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Bound-state wave functions and bound-state scattering in relativistic field theory*&

Kerson Huang and H. Arthur Weldon
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We describe how a matrix element of an operator may be calculated between bound states, in the
framework of conventional relativistic field theory. In the course of doing so, we examine how

bound-state creation and annihilation operators may be constructed, the asymptotic condition for bound

states, what general types of wave functions are appropriate for describing bound states and why,

graphical analysis involving bound states, and questions of renormalizability. The final result is a set of
Feynman-type rules for calculating a matrix element. Those for the 8 matrix are stated explicitly.

I. INTRODUCTION

The distinction between elementary particles
and bound states depends purely on the theoretical
model with which we describe them. Experimental
data, even if extrapolated with the help of some
theoretical assumptions about analyticity, can
only tell us that a particle has certain quantum
numbers, and that it corresponds to a pole in
certain S-matrix elements with certain residues.
The distinction is dictated by the simplicity of the
model which attempts to explain experimental data,
and changes as experiments progress into regions
of higher energy and probe details over smaller
distances. Such has been the case with our con-
ception of molecules, atoms, and nuclei. It has
now become practical to ask whether hadrons
should be described as bound states, because
available experiments suggest that this may clarify
some new phenomena in terms of concepts familiar
from the past.

Obviously, to be able to answer this question,
one must first have a theory of bound states with
which to do calculations, and one must understand
the theory well enough to make approximations,
which are always necessary in practice. In the
case of molecules, atoms, and nuclei, one has
such a theory, i.e., the nonrelativistic Schrodinger
equation, and one understands it. In the case of
hadrons, however, no comparable theory has been
developed. The new feature that makes the prob-
lem more difficult is that at smaller distances
relativistic effects become important, especially
the existence of antiparticles and the possibility
of pair creation. This prevents one from taking
immediate advantage of the intuition gained in
nonrelativistic problems to devise approximate
calculations. A formal framework is needed in

which to establish principles and acquire new
intuition. Relativistic field theory provides such a
framework. In fact it is the only one available at
present that is well defined. In this paper we study

bound states within this framework.
Since Bethe-Salpeter wave functions' were intro-

duced as a way to describe relativistic bound
states, many authors' have studied their meaning
and properties; but a general and systematic study
of relativistic bound-state phenomena seems to be
lacking. Many natural questions that come to mind
have not received clear answers. For example:

1. Is there anything special about Bethe-Sal-
peter-type wave functions? Are there not other
types of wave functions, for example the Tamm-
Dancoff-type wave functions, ' that could serve
equally well?

2. If one describes the pion with a Bethe-Sal-
peter wave function consisting of a quark-antiquark
pair qq, has one unjustif iably neglected contributions
from qqqq, qqqqqq, etc.?

3. In principle, how does one calculate the ma-
trix element of an operator between bound states,
such as the S matrix?

We answer these questions in this paper. Brief-
ly, the answers are as follows:

1. A Bethe-Salpeter-type wave function, defined
as any nonvanishing matrix element of a time-
ordered product of any number of Heisenberg
fields between the bound state and the vacuum
state, is the natural description of a bound state,
because it occurs in the residues of poles of
Green's functions that enter into the reduction
formula for bound-state scattering. This, quite
apart from other virtues like covariance and re-
normalizability, makes it appropriate.

2. The qq Bethe-Salpeter wave function for the
pion is a complete description by itself. One may
also consider Bethe-Salpeter-type wave functions
containing any number of pairs, e.g. , qqqq,
qqqqqq, etc. These are, however, reducible in

the sense that they have poles whose residues con-
tain wave functions with fewer pairs, and can all
be expressed in terms of the qq wave function,
which is irreducible in this sense. There is a
reduction formula for pion scattering that involves
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any reducible wave function one happens to choose
for the pion, but the S-matrix elements calculated
therefrom collapse to those calculated with the
irreducible choice.

3. There are Feynman-type rules for the calcu-
lation of a matrix element of an operator between
bound states. For example, for pion-pion scat-
tering the rule for the S matrix is as follows:
The pions are to be described by irreducible
Bethe-Salpeter wave functions. Start with a quark
Green's function with eight external legs, and
group the external legs into pion groups by quan-
tum numbers and momenta. In the Feynman graphs
for the Green's function, omit all interactions that
can be absorbed into the pion groups, and subtract
certain well-defined redundant graphs. Finally,
multiply by the pion wave functions and integrate.
The only nonintuitive part of the procedure is the
subtraction of certain redundant graphs. Refer
to the main text for a fuller explanation.

