v q')
cay

where

=6us6(p'-p-u q)5(q'-U q), (63)

p' q 'Yapa &g

(61)
M y Zses
ma fe+f~

and the operator A such that

&l) pqlA I
op'q'&

= 5„s „ II " 5(g'-p — q }5 (q'- q ). {62}

Thus A takes the c.m. quantities (p, q) into the

Py c.m. quantities (p', q'). Similarly, we can de-
fine the inverse transformation A ' by
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~tp'q m 9 Me(p', q')=(y —),. -M f (p, , )
——

0( a m8 my

(64a)

vided that we interpret the discontinuity as apply-
ing to just the three-particle portion of the over-
lying cuts. We shall first demonstrate that V'

satisfies the relation

~a(p'vq') = s ig2I ~ i) ( as+&ay) i (64b) (k, k, k, ~
A9 + 9, ago%' ~k', k,'k,' ) =0. (68)

y = [f (P', q')+(m '/M, ')q "j"'
f 1/2(pi qi) (64c)

x.(p, q)=1'.(q,f.) .(p)II . / l, (65)

where the e8 are the single-particle energies in
the three-body c.m. frame. Comparing Eqs. (47}
and (57), we deduce that

Here the e ~ are given in terms of P and q by Eq.
(41), and v„V = 1.

In order to complete the relationship between w

and I, we see from Eq. (47) that in addition to the
transformation laws for the labels (p, q ) given
above, we also need to know the Lorentz trans-
formation properties of the T operator. This
turns out to be trivial since, as we shall see be-
low, v is a Lorentz invariant. Thus, in order to
incorporate the implied relationship into our op-
erator notation, we need only take into account the
transformation properties of 5(P —Po) via the fac-
tor v '. We therefore define the diagonal operator
g such that

ET= —3T» b g T (70)

Here the factor of 3 arises because of the com-
pleteness relation of Eq. (51) and the fact that

& p~q(I —I)l upq) (o'pal(1-I)
is independent of u, as can be verified from Eq.
(52). Since the equations given in the Appendix
imply that 7 (and hence T) has a final factor of
(1 —I) on the right, Eq. (70) is equivalent to the
relation

AT= — dpdq T, o. pq bg p, q npq T

We proceed by introducing an operator g which
corresponds to 9, on our Hilbert space. We thus
define the diagonal operator g' such that

(69)
(Esses) —s —tf

where (p, q) are taken as the values of (p„,q„}in
the three-body c.m. In that frame, Eq. (68) can be
expressed in terms of the operator T defined in
Eqs. (54) and (55); thus

7=Ay 'jA (66)
(71)

which reduces to an identity in the nonrelativistic
limit. Inasmuch as none of the Lorentz transfor-
mations take the set (p, q) out of the scattering
plane, the Euler angles (aPy) in the representa-
tion of Eq. (25) remain the same. Thus, as in the
nonrelativistic case, the c.m. amplitude T (in a
state of definite LM) can be expressed in terms
of a single integral over the variable P ~ q involv-
ing the TJ, & amplitudes.

We now consider the statement of three-particle
unitarity for our amplitudes. It will be convenient
to adopt the notation

d. t = t (s + ie ) —t (s —ie )

(67)

for the discontinuity of an operator across its cut.
In addition to the three-body elastic cut with
threshold at W=O, there will also be cuts corre-
sponding to elastic scattering from two-particle
bound states. The discontinuity relations perti-
nent to the latter are relatively easy to satisfy and
we shall not be concerned with them here (a sim-
ple proof can be constructed along the lines given
in SCI). The development given below will still be
relevant in the presence of such thresholds, pro-

67 = —v'» EGO7

where G, is defined by

t .~.85(p-p')5(q-q')
—&a

(72)

(73)

Thus, except for the relativistic kinematics re-
flected in the difference between Eqs. (27) and

(44), G, is formally identical to the nonrelativistic
Green's function of Sec. II. Recalling Eq. (42),
the definitions of G„g', and y imply the relation

,x (74)

since the discontinuity takes G, and g' to the pole.
Invoking Eqs. (66) and (72), we finally obtain

,x

= —v» Ag 7

(75)

since I and g' commute.
Stated as operator relations, the equations for

7 have the same structure as the equations studied
in SCI, and hence one must obtain the same result,



A PRAC TICAL BE LATIVISTIC THEOR Y OF THREE -BODY. . . 2593

where we have employed Eq. (53) and the above
noted property of r. Using Eq. (55) and the com-
mutativity of I and g', we have proved Eq. (70),
and hence Eq. (68).

