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SU(4) symmetry and the new resonances

V.S. Mathur, S. Okubo, and S. Borchardt
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627

(Received 6 January 1975)

Using as a basis the idea that the new resonances discovered recently at the Stanford Linear

Accelerator Center and at Brookhaven National Laboratory can be fitted into an SU(4)-symmetric

scheme, we examine in detail the production and decay mechanisms of these resonances. A
generalization of the Weinberg spectral-function sum rule is proposed which leads to quantitative

predictions for the production cross sections of these resonances in ee annihilation. Several decay

mechanisms are discussed, and arguments are presented, albeit somewhat qualitatively, to suggest that

the dominant decay modes are Q ~q'y and Q' ~ Q + 2'. As an aid to the experimentalist searching

for charmed particles, we have also tabulated the predicted masses of various mesons and baryons,

using both the linear and the quadratic mass formulas.

INTRODUCTION

M& =3.695+ 0.004 GeV,

l~ «2.7 MeV .
(1.2)

A special feature of these resonances is their
rather small width, so that if P and (I}' have strong
interactions with other hadrons, the strong sup-
pression of the decay to ordinary hadrons would
seem to require the existence of a new quantum
number. Such an interpretation has in fact been
advanced recently by us' and by many others, ' '
using as a basis the idea that g and g' may be
bound states of the type q4 q4 where q4 is a fourth
quark, usually referred to as the charmed quark.
With this interpretation, we identify g with the
ground state of the q4 q, complex and (II)' with a
higher radial or rotational excitation. We may
mention here that g and/or P' may not have any
strong interactions with other hadrons (or if they
do, these may be of some special type). One may
in this case interpret P or q' to be an intermediate
vector boson, as proposed by some authors. ' In
the pr esent paper, howeve r, we shall not pur sue
this type of interpretation.

We shall assume that both y and g' have J
= 1 and transform as isotopic spin singlets. Our
hypothesis, stated more precisely, is that g is a
member of the 15 8 1 representation of the SU(4}

Recent experiments' have discovered the exis-
tence of a new resonance (hereafter called P) with

a mass and width given by

M&, = 3.105+ 0.003 GeV,

I~ «1.9 MeV.

More recently, SLAC has reported' the observa-
tion of another resonance (hereafter called g')
with the parameters

group. This group has been studied earlier by
several authors. ' More recently, as is well
known, ' the SU(4) group has been of great intexest
in the unified theory of weak and electromagnetic
interactions of Weinberg and Salam. We shall
denote the 15 representation of vector mesons as
V, (i= 1, 2, . . . , 15) and the SU(4) singlet as V„and
shall write them together as V (u = 0, 1, 2, . . . , 15).
Note that V, , and V„ transform as the 8+1
representation (nonet) of SU(3). Besides the nonet,
the 15+1 representation of the SU(4) contains an
SU(3) charm-carrying triplet (C„,C„,C, ) con-
sisting of the I=-2 vector mesons C„, C„and an
I=O meson C, , a corresponding charge-conjugate
SU(3) triplet (C„,C, , C, ), and the SU(4) singlet
V, . Note that if SU(4) is broken down to the level
of SU(3), V, and V„will mix, and if it is further
broken down to the level of SU(2), all the three
states V„V„and V» will mix. Diagonalization
of the 3x 3 mass matrix in this sector would then
generate the physical states ~, Q, and P.

In a similar manner, we have proposed" that
P' is a member of another 15+1 representation
V (a =0, 1, . . . , 15) of SU(4). The analogs of the
members of the SU(3) nonet will be designated by
p', K*', ~', and Q', which are likely to be the
first rotationally excited states with the orbital
angular momentum l =2. Although there is no
conclusive evidence for the existence of these
resonances, some of them have in fact been re-
ported in recent experiments. " Once again, here
the members V,', V,', and V,', would mix to yield
the physical states cu', Q', and P'.

We show in Sec ~ II that the mass matrix diagon-
alization indeed leads to the result that P and g'
are almost pure q4 q, states to a high degree.
This fact is closely related to the approximate
validity of both the Schwinger and the nonet mass
formulas for the 1 SU(3} nonets.
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In Sec. IQ we discuss the production cross sec-
tion of P and g' from ee annihilation, assuming
that they are coupled to the ee system through one
photon exchange. We compare the coupling of g
and P' to the photon by using the Weinberg spec-
tral-function sum rule. We also discuss suitable
generalizations of the sum rule and use these to
estimate the photon couplings individually. At the
moment, an integrally charged fourth quark ap-
pears to be favored over the usually assumed
fractionally charged one, although the conclusion
is by no means definite. Finally, various decay
modes of g and g' are discussed in Sec. IV. It
appears possible that the dominant decay mode of
P could be the radiative process P- g&+ y or
l)-q'+ y, where l}~ is the pseudoscalar analog of
P with expected mass of 2.75 GeV and g' is the
I= F=O member of the usual 0 SU(3) nonet with
mass 960 MeV.