What we do in this paper, then, is to describe
in principle how one may calculate matrix ele-
ments involving bound states, in the framework
of conventional field theory. In the course of doing
so we examine how bound-state creation and an-
nihilation operators may be constructed, the types
and properties of bound-state wave functions,
graphical analysis involving bound states, and
questions of renormalizability. Not discussed are
actual calculations and the physical interpretation
of relativistic wave functions. We hope that the
formal developments in this paper represent a
first step in approaching these problems.

II. BOUND STATES AND GREEN'S FUNCTIONS

Gell-Mann and Low' showed that the Bethe-Sal-
peter wave function of a two-particle bound state
is defined by the residue of a pole in the invariant
mass of two of the legs of a Green's function with
four external lines. We generalize this result to
show that a bound state gives rise to a pole in the
invariant mass of any group of elementary parti-
cles having the same quantum numbers as the
bound state, appearing as external legs of any
Green's function. The residue of such a pole de-
fines a wave function for the bound state. There
are thus many possible wave functions, involving
different numbers of constituent elementary par-
ticles, all representing the same bound state.

Consider a relativistic quantum field theory
involving a set of causal Heisenberg fields
(g, (x), g, (x), . . . J. By the usual asymptotic assump-
tion there are "in" and "out" fields that create
asymptotic states made of elementary particles.
A bound state in this field theory is defined as a
state of discrete mass and definite spin, orthogo-

nal to all the elementary "in" or "out" states.
Accordingly, a bound state ~P, s) has three char-
acteristics:

(P"
~ P, s) =P"

~ P, s) (P'=m'), (2.l)

U(A) i P, s) = g i AP, s') D, ,[L '(AP) AL(P) j,

(0 ( |j,(x) ~ P, s) -=0, for all i

(2.2)

(2.3)

where Ep =—P . The completeness relation then
reads

d'Pl=g, ~P s)(P s~+ . (2 5)

For any bound state ~A. ) in the field theory there
is a time-ordered product of elementary fields

8(x) -=T[g(x,) ~ ~ ~ ((x„)), (2 6)

for which (0~ Q(x) ~A) $0, where (0~ is the vacuum
state. Here g(x) stands for any Heisenberg field
operator g;(x), which may be a boson field, a
fermion field, or its adjoint. The distinguishing
indices i, which may include spin and internal-
symmetry indices, have been suppressed.

We shall eall (0~ 8(x) ~ A) a wave function for the
bound state

~ A), in the sense that it gives a de-
scription of the state. The relevance of such a
description will be demonstrated by showing firstly
that it occurs in the residues of poles in certain
Green's functions and secondly that we may make
use of them to calculate S-matrix elements for
reactions involving the bound state. This wave
function is clearly nonunique, although for any
given bound state there i.s a unique choice involving
the minimum number of fields. We call the mini-
mum choice an irreducible avave function, and the
others reducible gvave functions. For example, if
a proton is considered to be a bound state in a
quark field theory, then its irreducible wave func-
tion consists of three quark fields, and the re-
ducible wave functions consist of any number of

where 6'" are the generators of translation for
the Heisenberg fields, P" is the 4-momentum of
the bound state, and A is a Lorentz transforma-
tion. The label s in

~ P, s) refers to spin, but may
include other internal symmetries in a more gen-
eral case. We assume throughout this work that
for given discrete quantum numbers the bound
state is unique, i.e., the mass is not degenerate.

A complete set of states in the Hilbert space of
the field theory must specifically include all the
bound states. Because the bound states have been
chosen to transform covariantly in (2.2), we may
normalize them (just as elementary particles) by

(P', s'i P, s) =2E~(2m)'6'(P'- P)b. .. (2.4)
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pairs of quark-antiquark fields in addition to the
three quark fields. The formal developments in
this section and the next make no distinction among
these choices.