We now observe that if one defines a three-body
scattering amplitude according to the conventions
stated in Goldberger and Watson, "one deals with
an operator V' related to the S matrix by the equa-
tion

~fj e/)fj 2 F l /t fj ~ (76}

ST' = —2mi d pdq T,' npq) 5 (v s — qee ( &pq T'

(78)

In analogy to Eq. (38), one defines T' such that

&u, a, u, l
7'll ', u,'a,'& = 6( p- p')(~pq I Tl ap'q'&.

(77)

Unitarity then requires that T' satisfy the discon-
tinuity relation X = Q+ (K, +AK2)X, (82}

written in terms of states l?2lkq& defined (for fixed
L) such that

the theory. Of course, since it ean be shown that
our equations constitute a general solution of the
three-particle unitarity relations, it is clear that
some choice of the 4 operator defined in the Ap-
pendix lanalogous to B in Eq. (33)] can always
reproduce the physics ~ Thus, if the qualitative
characteristics of the 3m system are to be re-
garded as a natural consequence of the known two-
particle properties (e.g. , the p}, the predicted
properties must follow given any reasonable guess
as to the off-shell behavior. The numerical re-
sults given below demonstrate that this is indeed
the case for the channels considered.

As noted in the Appendix, the equations for 7

can be expressed as an operator relation 7 = -gpX,
where X satisfies

in the three-body c.m. On the other hand, Eq. (71}
can be reexpressed as

5(q'- q)(0i'~'q'I?rf~q& =6 s6«6~?, (83)

DT = —2@i dpdq T, npq l" p q }5

( i s —~sss)'(?2Pq I
T

where

( )
Zp???s ~ ~2/?

p q

(79)

(80)

We therefore infer the relation

Tt (Z }?/2 T(Z )?/2 (81)

V. APPLKATlONS TO THE 37t SYSTEM

As a first test of our relativistic formalism,
we consider the 4" =0, 1 scattering states
(I=O, 1,2) of the three-pion system. This permits
a direct comparison with the previous resul. ts
noted above." For c.m. energies ~s ~ 2 GeV,
one would hope to predict the???(784) as a. 1

isoscalar 3m resonance, and perhaps the m itself
as a 3?? bound state in the 0 (I = 1) channel. In
order for such results to be meaningful, no other
resonant or bound states should be predicted by

connecting T to the conventional amplitude. In
view of the transformation properties of T' (see
Ref. 16), Eq. (81) implies that T is a Lorentz in-
variant.

Together with the integral equations for 7 stated
in the Appendix, Eqs. (55), (66), and (81) provide
the information necessary to calculate the physi-
cal amplitudes and hence all scattering observ-
ables. As an example, we present numerical re-
sults for the three-pion system in the next section.

The quantities Q, K„K, are totally specified in
terms of on-shell two-body information (scattering
phase shifts} via the parametrization of X?(/?2) in
Eq. (8), whereas /1 summarizes both off-shell
effects and possible three-body forces.

In order to apply these equations to actual phys-
ical systems, one will in general need to add dis-
crete indices describing additional degrees of
freedom {spin, isospin). In the present application
we are concerned only with isospin, and the nec-
essary modification of Eq. (82} consists of the

replacement

&(if'&'q'I K? I ~f&q&- ~'?"' &Pi'f'&'q'I K? I
~if q&

(S4)

where i' represents the total isospin of the pair
ay, i similarly labels the Py pair, and the expan-
sion of the basis to I c?i lkq& merely reminds us
that the on-shell two-body parameters contained
in K, will also depend on i, i'. The matrix C, ',
is just the overlap between a state formed by
coupling (Py)/-;+ (a)/=, to form a state of definite
total I, vs coupling (yn)?=, +(P)?=, to total I.
Hence C' is a spin-recoupling coefficient,

C, i, =-(-}"l(2i'+1)(2i+ 1)I '"?/V(i i„Ii;i'i),
(85)A=i'+i~ —I if o.'Pp cyclic,

=i + i ~ —I if Pay cyclic,

where i8 is the isospin of particle P, and W is the
Racah coefficient as defined by Rose." If our
particles had spin which could couple to values
s', s in pairs, an additional factor of C, ', would
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appear in Eq. (84). F~r thr: ' !lations io be
described, we shall need the explicit values

1;Ba
Coo

Co, gc!C Cz;Rcc
ll 11

Cl; get Cz;gD
]1 11 Z ~

Taking the most interesting case first, we con-
sider the 1, 1 =0 (!!!)channel. Here, in order to
form an isoscalar we need i = i' = 1, and hence the
statistics restrict us to odd angular momenta l, l'.
Given the strong energy dependence in the P-wave
(p) channel, plus the angular momentum barriers,
one would expect that l ~ 3 states could be neglected
for energies up to a few GeV. Given l = 1, we can
only have ~ = 1 in order to produce a, 1 Sm state.
The relevant equation is then particularly simple;
Eq. (82) reduces to