P=21.60, y= 20.70,

a = 0.998, b = 3.46x 10 ', c = 3.51x 10
(2.7)

linear as the case may be) of the 15-piet and the
singlet, respectively. Finally, D and A are the
appropriate reduced matrix elements. The ma-
trix (2.5) contains the off-diagonal terms Qf), »,
(M), „and (M), ». For the 1581 representation
V, the five unknown parameters in (2.5) can be
determineds' by using the known masses of p,
K*, co, Q, and P. Expressing the quark content
by

It& =sic.e.&+&le.4.&+ clog, +e,lf, +e.e.&,

(2.6)

we state our numerical results for the diagonaliza-
tion of the squared or linear mass matrix for the
multiplet V as follows:

(i) Squared mass matrix. Numerically we obtain

II. MASS FORMULAS

We assume in direct analogy to the SU(3) theory"
that the mass splitting arises from an interaction

(2.1)

where T' and 1' belong to the same 15-piet of
SU(4). Note that T" breaks SU(4) down to the level
of SU(3), and TB breaks SU(3) down to SU(2) in
the usual manner. Since SU(4) will almost certain-
ly be a worse symmetry than SU(3), we expect
p» l. In terms of the corresponding SU(4} tensor
notation T"„(V,, v =1, 2, 3, 4), (2.1) can be rewritten
as (apart from a common multiplicative constant)

b =5.70x10 ', c=6.64x10 ' . (2.6)

using as input the squared central mass values of
p, K*, co, and Q as given in the particle data
tables, "and for g the squared mass value from
the experimental result (1.1). Hereafter, we shall
call the admixtures b and c of the usual quarks in
(2.6) quark-leakage coefficients. We would like
to remark that these leakage coefficients b and c
are extremely sensitive functions of the input
mass values. In particular, lowering the p mass,
for example, by one standard deviation (the p
mass of all the input masses has the largest quoted
errors in the particle data table) changes the
values of b and c into

y =-.'(1+ 2M2P) .

(2 .2)

(2.3)
(ii) Linear mass matrix. Diagonalization of the

linear mass matrix gives

Note that if the quark mass terms are solely re-
sponsible for the breaking of both SU(3) and SU(4)
symmetries, then the parameter y in (2.2) is
given by

m4 ml (2.4}

( )il ™ll+ D(diss + Pdl»l)

(M)ol
-—A (5@ + P5»l ),

Oo =MD,

(2.5)

where i, j= 1, 2, . . . , 15. The symbol M stands for
either squared masses or linear masses. M and
Mo are the SU(4) invariant masses (square or

where m„(p, = 1, 2, 3, 4) is the bare mass of the pth
quark.

The matrix elements of the mass matrix for a
151 representation can then be written as

P = 9.80, y = 9.57,

a = 1.00, b = -2.16x 10 4, c =4.43x 10 ',
(2.9)

and as before the solution for b and c has a rather
sensitive dependence on the input masses. Never-
theless, the results (2.7)—(2.9) do confirm that to
a good approximation P is a q, q4 quark state. The
same remark also applies for the 2' multiplet of
mesons. However, as we shall see shortly, this
is not the case for the corresponding 0 (and 0')
state g~ (and gz) where the quark-leakage coef-
ficients are nearly 15-20 lo These facts have an
interesting consequence for decays of P, P', and

PJ, as we will show in Sec. IV.
In order to understand in some detail the reason

for the smallness and the sensitivity of the quark-
leakage coefficients for the 1 and 2' multiplets
but not for the 0 case, we have carried out the
diagonalization of the mass matrix analytically in
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the approximation of large y. Neglecting terms of
orders y

' and y
' respectively for expressions of

c and 5, we find'~

1

(
+Q-2K

) (2.10)

1

(
+0 —RK

f)
where f is defined by

(2.11)

i
f

(
4K'-p (4E" p)-

-~9 (K*—p)' (2.12)

and the particle symbols in the above equations
refer to the quadratic or linear masses of the
corresponding particles. For the large-y limit,
the mass of t}t is also approximately given by

(2.13)

Now, numerically the right-hand side of (2.12}is
almost zero. In fact,

= +~ K*-p ' 2.14

is the well-known Schwinger mass formula" which
is very well satisfied by both the quadratic and
the linear masses. Thus, slight changes in the
input masses in (2.12) cause sizable changes in f,
even reversing its sign. Furthermore,

u+ P —2K*=0 (2.15)

is the usual nonet mass formula" which is also
very well satisfied by the quadratic masses as
well as the linear masses. Thus, the smallness
of the coefficients b and c is due not only to the
largeness of y, but also to the fact that the exper-
imental masses for the 1 multiplets satisfy the
Schwinger and the nonet formulas very well. Also
it is for the latter reason that the leakage coef-
ficients are rather sensitive to the input masses.
This remark also applies to the 2' multiplet.
However, for 0 and 0' cases this is no longer
true, and indeed we find large quark-leakage coef-
ficients for P& and g&.