Consider the Green's function

G(P, Q) = (»)'5'(P-Q)

& oI~(p)l~)&~IS(o)lo)e "'"
i (E, E—+ te)2E „

(2.13)
9(», y) =-(oI Ttt(x)s(y) I 0), (2.7)

x;=X+p;, Q p, =o,

= K+0'd e Q 0( =0 .
(2.8)

where x=(x„.. . , x„j,y =—(y„.. . , y j, and S(y) is
a time-ordered product of m elementary Heisen-
berg fields. In the conventional Feynman-graph
representation, 9(x, y) is the sum of all graphs
with n+m external legs, which includes the n legs
corresponding to the fields in 8(x). We introduce
average and relative coordinates for the two sets
x and y by writing

where E =Po, E„=—P'„, and the states
I

o.') all
have total 3-momentum P„=P. The sum over s„
is a sum over quantum numbers of

I n) . The en-
ergy denominators displayed in (2.13) give rise
to poles at E =E . Of the terms in R, the one
corresponding to the time ordering S(o')8(p) gives
rise to poles at E=-E„, while all others have no

poles at all, owing mathematically to the fact that
the ranges of Xp Yp are fixed finite intervals.
The bound state

I A) thus gives rise to a discrete
pole at E =E„, which is contained in the first sum
in (2.13). Rewriting

1 E~+E
(E„-E)2E„(E„'—E2)2E ~

This definition is not unique, but merely the
simplest. More generally, we may redefine p,
such that Qa~p, =o,with the condition ga, =l, so that
X =pa, x, . With (2.8), an integration over all
coordinates may be written as

E+E 1
2E„P' -m.2 '

where m '=E ' —P„'=E ' —P', we have

G(P, Q) = (»)'~'(P —Q) P.

(2.14)

n

(de) -=Jd'p d'p„e (e ' Q p;) .
i=a

(2 9) x g &ol e(p) I P, s)(P, sl s(v) I o&,

(2.15)

G(P Q)= Jd'Xd'Ye'~ '* ' 9)e Y) (2.11)

inserting a complete set of intermediate states
into the first term of (2.10), and using the rep-

resentationn

i Mt

8(t) = . d&u
27TZ ~ —SE

(2.12)

we obtain

Among the time orderings in (2.7) there are those
for which all the fields in 8(x) stand to the left of
all those in S(y). We isolate their contributions to
the Green's function:

9(x, y) = ( 0
I 8(x)S( y) I 0) 8(X, —Y, —a) + R,

(2.10)

where, for fixed values of (X, Y, p, o), a is some
fixed number sufficiently large so that x;p ~p,.p
for all i and j. The remainder term S contains a
term proportional to 8(-Xo+ I', + a), and other
terms for which the range of Xp —Ip is restricted
to finite intervals. Defining the Fourier trans-
form with respect to average coordinates by

where we have written IA) —=
I P, s) . If we had let

E- -E„we would have picked up the pole corre-
sponding to the antiparticle of the bound state,
also located at P'=M„', but with residue
&ol s(o) IA) &&I ft(p) I o) .

The residue of the bound-state pole in (2.15) is a
product of a wave function (ol 8(p)l P, s) and an
adjoint wave function (P, sl S(v)l 0), which do not
necessarily have the same number of constituent
fields, and which are in general reducible. By
doing the same type of manipulations for a re-
ducible wave function as we have done for 9(x, y),
we can show that the Fourier transforms of re-
ducible wave functions have poles in subsets of
momenta, whose residues are wave functions con-
taining a smaller number of constituent fields. We
may repeat this process until the residues involve
irreducible wave functions. We shall show in
more detail later that irreducible wave functions
satisfy homogeneous Bethe-Salpeter integral equa-
tions, whereas reducible wave functions do not-
they may be calculated from the former. In de-
riving a formula for the S matrix involving bound
states, however, we may use any wave function,
as we show in the next section.
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The notation we shall use for wave functions is
as follows. By translational invariance dpup, p 08 p I' s' =g (3 4)

(Ol 8(&)IP, s)=e-" (OI8(p)l P, s). (2.16)