'h.", ' . t= 'i .~.& c- .r. ~non~. " to ne~lect-
ing the . )omentum ~ependence of form factors
(which play a significant role in the convergence
properties of Faddeev-type equations), and hence
v,"e e -",t th«-, ; tl si n of & t( ' ". -.v(.' &

, ergell. = of -~. He .l.ding A as ~ typ~-; u'
correction in this sense, it is reasonable to con-
s ide r ~ in the for m

~(q qi s) =ipN(q qI ip)g(q )g(q), (90)

with g(0) =g(0) = 1. The on-shell parameters
embodied in X thus set the over-all scale, and
determine the behavior for small q' and q.

In practice, since ~ is purely phenomenological
except at small momenta, it is more efficient to
parametrize it directly. For the present purposes
we consider a representative model,

X(q') = Q(q'} + dq q' ' ' X(q),
D, (K)

where D, (z) is defined in Eq. (9), and

(87)
A(q', q; s) =vg(q')g(q)

P, o
—P.

(91)

N(q ', q; K}= N(q ', q; v) — N(q ', q; ip)—,

+!! 'A(q', q; s); (89)

this is justified because ip.A(q', q;ip. ) has pre-
cisely the same analytic structure as ~ (a cut for
Imq' ~ p.). The point of this decomposition is that
as q- ~, !!-ip, so the first two terms of Eq. (89)
combine to give better convergence properties
for the kernel. This simplifies numerical analy-
sis, and there is no real loss in generality. We

N(q ', q; x) = g N,",~„"(q', q),
8 (88)

N(q', q; K)=N(q';q; K)+K 'A(q', q; s).
ne; 1.Here N, q,

'
), is the function defined in the Appendix

(the summation is a result of having identical par-
ticles), and A is a real-valued function summariz-
ing the off-shell content. In view of the discussion
preceding Eq. (33), one would expect A to exhibit
exponentially damped behavior in the coordinate
representation; this corresponds to poles or
branch cuts at complex momenta q' =ijL(., In addi-
tion, if one studies simple off-shell models, one
expects an explicit energy dependence of the form
A(q', q;s) ~(x'+ p, '). The value of p, , corresponds
to the longest-range component of the m-~ inter-
action, so we expect p,, =2p, .

Since it is our intention to study the effect of
the off-shell properties on our result, we have
taken advantage of the fact that N ' has an ex-
plicit dependence on the momentum e=—x(q, s) in
writing Eq. (88). It is then convenient to rewrite
~ in the form

To fix the over-all constant y, we observe that
for ~s- p. , ~=&p. independently of q, and hence ~
contributes the entire kernel in this limit. The
normalization in Eq. (91) has thus been chosen
such that

&(q', q; p) = 1q'q,
e', q 0

(93)

X = (1 —K) '0, K —= N/D, . (93)

Three-body bound states or resonances thus ap-
pear as poles in 7", and correspond to discrete
values of s for which the inverse (1-K) ' fails
to exist, i.e., to values such that there is a non-
trivial solution of the homogeneous equation. In
order to search for the ~ as a 3m resonance, one
looks for zeros of the determinant 3) =

~
1 —K( .

Although the equations actually permit a calcula-
tion to be extended onto the second sheet, it is
sufficient in practice (and more akin to the ex-
perimental situation) to study the behavior of X)

for real values of v s. One thus proceeds by ap-

with y determined by the requirement that
N(q', q; ip. ) has the same small-momentum limit.

This prescription is admittedly ad hoc, but it
preserves the general features of simple off-sheLL
models. The main point has been to provide an

estimate for y, which comes out to =0.8 in this
calculation. On general grounds one expects
p, o= p, , =2p. ; the expected analytieity properties
of r(q) (in addition to direct 4v exchange) then
imply that p, z 2/1 4p. . In estimating the off-
shell sensitivity, we shall vary the parameters
y, p, „p.„p., freely about these values.

Schematically, Eq. (87) has the form
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proximating the integral as a finite sum through
the introduction of appropriate Gaussian points
q„and weights h„converting Eq. (87) into a finite
matrix equation. " The determinant can then be
calculated in an elementary fashion.