The mixing between V,', V,', and V,', can be
handled in a similar fashion. In this case, since
the parameter P (or y) appearing in the Hamiltonian
(2.1) or (2.2) is known from (2.7) or (2.9), we need
only four input masses to determine the four un-
known parameters M', O', A. ', andM,', analogous
to the corresponding quantities in the previous
case. We choose as input the masses of g', ~',
K~', and p'. We identify ~' with &u(1675) and p'
with p'(1600) from the particle data, but there are
several probable candidates for K*', and we

M&. = 1.9 GeV (quadratic formula),

M&. = 2.0 GeV (linear formula) .
(2.16}

Obviously the specific values (2.16) may change
somewhat with a better knowledge of the input
parameters. From the known experimental decay
width r(v'- pv}=100 MeV, we could compute the
decay width r(Q'-KK*) using the SU(3) nonet
symmetry to obtain

r(y'- KK*)+ r(y'-K*K) = 60 Mev. (2.17)

It might be tempting to identify Q' with the struc-
ture observed" in the PP reaction at 1.9 GeV, but
our estimated width (2.17) seems to be too large.

We have seen that both P and g' can indeed be
regarded as almost pure bound states of A@4. The
mass values of the charmed particles in both the
V and V' multiplets can now be predicted since
all relevant parameters in the mass matrix are
known. We have listed these in Table I for the
cases of the quadratic and the linear mass matri-
ces.

Since the parameter P (or y) is known, we can
also compute masses of the unknown members of
the 15+1 multiplet of the pseudoscalar mesons,
using masses of m, K, g, and g' as input. Using
both the quadratic and the linear formulas, we
have listed these masses in Table I. As we
emphasized earlier, a special feature of the
pseudoscalar mesons to be noted is the well-
known fact that the masses of m, K, q, and q' do
not satisfy the Schwinger and nonet formulas with
either the quadratic or the linear masses. As a
result, the quark-leakage coefficients for P+ are
quite large, as already mentioned. Indeed, the
exact numerical diagonalization confirms this
feature. This fact provides a useful guide in the

choose somewhat arbitrarily the state K„(1660),
the lowest-mass state that could have the required
quantum numbers of K*'. The evidence for such
a state is not compelling, and our present assign-
ment should be considered tentative. However, it
is interesting to observe that another nonet mass
formula" Mp& M & is reasonably well satisfied for
the present assignment of p' and ~'. Using these
masses of P', ~', and K*', we have checked that
the state g' indeed comes out to be predominantly
a q4 g, state, if we choose Mz. =1.57 GeV, for the
quadratic mass matrix and if M~ =1.55 GeV, in the
case of the linear mass matrix. In either case,
M~. is reasonably close to the mass of p'(1600),
especially if one keeps in mind that p' is a very
broad structure with a width of about 400 MeV.
Furthermore, we predict the mass value of Q'.
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TABLE I. Predicted masses of the new hadrons based on the SU(4) mass formulas. In using
the masses of the usual hadrons as input, we have, wherever required, averaged over the
masses of the particles in an isomultiplet. For the quark content of the baryons, we have not
exhibited the normalized wave functions with appropriate symmetry and antisymmetry pro-
perties. For the charmed quark q 4, we have adopted Q = 3 and I = 0.

SU(3) representation Quark content

Predicted masses (GeV)
Linear Quadratic

formula formula

JP = 1 mesons

s g„'(v), c,'(v))

Cs (V)

(q2q4, qfq4)

q3q4

1.940

2.062

2.190

2.236

J~ = 1 meson recurrences

s(c~+(vv, cgo(v)')

C,'(V)'

Jp = 0 mesons

(q2q4, qfq4) 2.603

2.713

2.895

2.944

s(c„'(p), c,'g )}

C (P)

(q 2q4

q3q4

q4q4

3.561

3.919

5.599

2.171

2.222

2.755

J+ =2+ mesons

s (c„'(r), ca(z))
c~+ (v )

1 g(T)

(q2q4 qfq4)

q3q4

q4q4

2.372

2.483

3.414

2.816

2.869

3.800

J+ = 2+ baryons

Linear
1 masses

Linear
formula

Quadratic 1 masses
Linear Quadratic

formula formula

(a,', B,0)

B0

3 (a,', a,0)

gy+
C

(B++ B+)

B+
C

J+ =2+ baryons

6 g+', ~, ~0)

g0

3 Q++ g+)

C1 a++

(qfqfq4, qfq2q4, q2q2q4)

(qfq3q4, qlqsq4)

q3qsq4

(qfq&q4, q2q&q4)

qfq2q4

(qfq4q4, q2q4q4)

q~q 4q4

(qfqfq4 qfq2'q4 q2q2q4)

(qf q3q4~ q 2q sq 4)

qSq3q4

(qfq4q4 q2q4q4)

qsq4q4

q4q 4q4

3.371

3.569

3.751

2.863

2.630

4 ~ 568

4.822

2 ~ 634

2.786

2.935

4.035

4.187

5.437

6.200

6.397

6.579

4.830

4 ~ 596

8.788

9.042

4.264

4.416

4.564

7.294

7.446

10.325

3.478

3.537

3.599

2.982

2.898

4.312

4.375

3.213

3.275

4.374

4.419

5.285

'Mostly an SU(3) singlet but with some admixture from the 8th component of the octet.
There is a 15-20% leakage to q fq f+qmq2 and q3qs states.
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search for the dominant decay mode of g, which
will be discussed in Sec. IV