)(,(P„.. . , P„) = (dp)(018(p) I P, s)

n

&exp i P,. ~

p~ . 2.1V
j=l

The corresponding adjoint wave function is

x,.( „d, )n= f ldn)(n, ~(lu(o)l o)

n

& exp -i P,. ~ p&, 2.18
J= 1

The Fourier transform of the relative wave func-
tion is denoted by

lim u„,( p) =0 (j = 1, . . . , n) .
p, ~goo

In (3.3), "transform" refers both to Lorentz and
internal-symmetry-group transformations on the
suppressed indices. The condition (3.4) merely
specifies a normalization constant, because any
function satisfying (3.3) will have the normaliza-
tion integral (3.4) proportional to &„ by Schur's
lemma. As an example one may take u)„(p) to be
the relative wave function (OI 8( p) I P, s) itself,
multiplied by a convergence factor g(p, ) . g(p„),
where

(3 6)

a(p)= epxI.-r, ( Pp)' r.(p-p)'l. (3.6)

Now we define a bound-state annihilation opera-
tor as

where f (dp) is defined in (2.9), 8(p) is obtained
from 8(p) by replacing all P; by (;, the latter be-
ing the Hermitian adjoint of the former for boson
fields, and Pauli adjoint for spinor fields.

az"'""(P, s) = d'X (dp)U~~, (X, p)i
8

0

x8 in(out) (X (3.7)

III. REDUCTION FORMULA FOR BOUND-STATE
SCATTERING

By a simple generalization of the work of Leh-
mann, Symanzik, and Zimmermann we shall ex-
press any S-matrix element involving bound states
as the residue of a set of poles in an off-mass-
shell Green's function. ' First we construct crea-
tion and annihilation operators for bound states.
Let I&) =

I P, s) be a bound state of mass m, and
let 8(x) =8(x, p) be defined as in (2.6), where av-
erage and relative coordinates (X, p) are defined
in (2.8). Operators 8'" (X, p) and 8'"'(X, p) that
satisfy the Klein-Gordon equation with respect to
X with the bound-state mass m are defined by

8'"'""(X p) -=8(X p) O'X'~'"'"'(X X' m)

It is easily seen that az"'""(P, s) is independent of
~, transforms like a single-particle annihilation
operator, and has an energy-momentum content
given by

Ig)t in(out) (P ) l
P(tain(out) (P ) (3 6)

in the plane-wave limit. Furthermore, (3.1) and
(3.4) imply

(0 I
ag"'""(P, s) I

P',sg =2~ (»)'6'(& —P')6..
(3 9)

Correspondingly, we repeat the smearing on
8(X, p):

a~(P, s, X')—= J d'X (do) i(t)p)i XO(,X, p),

(3.10)

and postulate the asymptotic condition

x ( '+m')8(X', p) . (3.1)

We then integrate out the relative coordinates p
with some weighting function, and smear the av-
erage coordinate X over a wave packet as follows.
I.et

U~, (X, p) =f~(X)u~, (p), - (3.2)

up, (p) transforms like (0 I 8( p) I P, s), (3.3)

where f~(x) is a wave-packet solution of the Klein-
Gordon equation with central momentum I' that
approaches exp( iP ~ X) in the p-lane-wave limit,
and u), (p) is any function satisfying the following
three conditions:

lim (dl)
I af (P, s, X ) I

4') = (4 I

a&"'""(P, s)
I
4)

X0~ -~ (+ m )
(3.11)

wher~
I +) and IC') are arbitrary normalizable

states. The asymptotic condition and the conver-
gence property (3.5) will lead directly to proper
commutation relations for af' '"'&(P, s) and then to
the reduction formula. The key step in these de-
rivations is the typical limiting process

lim C' d'X dpU~p, X pi pQ&Q y

= (4'
I
a~"'(P, s)6 (y) I

+&,

(3.12)
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where S(y) is a time-ordered product of Heisen-
berg fields.

To derive the commutation relations for annihi-
lation and creation operators, consider states
IA& and

I B& and time-ordered products 8(x) and

$(y) for which (Ol 8(x)IA&$0 and (Bl $(y)l 0) g 0.
Let 8(x) contain t' fermion fields and (6(y) con-

tain r' fermion fields. Let 6 be an arbitrary op-
erator [e.g. , 1, (Ii(z), iti(z)iti(z'), . . . ] containing 8
fermion fields.