In order to describe the P -wave phase shift,
we employ the parametrization

f,(~') = o+~/(~'-0')
-=aX,(~') + 2,

(94)

TABLE L Variation of the 3x 1, I = 0 resonance vs
the off-shell parameter p2 defined in the text. The mass
(M) and width (I) were determined by extrapolation to
the pole. Types N, A, and 8 refer to the physical. para-
meters of the p, a "p" of width 60 MeV, and a. "p" of the
proper width but a mass of 660 MeV, respectively.

which is of the form given in Eq. (8). There are
thus four parameters (aoP6), which we have ad-
justed to fit the analytical representation of the
phase given by Baton et al." The numerical values
are a=0.67 F, + =2.39, P =2.20 F ', and 6 =3.21
F '. We observe that for a given choice of a, the
behavior of f, can be read off from the expression

aK cot(5, + a~) = (f, a'K')/f, —, (95)

if the phase shift (6,) is known. In practice, as
one would expect, only the values of f, in the
vicinity of the p pole turn out to be significant,
and these are well established. "

The numerical calculations were performed as
described, and a 1 isoscalar resonance was in-
deed observed for parameters in the ranges dis-
cussed above. With regard to the off-shell pa-
rameters (yp, p, ,g, ), it was observed that the ef-
fects which could be produced by varying all of
these independently were quite limited, and the
results were always equivalent to calculations in
which a single parameter was allowed to vary.
The situation is well represented by the choice
y = 0.8, p. ,= p, , = 2p, , with p, , taken as the free pa-
rameter; the corresponding results are listed in
Table I for the entries marked "W,"

The inclusion of off-shell corrections can thus
shift the position of the resonance to lower ener-
gies, while at the same time decreasing its width,
but the basic energy variation which leads to the
existence of the effect is contained in K,. The
inability of ~ to produce strong effects is a con-

I

I .00
I

' I

0.75

hC
I

X

0.50
CO

0.25

sequence of two factors: (a) The fact that it is
real limits the role it can play in the interplay of
real and imaginary parts leading to the nearby
resonance pole; and (b) in contrast to K, it has no
singularities close to the real axis, and hence has
a weaker intrinsic dependence on the energy. As
one would expect, the effect is sensitive to the
parameters which describe the p; this is illus-
trated in Table I by entries A and 8 (model A cor-
responds to a "p" of width 60 MeV, model B has
the p width but a mass of 660 MeV). To illustrate
the results in more familiar terms, the first and
third entries of the table are plotted in Fig. 1, in
which ( I -K~ 2 is used to indicate the rapidly
varying factor in an appropriate cross section.

Our result indicates that the p does essentially
imply the existence of the u, leading naturally to
a resonance with the appropriate quantum num-
bers. The precise position and width of the effect,
however, are to some extent dependent on the de-
tails of the dynamics. The fact that our calculated
widths come out too large as compared to the ex-
perimental value (=10 MeV) is apparently due to
neglect of coupling to the virtual KK channel, as
we point out below. Just as important, similar
calculations for 1 (I =1, 2) and 0 (I=0, 1, 2) 3v

states with this formalism do not predict the ex-
istence of resonances; there are no spurious ef-
fects of the type reported by Basdevant. The only
other "particle" which comes out of the formalism
(for c.m. energies less than 2 GeV) is the pion
itself, which appears as a 0 (I= 1) 3v bound state
for reasonable input (in this channel we couple
the I=O m-7T s wave to a A. =O spectator, in all.

Type

4.0
4.3
4.6
4.7
4.0
4.0

M {MeV}

808
782
752
735
826
75(

I' (MeVjl

120
95
65
45

155
95

l
fd

0.00
0.64 0-72 0.80 0.88

E,.~ (Gev)

FIG. 1. Variation of ~1-X( 2 vs c.m. energy in the ~
channel; the curves are normalized to unit height. The
solid line is N(4. 0), the dashed is N(4. 6) of Table I.
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( 1 1) 3%I 11 31I 12»» si

(a, —X,)4«» =B„T,„+B„T»
(96)

Here 4'»» has the form of Eq. (1}and B» is just
a number; hence the second equation can be solved
explicitly for T~g in terms of T,„, and the result
can be substituted into the first equation. The re-
sult is an equation involving only T3„which is of
the type considered above, except that the B op-
erator contains a term having the energy depen-
dence of T«, including the P pole a, t Ms=1.02
GeV. The effective size of this term can be fixed
by the P-3»/Q-KZ branching ratio; it survives
below the KK threshold in the sense of an analytic
continuation. Treated perturbatively, this con-
tribution has the right behavior (attraction in-
creasing with energy) to significantly lower the (d

width calculated above. A detailed examination of
this effect is now in progress.