As an aid to the experimental search for the new
hadrons that the SU(4) theory implies, we have
also listed in Table I the predicted masses of the
unknown members of the 151 representation of
2' mesons as well as of the 20-plets of 2' and &'

baryons. For the baryons we have computed three
sets of predictions. We may use for P the value
in Eq. (2.7) determined by using a quadratic mass
matrix for the 1 mesons, and use this value as
an input in either the linear mass formula or the
quadratic mass formula for the baryons. ' '" Al-
ternatively, we may use P from Eq. (2.9) obtained
by using a linear mass matrix for the 1 mesons,
and use this in the linear mass formula for the
baryons. Since the mass formulas for the baryons
have been derived elsewhere"'" we do not repeat
this discussion here.

Although we have computed mass formulas in
both linear and quadratic forms, we believe that
the use of the quadratic mass formula for both
the mesons and the baryons is a more plausible
choice for the following reasons. First of all, the
experimental straight line of the Chew-Frautschi
Regge-pole plot indicates that the use of M' rather
than' itself is more natural, at least for the lead-
ing trajectories. Second, "M' is the Casimir in-
variant of the Poincard group, independent of any
particular frame. Third, any calculation of en-
ergy eigenvalues in the infinite-momentum frame
automatically leads to the quadratic formula. "
Finally, calculations" on the basis of asymptotic
chiral symmetry indeed give quadratic mass for-
mulas for both the baryons and the mesons. We
should also remark that the use of the quadratic
SU(3) mass formula for the baryons is slightly
better"" than the corresponding linear one, al-
though both formulas are rather well satisfied.
However, if the SU(4) multiplets are discovered,
since there is a sizable difference in the predicted
mass values in the various cases (see Table I),
it is interesting to note that the long-standing
question of choosing between the quadratic and the
linear mass formulas may actually be settled
numerically.

In ending this section, we briefly discuss the
15+1 multiplets of 0' and 1' mesons. Unfortunate-
ly, even at the SU(3) level, the status of these
multiplets is not well established. If we choose
the & meson as well as one of the K„states listed
in the particle data to belong to the multiplet
151 of SU(4), then we roughly estimate the mass
of g (1') to be 3.0—4.0 GeV. With respect to the
0' meson, the situation depends sensitively upon
the exact mass of the so-called ~ meson, and the
mass value of P& could be as high as 5 GeV.

III. GENERALIZED WEINBERG SUM RULE

We assume that g and P' are produced in ee
annihilation due to one photon exchange. If ~&

(G& ) denotes the coupling of g (g') to the photon,
the total production cross section for ee- g inte-
grated over the width of the resonance is given by

AIJ, — dS 0'g S —7T 47TQ Gg (3.1)

where e is the fine-structure constant. The same
formula also applies for the ee- g' cross section.
We may remark that (3.1) is derived under the
assumption of unpolarized e and e beams. How-

ever, even if e and e are polarized perpendicular
to the beam direction, with opposite polarizations
for e and e, the formula (3.1) is still valid, ir-
respective of the degree of polarization. Ex-
perimentally, from the figures of the SLAC data, "
we estimate (ignoring radiative corrections)"

A& —- 1.0x 10 '(1 i R),

A&, - 0.5x 10 '(1 ~ R'),
(3.2)

where 8 and A' are fractions of purely neutral
decay modes for t) and P', i.e.,

I'(g- neutral)
I"(g- charged)

(3.3)

The expression for A ' is obtained by replacing
P- g' in (3.3). We expect that R and R' are per-
haps small.

In order to compare the formula (3.1) with (3.2),
we now proceed to estimate the coupling constants
G& and G&. by means of the Weinberg sum rule. "
Several simple calculations based on this idea
have been independently proposed by various
authors, '" including us. Here, we shall investi-
gate the problem in greater detail. To start with,
we assume the validity of the asymptotic U(4)
symmetry. -' Then, the first spectral sum rule is
expressed as

J
"dm2

p(V, V~;m') =A5 8,
p m

(3.4)

where the charmed current P is defined by

(3.5)

We should emphasize the fact that the relation

where u, P =0, 1, . . . , 15 and p = p(V", V; m') is
the usual spectral function'4 for vector currents.
In particular (3.4) gives

dm'
[2p(V', V'm') —p(V' V', m')] =0,

0

(3.5)
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(3.4) is formal and that the integral in Eq. (3.4)
may actually diverge. However, the difference in
Eq. (3.5) may still be convergent and meaningful.

In the quark model we note that

Vp = iq4ypq4 (3 7)

G2G2g2g2
M' M.' M' M.'