VI. DISCUSSION

There are two essential features of the three-
body problem. One of these is unitarity, which
expresses the conservation of probability, and

other channels we take only the p wave)." The
values of the s-wave parameters required to pro-
duce a 0 bound state at the exact pion mass (with
A -=0) are almost identical with the best fit ob-
tained to the I=O phase shift of Baton et al." Using
a &o+ 1 =fo(»'), and parametrizing fo according to
Eq. (94), we arrive at the values a=0.32 F,
n = 1.28, P =3.18 F ', and & =9.04 F ' (with obvious
uncertainties due to the state of our knowledge con-
cerning this phase shift). This calculation has
some interesting features and will be reported
elsewhere.

It therefore appears that the relativistic BC
formalism is capable of providing a viable de-
scription of such systems. We hope that subse-
quent applications to the A, and &, channels will
provide some insight as to the nature of these
effects. In concluding this section, we observe
that a natural generalization of our technique can
be employed to treat several different exit channels
simultaneously. Thus, if a reaction can produce
different types and numbers of particles in the
outgoing state, we regard these as originating
within the interaction volume (the interior) and
enlarge our exterior description accordingly. The
channel wave functions are theh coupled via BC's
which are a further generalization of Eqs. (32)
and (33). For example, above the threshold for
KK production (1 GeV}, our exterior representa-
tion should consist of ~@;",') and ~4'»»), with
(43",'(+»»)=0. These will satisfy a coupled set of
BC's, which we write schematically as

links the various physical amplitudes via the dis-
continuity relations; e.g. , Eq. (68). The other is
what we have called the quasi-two-body limit;
this is merely a consistency condition stating that
as one particle is taken to infinity, we must re-
cover ordinary two-body scattering as a special
case (for short-range forces). It is trivial to con-
struct models satisfying either of these require-
ments singly, but taken together they exhibit the
fundamental complexity of the problem. This has
recently been pointed out (in different but equi-
valent language) by Amado, who shows that the
channel decomposition plus unita, rity and the con-
ventional analyticity properties can be used to
derive the most basic realization of the Faddeev
equations. ' The same derivation produces the
zero range limit of the nonrelativistic BC formal-
ism proposed in BCA.

It is then clear that the Faddeev equations (in
their most general form) and the BC formalism
represent alternative but equivalent solutions of
the above problem. The advantages of the BC
prescription for computation and data analysis
have been pointed out in previous articles. '~

In the present paper we have demonstrated that
this approach has a straightforward generalization
to the relativistic problem. This is in contrast
to those theories designed in imitation of the
Faddeev approach, for which there is no unam-
biguous procedure. Furthermore, the most ob-
vious distinction between the corresponding equa-
tions suggests that the Faddeev generalizations
do not properly take into account the quasi-two-
body limit, which we assert must be understood
in the two particle c.m-. frame. In the exterior
(asymptotic) representation, this requires the
spectator to have rea1, momentum in this frame,
and hence leads to the restrictions on the two-
particle invariant energy squared given in Eq.
(49}. In the equations of Freedman, Lovelace, and

Namyslowski, for example, ' 0 varies to -~ as
a result of arbitrary spectator momentum in the
three-body c.m. frame; the same property is
shared by the other Faddeev-type equations in
Ref. 3, A useful by-product of this distinction is
the fact that our formalism requires a much more
limited analytic continuation to the unphysical
region.

Just as in the nonrelativistic problem, our
equations in their full generality provide an effi-
cient framework for the analysis of scattering data
involving three-particle final states. Since the
solutions are automatically unitary, this procedure
would avoid the (justified) criticism leveled at
current techniques. " Obvious applications would
include Nm-Nmm and the 3m final-state interactions
in X»- At(3»). Furthermore, via the parametriza-



A PRACTICAL RELATIVISTIC THEORY OF THREE-BODY. . .

tion of the operator & introduced in this formal-
ism, one is effectively summarizing the full con-
tent of neu information in the scattering experi-
ment, whereas the minimal (A =0) model builds
in automatically the important features deducible
from two-body data. In the case of the x, the lat-
ter constitute almost the entire effect. A nice
additional feature, described at the end of Sec. V,
is the ability to simultaneously take into account
different orthogonal channels, such as 3m vs KK.
This property, which has no counterpart in the
Faddeev-type theories, is vital in describing an
object such as the P.

The efficacy of the minimal model has been
demonstrated in the 3m calculations described
in Sec. V. If one considers all isospin 0 or 1

states for c.m. energies less than 2 GeV, the only
effects predicted by the theory correspond to the
only observed particles (the w and &u); the masses
are in excellent agreement with experiment.
These results are in sharp contrast to the Fad-
deev-type 3" calculations discussed in the Intro-
duction, '' both in the absence of spurious effects
and in the relative insensitivity to the off-shell
input. In view of the strong form-factor depen-
dence exhibited by the latter calculations, these
discrepancies are not too surprising. The reason
is simply that in our formalism the off-shell
characteristics are completely distinct from the

phase shift, which is held fixed, whereas the two

are linked in the separable model. Although our
results did not depend strongly on the t'-wave
phase shift except in the immediate vicinity of
the p, the variations considered were compatible
with the experimental uncertainties, and hence
were nowhere as dramatic as those reported by

Menessier, Pasquier, and Pasquier. ' It is thus
possible that their sensitivity is not entirely an
off-shell effect. On the other hand, several of
the spurious levels did not share this sensitivity,
and hence it may be that the formal differences
discussed above may be quite important in ex-
plaining our results. Additional factors, which
reflect themselves in different analyticity proper-
ties in the unphysical region, may also play a
role, although this does not appear very likely.
We hope that the next round of calculations planned
for the &„&,channels will produce some insight
into this question.

Although there is no room to pursue this topic
in detail. , it should be clear that our procedure has
an obvious generalization to the n-body case. In

fact, the 4-body analog corresponds to a two-di-
mensional integral equation which is comparable
in difficulty to solving the Faddeev equations with
a local potential (which has been done). With re-
gard to the hadron spectroscopy, it is then clear

that a great many int:cresting problems are now

within reach. Furthermore, once one has a scat-
tering theory which is reliable in highly relativis-
tic problems, it is possible to say something
useful regarding relativistic corrections, a topic
which is poorly understood. For example, a num-
ber of contradictory estimates of corrections to
the triton binding energy have been suggested. "
In this case, a comparison of the results of the
BC formalism in both its relativistic and non-
relativistic manifestations suggests an increased
binding of about 0.5 MeV. In addition, the increas-
ing use of pions as probes of the nucleus will re-
quire a dependable relativistic treatment of pion-
nucleus scattering in order to properly interpret
the results. As a first step in this direction, the
present formalism has been applied to investigate
m-d P-wave scattering at energies up to 350 MeV,
and a paper detailing the results has been pub-
lished. " Lastly, a particularly intriguing ap-
plication has been made to the basic nuclear force
problem; a report of this work is already avail-
able."
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APPENDIX: THREE-PARTICLE EQUATIONS

Application of the BC's discussed in Sec. III re-
sults in a set of coupled one-dimensional integral
equations for the functions T,'„(q) defined in Eq.
(57). For fixed L,M it is useful to define a basis
of states

~
alAq) with the normalization

(Al)

The formal representation of the equations in this
basis is identical with that given in BCA for the
nonrelativistic problem. In what follows we first
state these equations and then sketch a derivation
resulting in an expression for the most critical
ter m.

As discussed in Sec. III, the minimum value of
K

' (the on-shell value of P
' in the Py c.m. ) en-

countered in our equations is ~, '= —min(mq', m&').
With reference to the BC function X„,(~ ') de-
scribing the Py (two-body) scattering, we define
~", =~„,(K, '). In referring to the quantities N'~, ',
D', below, we shall mean the functions N, D,
defined in Eq. (9) evaluated with A, (K, ') replaced
by A. ",. A consequence of this definition is that
N~", -E~„D~,-D~, as q~ approaches its maxi-
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mum allowed value. If we then define an operator
X in the above basis such that

as an explicit factor, where 6[d] = 1 for d &0 and

vanishes otherwise. At equal times, (P, reduces to

t„(K„)
~Lix(q) =

&h& & «&q IA'
I ~ofo ~o qo ),N, (K~)

(P,{x, y }= Q 6 [xs —aq],
8

(A5)

our equation can be expressed as

X=A+EX,

ff = 6+K"'p+[(1 —6}B+6(C—1)] (1-R)p.

(A2)

(A3)

where xt|, x& must be expressed in terms of x,
y, via the linear combinations implied by Eq. (15):

Pa
xs = xa+ya

my

(P,(r,r,r, ) =II 6[-a ' —(r8 —rz)'] (A4)

Here l0, A0, q0 are the parameters characteriz-
ing the initial plane-wave state in the p0y0 c.m.
system (Pot y, W u, }, and the operators entering
this equation are defined below.