P P

(3.8)

The coupling constants in Eq. (3.8) are defined as

&OIV,', Ip'(p)&=
2 V „,e„(p)&„
2p V ll2

(0Iv'„ Ik(p)&=
2p v, , & (p)g~

0

(3.9)

with similar definitions of GP and g&.
In order to relate g& and g& with G& and G&. , we

have to know the structure of the electromagnetic
current j' . In the SU(4) theory, we expect a
form

jp ——V~~+ ~ V~+ ZV~, (s.io)

where Z is the electric charge of the charmed
quark q4 in units of e. In the fractionally charged
quark model discussed by Glashow' et al., Z= &.

Using (3.10), the electromagnetic couplings of $
and P' to the photon are given by

Gg = Zgg Ggi = Zggi (3.i 1)

Also, owing to the V„ term in Eq. (3.10), the
quantities GP and GP are just the couplings of p
and p' to the electromagnetic current. Then, the
sum rule (3.8) gives

G ' G i2 Gp' GP~2

M' M' M Mpt gt p pl
(3.12)

is purely the q4 current. Now in Sec. II we showed
that both P and P' have predominantly a q~q~ quark
content. So if we use pole dominance in Eq. (3.5),
the contribution to the p(V', V'; m') term will come
from $ and P' states. On the other hand, both p
and p' will contribute to the p(V', V'; m') term.
Therefore, we find

ee annihilation, and if one assumes this is due to
p', the experiments yield" the following estimate
for GP.

G ' G'
P P

(3.14)

If we use the standard fractionally charged quark
model, we may take Z= ~. Then, the experimental
estimate (3.2) with R =A' =0 gives for the left-
hand side of Eq. (3.13) the numerical result 16
x 10 ' (GeV)', which is to be compared with the
estimate 9&& 10 ' (GeV)' for the right-hand side.
Since we expect R & 0 and R '& 0, the real dis-
crepancy will become worse, perhaps by a factor
of 2. However, the integrally charged case IZI
= 1 would satisfy (3.13) quite well, provided that
R and R' are small. Quark models with such an
integrally charged assignment for the q4 quark can
be constructed, although they are somewhat arti-
ficial and lack the appeal of the fractionally
charged model. " At present, however, we do not
take the discrepancy seriously since our input
estimates, particularly for the parameters of p',
may be in substantial error. Furthermore, we

may draw attention to the possibility that the pole-
dominated form (3.12) of the spectral sum rule
may not be reliable. Inthe particle spectrum, there
could well be higher excited states, hitherto un-
discovered, which could upset the saturation of
the sum rule. This may be particularly serious
since, for example, the estimate (3.14) of the
p' parameter shows that both p and p' make com-
parable contributions to the sum rule (3.13).
These doubts notwithstanding, there is a well-
known sum rule" relating the leptonic decay widths
of p, e, and Q which is in good agreement with
the experiments. The validity of this sum rule
I see Eq. (3.20)] would be accidental if the higher
excited states of p, (d, and Q were to make sizable
contributions. A possible resolution of this para-
doxical situation may be that the first spectral
sum rule is actually valid individually for each
multiplet, analogous to the local duality sum rule.

%e propose accordingly the validity of such local
(or individual) sum rules,

or using (3.1)

A~M~ + A~iMl, , = 2mZ (4wa), +2

(3.13)

G 2 G 2

2Z M'
P

G 2 G r2

(s.is)

(s.16)

Now, the electromagnetic coupling of p is well
known from experiments, and the experimental
result is consistent with the Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin relation G~'/Mz'

=f ', where f is the v- pv decay constant. Also,
a 4m enhancement at 1.6 GeV has been observed in

A possible way in which such local sum rules
I (3.15) and (3.16)] can be obtained is as follows.
If we apply the asymptotic symmetry requirement
on the two-point propagator function of the unre-
normalized vector field operator g (x) belonging
to a given U(4) representation (o. =0, 1, 2, . . . , 15),
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we obtain an analog of the first spectral sum rule, it as

Z„/M„' = constant,

where the renormalization constants Z are
defined by

(s.17) M~r A~i Gp.2 Mp2

M2A MP G ' (3.23)

in view of Eq. (3.1}. Using the estimate (3.14}, we
obtain

&0I4"„(0)IV (p)& =
2 V)„, (Z )"'e„(p) . (3.18)
2P 'y)1/2 c( Agi 0.7Ag &

(3.24)

If we now were to use phenomenologically a field-
current identity in the form

~v = ~&u + ~ &v + ' ' ' (s.19)

(gi I) go 5jl + eI.desi ) dj&sl ~ (3.21)

where the primed fields belong to the V' repre-
sentation, the sum rule (3.17) would lead to (3.15),
and an analog of (3.17) for the 16-piet Q&" would
yield (3.16). Furthermore, since g is predom-
inantly a q4q4 quark structure with negligible ad-
mixture from q,q, + q,q, and q,q, states, the sum
rule"

—;M,r(p- lT) =M„r(~- IT)+M,I"(4 - IT)
(3.20)

would virtually remain unaltered. A sum rule
similar to (3.20) is then also expected to hold for
the leptonic decays of p', ~', and Q'. Another
way to understand the validity of the local sum
rules (3.15}and (3.16) is to use the current-mix-
ing theory based upon the field algebra" separately
for @„and Q„' fields with the ansatz (3.19).