The operator 8 arises from the fact that the BC
stated in Eqs. {32)and (33) must be applied in the
exterior region, defined by the requirement that
for each a, (r8 —r&)'~ —a '. This is insured by
taking the projection operator

(A6}

nPy cyclic. Applying the BC means taking N, =a
and thus the domain in which {P,0 depends solely
on y and x ~ y . In general, there is some maxi-
mum value y' such that (P, vanishes identically for
y & y.

' (y'„may be zero). The BC only has content
for y &y', and the operator 8 utilized in Eq. (A3)
corresponds to 6[y~ —y~] in the coordinate repre-
sentation. Explicitly,

&t'ai'&'q'I61«&q) =5 e5ii 5~~ 6 (q', q;y'),

.R}
2R' e.„(Rq)i~(Rq') —q'i ~.,(Rq')i. (Rq)6„(q',q;R) =

2 /2 (A7)

The operators p, R are diagonal in the above
basis:

p l(q) = t, (K.)ltV(K. ),
R,(q)=1 D",(7„}/O-'I(~ ).

(A8)

Here x„refers to K (q) evaluated at the kinetic
energy W= W, which is a free parameter (W& 0).
The presence of R is formally necessary to
achieve unitarity in the minimal model (B= C =0),
as first pointed out in SCI, but in all the calcula-
tions so far performed (3N, 3v, vd) there is vir-
tually no sensitivity to tT', and in fact this piece of
the kernel is completely negligible, " The opera-
tors B, C: have arbitrary real values; the former
is analogous to B" in Eq. (33), while the latter
arises from an auxiliary BC on the interior seg-
ment, y& y~, as explained in BCA.

Except for p, which corrects the two-particle
phases from those implied by A. ', to their physical
values, all the operators defining E in Eq. (A3) are
designed to complement the central operator E' .
That is, the operators 8,R I.~ear to guarantee
unitarity and a unique solut'+~1, while B, C ex-
hibit the full flexibility allo. ed by unitarity, and

hence summarize the off-shell content. It is clear
that K', 0 are present in the most trivial realiza-
tion of the theory, corresponding to a model in

(6, —A'( )&oZ,Mf~a. x. 16', I+& =0, (A9)

where N, has the simple representation given in
Eq. (A5). For formal manipulations it is useful
to observe that if P, (P) is the Fourier transform
of g, (x), then

dPPN, P), P ct-g,'a -A, , g, a
0

(A10)

This implies that Eq. (A9) is equivalent to the
relation

dense'
' 1;* P )N", P ) 01k,k, (P 4 =0,

8

(A11)

which X, = A. "„aconstant. This is the "pure" BC
model, considered in several previous papers on
the nonrelativistic problem. " Except for the rela-
tivistic kinematics implicit in the relation be-
tween p and v, the only differences in the rela-
tivistic version are contained in them. In discus-
sing these operators, we shall sketch their deriva-
tion in the "pure" BC model.

As explained in Sec. III, the basic BC is to be ap-
plied with R, t, t8, t„all set equal to zero in the

Py c.m. frame. The exterior representation then
will depend only on x, y, and the BC can be ex-
pressed as
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I p) = In~.q.), (A14)

[see discussion concerning Eq. (57)] . We may
then define the states

I y) =(1 —G,~)A 'I y),
le) =(1 /)A I y), -

employing Go as defined in Eq. (73).
The interpretation of these states is that I p)

corresponds to the channel wave function zn its
appropriate c.m. frame, while I4') corresponds
to the total wave function in the three-body c.m.
frame. They are defined in the space of the two
momentum variables p, q and may be Fourier-
transformed to obtain the coordinate representa-
tion; e.g., for x&a,
( nLM/~lyly)

=(n LM/Xxy I n,p, „q,„)
-2p..s""" aqq')„qy ~.a, ~.x) r,„q).

0

{A16)

Comparing to Eq. (46), this is just the exterior
representation of the channel function in its c.m.
(R=t&=0). Similarly, if we evaluate Eq. (37), in
the three-body c.m. at equal times t~ = t, the

where the integration is performed in the P y c.m.
frame. By decomposing I4') into its three channel
pieces, introducing appropriate Lorentz trans-
formations, and taking advantage of the &(P —P, )
factor in V' and the mass-shell 0 functions in 9„
this equation can be displayed in a form involving
only the independent vectors p8, qs appropriate to
the particular Lorentz frames. This is equivalent
to the following formal development, which we
state in terms of the I npq) Hilbert space defined
in Sec. IV.