A remarkable feature of the local sum rules is
that they are consistent with the broken SU(4)
formula,

IV. DECAY MODES OF Q AND P

The purely leptonic decay modes P- lT and P'- lT would be mediated by a virtual photon, and
one would obtain'

( T)
4mo. ' Gg' A pe

3 M ' 12@'

with a similar formula for (Ij'- lT. Using the
estimate (3.2), we calculate

(4.1)

which can be consistent with the experimental
value (3.2) if we have R'=0.4. Such a rather large
neutral decay rate of tIt)' is perhaps unrealistic.
However, the estimate (3.25) depends sensitively
on the value" of G~, so that it would be premature
to reject the validity of (3.16) at the present time.

In closing this section, we may comment on the
curious empirical equality (3.14) between G&')M 2
and G~'/Mp'. If verified by future experiments
this may perhaps indicate some hidden higher
symmetry group such as SU(8)O(3) which is an
extension of the usual SU(6)I30(3) group of the
three-quark model, where O(3) is the space-ro-
tation group.

where g» (j, l =0, 1, 2, . . . , 15) is defined by

«I &„'
I &'(p)& =

(sp V),g, @)&„(P).
0

(3.22)

I (g- LT}= 2.6(1+R) keV,

I'(ll'- lT}= 1.6(1+R') keV.

Experimentally, we know"

(4.2)

Indeed, together with the quadratic mass formula
for the 16-piet, Eq. (3.21) can reproduce the sum
rule (3.15). Note that the parameter )S appearing
in Eq. (3.21) is the same SU(4)-breaking constant
as in Eq. (2.1). Although the validity of Eq. (3.21)
appears to be reasonable from an orthodox broken-
SU(4)-symmetry viewpoint, its compatibility with
(3.15) may be purely accidental. We should re-
mark that Eq. (3.21) is reminiscent of the question-
able broken second Weinberg sum rule. ' There-
fore, a more careful investigation is perhaps
called for.

Now returning to the original discussion we shall
consider the experimental verifications of (3.15)
and (3.16). First, the sum rule (3.15}is quite
well satisfied with the choice of the integral
charge Z=1 and with a small R (~0.10). With
respect to (3.16}, it is more convenient to rewrite

I'(g- charged)
r(q- pp)

so that (4.2) and (4.3) give

(4.3)

I'(4I- all) =42(1+ R)' keV. (4.4)

I'y(g- hadrons)
I'y(Q- LT)

(4.5)

With respect to P'- p, p, , it appears experimentally
that it represents only a very tiny fraction of less
than 1@of the total decay rate. Hence, the total
decay width of P'- all could be 200 keV —1 MeV.

Next let us consider the hadronic decays of P.
First of all, this could go through a virtual-photon
exchange mechanism g- y- hadrons. In this case,
an argument based upon the usual quark-parton
model would give
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where Q& is the charge of the jth quark. For the
3-color fractionally charged quartet model, we
have Q, Q,

' = ~3, and we expect I'&(t) - hadrons)
= 10 keV. However, this is too small a value when
compared with the experimental result (4.3), and
we have to look for a different mechanism for the
dominant hadronic decays of P and g'.

An important question is why g and P' do not
decay strongly into ordinary hadrons consisting
of the SU(3) quarks q„q„q, and the corresponding
antiquarks, leading to large widths typical of
strong decays. In terms of the quark content of

$ and P', such decays could go through either or
both of the following possibilities: (a) The q,q,
state which predominantly makes up the j and g'
structures may annihilate into vacuumlike (or
gluon) states, subsequently coupling to the ordin-
ary quark structure. (b) P and P' may decay into
ordinary hadrons through the small leakage coef-
ficients of the ordinary quarks. The situation
here is similar to the one encountered in the more
familiar decay Q- pm, where the final hadrons
are made up of the quarks q„q, and their anti-
particles, and (through diagonalization of the mass
matrix) Q is known to be predominantly a q,q,
bound state. It is well known that the small decay
rate for Q - pm can in fact be accounted for by the
presence of the small quark-leakage coefficient
for the structure q,q, + q,q, contained in the phys-
ical Q state. This follows from the nonet hypothe-
sis, "which works well for both the 1 and the 2'
multiplets. In terms of the quark lines, this hy-
pothesis equivalently forbids the pair annihilation
diagrams of quark-antiquark lines into the vacuum-
like (or gluon) states, a feature first recognized
explicitly by Zweig and Iizuka, "and we shall refer
to it hereafter as the OZI rule. Subsequently, a
close relationship of this rule with the duality
diagrams was also recognized. " In this paper we
shall adopt this rule as a working hypothesis, and
consequently discard the possibility (a).

We believe that this philosophy is perhaps con-
sistent with the quark-parton model if we take a
view that rearrangement of a quark pair into
ordinary hadrons is possible only when the total
energy of the system is much larger than the quark
masses. Then the hadronic decays of g and g' by
strong interactions are possible only through the
mechanism (b). Since the leakage coefficients of
the ordinary quarks are small for the 1 multi-
plets, we can readily understand, at least quali-
tatively, the narrow widths of g and P'. In this
connection, we should mention that an alternative
and opposite viewpoint has been discussed by
De Rujula and Glashow. ' Ultimately, the future
complete theory must take into account all these
different mechanisms, but hereafter we follow the

I;, (t) - hadrons) = 3
~
c

~

' (4.6)

where the dominant leakage coefficient c is given
by (2.6) or (2.10). Depending upon whether we
use the quadratic case (2. t) or the linear case
(2.9), we estimate

I', (P- hadrons) = 300 keV (quadratic),

or

I', (g- hadrons) = 0.04 keV (linear) .

(4 7)

To exhibit the sensitive dependence of the coef-
ficient c on input masses, if we lower m~ by one
standard deviation, we get

I;, (g- hadrons) = 11 keV (quadratic),

I', (g-hadrons) = 200 keV (linear) .
(4.8)

It is clear that because of the enormous sensitivity
of the result to small changes in input parameters,
the quantitative results in (4.7) and (4.8) cannot
be taken too seriously. In fact it may be important
even to consider the electromagnetic mass dif-
ferences. Note in particular that it would be
premature to conclude from the large width in
(4.7) for the quadratic case that the mass formula
for 1 mesons should be linear. This mechanism
in fact may even be quite unimportant for the
decay of P.

For the decay of (l}', we similarly estimate

I;, (g'- hadrons) = 0.1 MeV (quadratic),
(4.9)

I;,(P'- hadrons) = 0.5 MeV (linear) .

In this case the input masses in the mass-matrix
diagonalization have much larger uncertainties,
so that the estimates (4.9) are probably much less
reliable. We may also note here that for g&, the
0 analog of (I), the quark-leakage coefficients are
much larger, and relatively insensitive, as
emphasized in Sec. II. The quadratic mass formu-
la predicts M(P~) = 2.75 GeV, whereas in the linear
case M(Pz) = 5.60 MeV, so that for Pz we expect a
sizable width due to quark leakage;

I;, (g~- hadrons} = 4.4 MeV (quadratic},
(4.10)

I', (g~- hadrons) = 12 MeV (linear) .

Another important decay mechanism for g is the
radiative decay

OZI quark rule supplemented by our philosophy
of the quark leakage.

Since the hadronic decay of P can go through the
quark leakage, and since the SU(3)-singlet coef-
ficient c in (2.6}is larger than the other coefficient
b, the total hadronic decay rate via this mechan-
ism would be given crudely by
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P- P~+ y- y+ hadrons,

0- 9 + y- y + hadrons,

(I)-'0+ y- y+ hadrons.

(4.i i)

(4.12)

(4.1s)

diagonalization of the (quadratic) mass matrix
leads to a large quark-leakage component of q4q,
in the physical q' state (but not in q), which is of
the order of 20/p. Hence, the OZI rule requires

Let us consider" first the decay (4.1i). Note that
P- g~ + y is energetically allowed only if we use
the mass value M(gr) = 2.75 GeV determined from
the quadratic mass formula. In this case, the
decay is allowed by the OZI rule. Using the
exact U(4) symmetry as a guide, we estimate

r(0 p&r-) u(g p~-)
' ~+~. '

~~

r(~- v'r) -v(~- &')- 0+ 4~
(4.14)

where p, denotes the transition magnetic moment
in units of the Bohr magneton and k is the photon
energy. Since we are dealing with a magnetic
dipole transition, we have extracted the mass
ratio (&u + v, )'/(P+ P~)' explicitly in (4.14) in con-
formity with the usual practice. In the exact U(4)
symmetry, we expect the ratio of the transition
magnetic moments to be v 2, so that we obtain

r(g- P~y)= 40 keV (4.15)

if we use the known experimental value r(&u-v'y)
= 0.8 MeV. If the estimate (4.15) is seriously
believed then the decay P- P&y may well be a dom-
inant decay mode of P, especially if in the present
case of the quadratic mass formulas we accept
the estimate (4.8) as typical for g-hadrons. An

important signature for the decay P- (I)p+ y mould
be the emission of a monochromatic photon with
energy E& = 330 MeV. One should keep in mind
that in our numerical estimate (4.15) use has been
made of the U(4) symmetry, which may be quite
inaccurate. Furthermore, if the linear mass
formula is used, this decay is energetically for-
bidden.