The 7' operator of Eq. (57) is only determined by
our formalism for on-shell values P = «(q), but
it is useful to introduce a function G, (p, «„) which

is unity on-shell and satisfies

l0

for x&a; we then regard & as the operator

(nLM/l pq I
7 =G.g p, «„}(nLM/~«„qI~ . (A»)

The explicit choice for G~, does not matter since
ultimately everything is put on-shell; a particular
example might be j, (a P)/j, (a~«„) (another is given
in SC1). The initial plane-wave state in the three-
body c.m. frame is represented as I4) = (1-/)I Q),
where I P) is one of the basis states,

result in the exterior is proportional to
exp(-its/)(nxyl@).

It is now useful to introduce the operators g, N

such that

i)
(npqlgl pp'q') =5 so(q'-q)

~ (2/+1)
(

-,
)

G, (P, «)

(A17)

(npqlNI Pp'q') = ~ s5(q'- q)

P, (p p )N', (p }.2/+ 1

Thus t-=gN is a type of off-shell t matrix cor-
responding to the on-shell value t„',(«) =N„,/D„', ."
One can easily verify the relations

4t = -t+ 4G0t

NG~N =N
(A16)

N(P A 'I+) =0. (A20)

Since this is to hold independently of I Q), we de-
duce the operator relation

N6', (1-Q)(l —G r) =0, '

A=A 'IA.
(A21)

Except for the replacement I-d~, this equation
has precisely the same form as the case first
studied in SCI.

%'e now introduce an operator X such that 7
= —gX, which is possible as a result of Eq. (A13).
The interpretation of X is that

( n LM/ «Pq I X = ( n / A.q I X, (A22)

where the right-hand side corresponds to the no-
tation of Eq. (A2); there is no dependence on P.
At this point we choose to simplify the derivation
by assuming that for each / included in the sum
stated in Eq. (A17}, A ", = A. , independent of /

[note that the sum is implicitly truncated to take
into account as many partial waves as are neces-
sary to describe the (n } channel function] . This
avoids the necessity of going explicitly to the
LMl ~ representation, and is adequate for the

from these definitions; the former is quite useful
in the unitarity proof. Employing the 6', operator
defined by

( n xy I (P, I cx' y') = 5,5(x —x ') 5 (y- y ')6', (x, y)

(A19)

in the coordinate representation, where 6', (x, y)
corresponds to [6',(x, y )]-„-„z= &, we are ready
to restate Eq. (All) in the form
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simple cases studied to date, but is not essential
in our method (formulas for the general case are
presented in BCA). This means that there exists
an operator 6', such that ÃO', =F, N; @ is just 6',
with x =a . In accord with the discussion given
above, 6', vanishes identically for y & y'. Defin-
ing a generalization of the operator 0 above,

& ~pq I
8

I
Pp'i'& = 5.s5(p'- p)

I (q'q )8 (q q i y )
(2X+ 1)

(A23}

one can show that there exists P, ' such that
(1 —8)F, W, =(1 —8). Thus

(1 —8)F, 'Ã(P, G07' = —(1 —8)NGO gX

= -(I —8)X, (A24)

the last line following from Eq. (A18) and the fact
that X is of the form X=NX' (as we see below).
Returning to Eq. (A21), we finally obtain

(1 —8)X= (1 —8)N(8 1) + -(1 —8)NJGogX. (A25)

Although written on different bases, Eqs. (AS)
and (A25) are directly comparable in view of Eq.
(A22); i.e., X has no P dependence. In this model
p=1 and B=O; we thus infer that

&o laqIQ~o. ,l X, q, ) =&nLMIX~„ql(I —8)N(8- I)~u, IMI, X, K, q, „&,

& ~ I ~q ~K"&
~

pf'~'q'& = dp'p" & ~f Mt ~~.q I (I 8)» -G. gl PL MI'~'p'q'& .

(A26)

K, = 8+ K~'~ p —8(1 —R)p, (A27)

The explicit evaluation of these operators is
straightforward, but tedious even in the nonrela-
tivistic case. Naturally, in special cases such
as s-wave forces, etc., one can obtain a relatively
simple formula.

In conclusion, we note that Eq. (A2) can be ex-
pressed in the form

X=A +(K, +4K, )X,

Thus K, defines the "minimal" model, and is
determined entirely (up to the negligible W-depen-
dent terms) by the two-particle data. The same
is true of K„whereas all the off-shell informa-
tion (including possible three-body forces) is con-
tained in A, which is an arbitrary real-valued
operator. We note that in the general case, 7
= —gpX, which is compatible with Eq. (A2). For
computational purposes it is convenient to ex-
press K in the form

K, = (1 —R)p,

A=(I —8)8+ 8C .

NfX8; z, (
Ig ~KjpfrgI p&

x 'v(q p'q

Dsi (KI)
(A26)
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