The decay mode g-p'+ y may actually be quite
important too. The reason is the following. The

r(t}'- q'r)
r(y-y, y)

= (4.16)

where c' is the q4q4 quark-leakage coefficient of
g' and k' and k are the photon energies in the two
processes. The suppression due to quark leakage
in (4.16) is roughly compensated by the gain in
the phase volume, so crudely we expect

r(y- q y) = r(q- y y) . (4.17)

We would like to point out that one of the final ob-
servable decay products of g- g

'
y is m' m w'w w'y

due to q'-qm'm followed by q- n'w m'. Hence
we expect that this process would constitute a
sizable background (with a monochromatic photon
of energy = 1.4 GeV) to the reported decay P
—(dm'n . If a linear mass matrix is employed,
c' is again of order 20%, and although P- Pry is
not allowed, we may expect the width of (I)- g'y
in this case to be comparable to the corresponding
one in the quadratic case. In this case if we were
to take the estimate (4.7) seriously, g-q'y would
presumably be the dominant decay mode of g.
Also note that the decay rate for P- qy can be
estimated similarly in terms of P- g'y, and we
find that r(f- qy) is about 10% of r(p- q' y) in
the linear case but about 2% of r(P- q'y) in the
quadratic case.

We may remark here that for all the three types
of decay mechanisms we have considered here for
g, i.e., g- y- hadrons, P, )

—hadrons, and the
radiative decays of g, the effective decay inter-
action is a U-spin scalar. Then for all these de-
cay mechanisms, as well as for the gluon annihil-
ation mechanism of De Rujula and Glashow" (if it
is important), we predict

d d'
dp'

r(g- K'(p) + anything) =, r(g-v'(p) + anything),
dP

d p

dP3
r(|}t-v'(p) + anything) = 8 —r(g- q (p) + anything)

dP'

(4.18)

for the semi-inclusive decay rate with a given momentum P. For the integrated rates, these are rewritten
as

(n(K")) r(g-K'+ anything) =(n(w')) r(P-n'+ anything),

(n(v')) I (P-no+ anything) = r(g-q+ anything),(n(q))
(4.19)
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where (n(P)) is the average multiplicity of the
meson P. In the above derivation, we have ne-
glected the mass differences among members of
the 0 meson multiplet. '4 Unfortunately, this is
not possible for the rather important radiative
decay g- g'+ y. Note that since q' may decay into
q'-qx+v —(v'v wo)w+v, and there is no corre-
sponding mechanism for KZ decays, we have to
subtract the mechanism g- q'y when we use
(4.18) or (4.19).

Finally, we would like to explain qualitatively
the reported dominant decay mode of P', i.e.,
(LI)'- Pm'm . The OZI quark rule allows a strong
virtual decay

(4.20}

where gs is the scalar analog of gJ with J =0'.
As mentioned in Sec. II, the status of the 0' nonet
itself is not clear at present; however, we expect
that the above decay is energetically forbidden.
At the same time, as for g&, the quark-leakage
coefficients in gs are expected to be quite large.
We draw this inference from the fact that the
various listed masses or mass ranges for the 0'
nonet do not satisfy either the Schwinger or the
nonet formula. Therefore, the virtual Ps could
decay into a 2n state via the quark leakage with a
probability which is not too small. Although re-
liable quantitative calculations are difficult to
make out at present, we believe on the basis of
the foregoing qualitative arguments that the mech-
anism (4.20) may well account for the decay P'- g+ m'n . Another possible mechanism is through
the virtual decay P'- g+ e, since the 0' meson &

corresponding to the 2m resonance with I= I'=0 is
expected to contain a large q4q4 leakage coefficient.

To summarize, we have examined in this paper
in some detail the production and decay mechan-
isms of g and P', based on the hypothesis that they
belong to the 151 representations V~ and V',
respectively, of the SU(4) group. Although our
estimates at times have been rather qualitative,
we believe that the various known experimental

features of the new resonances at the present
time fit in quite well with the SU(4) hypothesis.
The most direct confirmation of the SU(4) theory
would be the discovery of charmed mesons and
baryons. As an aid to the experimentalist, we
have tabulated the various masses of the yet to be
discovered particles.

In conclusion, we may point out an amusing
parallel between the 20-piet of baryons on the one
hand and the 20 amino acids in the DNA molecule
on the other. Both schemes are based on the
existence of four fundamental entities, with three
units representing each of 20 baryons or amino
acids. Is nature trying to tell us something im-
portant here P

Note added in Proof. For the 151 multiplet of
pseudoscalar mesons, one may alternatively use
the E(1416) meson instead of q'(958). Diagonal-
ization of the mass matrix with masses of m, K,
q, and E as input then yields the following results:
(i) M(Pz) = 3.026 GeV for the quadratic mass matrix
and M(f~) = 6.077 GeV in the linear case. In the
quadratic case the mass of gz is close to the
estimates made for the paracharmonium mass.
(ii) The quark content of g~ now has much smaller
leakage coefficients in contrast to the case dis-
cussed in the test. We also note that the Schwinger
mass formula is better satisfied in this case. In
the present case the discussion of the radiative
decays of g, Eqs. (4.11)—(4.13), will be consider-
ably changed: (a) g- g~z, as before, is allowed
energetically if we use the quadratic mass formu-
la. However, the phase space is now very small
and Eq. (4.14) leads to I'(g- P~y) = 0.5 keV. (b)
The decay rate for g-Ey will also be much small-
er, since the q4q, quark leakage coefficient of E
is much smaller now [see Eq. (4.16)]. The decay
rate for P- gy is negligible as before.
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