We first show that, . because the elementary
fields commute or anticommute at spacelike sep-
arations, the following interchange of order of
integrations is valid:

8 8 —,8 8
dX dy 0 UP, Xi,TQX y6 i—U~., y dy dx same integrand

(3.13)

The important point is that the surface terms arising from integrating the total derivatives on both sides
of the equation should be equal. Since 8/BX'=ps/sx~, we need only show

d~0 dy0 dy0 d~0 y ~ cg y p (3.14)

where R is an arbitrary operator. We are interested in a)
I max. time in Kl and 5)

I max. time in Xl. If,
for example, the fields are fermion, the left-hand side is, by direct calculation,

( 1)"'"[P(t,x), P(t, y))R+(—I)"SR((tI( t, x), $(-t, y)), (3.15)

where M is the number of fermion fields in% and t is the larger of a and b. This is zero if the elementary
fields are causal.

Carrying out the integration in (3.13) explicitly, applying the asymptotic condition, and keeping track of
the number of fermion field interchanges, we obtain

(C I [a "'(P)ti ""(P')—(-1)""b "'t(P')a'"'(P)]8I+&=(-1)'"'" '"(C I8[a'"(P)b'"'(P') —(-1)""b'"'(P')a'"(P)]le&.

(3.16)

Taking 8 =1 (i.e., B = 0) shows that the "in" commutators (anticommutators) equal the "out" commutators
(antieommutators). Thus (3.16) may be rewritten

I
[ain (P)t in T(Pi) ( 1)rr'I in t (Pi)ain (P)]8 I y) ( I)(r+ r')R(C

I
8 [ain (P)f in 1'(Pt) ( 1)rr 'I in 't(PI)ain (P) I y&

(3.17)

Consider the case in which
I A& is a fermion and

I B& is a boson. Then (-1)"" =+1. Let I+&=I@)
and choose 8 = [a'"(P), fi'" (P')]. Then (-1)("'")

= -1. Hence, (3.17) becomes

&~18'81~&=-(~188'I ~&. (3.18)

(~I ['"(P),I'"'(P )],81~&

=&4
I
8[a'"(P), I '"'(P')],I+&. (3.»)

Since neither the norm of 8 I 4& nor of 8
I 4') can

be negative, both n(Mms must be zero. But IO&

is arbitrary; so 8 =—8 =-0. Hence, the commutator
of a fermion and a boson vanishes.

Consider the case in which IA& and I B& are both
fermions or both bosons. Then (-1)("'") =+1 and

(3.17) becomes

Since 6 is arbitrary, the anticommutator of two
fermions is a c number and the commutator of
two bosons is a c number. This c number is equal
to its vacuum expectation value and therefore van-
ishes unless IA& and

I B& have the same discrete
quantum numbers. The only nonvanishing case is

[a'"(P), a'" (P')] = (0 I
[a'"(P), a'" (P')l, l o&

= (o I

a'" (P)a'" '(P ) I o&, (3.20)

where a'"(P)l 0) =0 because of (3.8) and the assump-
tion that the vacuum is the state of lowest energy.
Inserting a complete set of states into (3.20) gives
a nonzero contribution only when the intermediate
state has the correct quantum numbers and hence,
assuming nondegeneracy, is the bound state it-
self. Using (3.9) gives

d[a'"(P) a'" (P')] = W (ola'"(P)IP" s")(P" s"
I

a'" (P')Io&(2m)'2E"
S

= 2E~(2w)' f(P —iP ')5„. (3.21)
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We can thus construct a creation operator for any
single-particle state, either elementary or bound.
A complete set of states is built up from either
a complete set of single-particle "in" states or
from a complete set of single-particle "out"
states.

The S-matrix element for the reaction
A. + ~ ~ ~ + C- D+ ~ . + E is defined by

(D ~ ~ ~ EI SIA ~ ~ ~ C)=—(D ~ ~ ~ P, out IA ~ ~ C, in).

(3.22)

The derivation of the reduction formula for bound
states proceeds in the usual manner as for elemen-
tary particles, because the convergence property
(3.5) enables us to make the same formal man-
ipulations. We merely state the result:

(D . .EI S —1I A .. C) = dx dy dz ~ deUq(z) . U~(zu) . ~ ~ —. 8 —. —. U„(x) ~ Uc( y), (3.23)
KD K~ K~ Kc

2

(3.24)

(3.25)

The transformation properties of the U functions
specified in (3.3) insure that (3.23) and (3.25) have
the correct covariance properties under the Lo-
rentz group and internal-symmetry groups. If the
underlying field theory is a gauge theory, then
the gauge invariance of af'""(P) is guaranteed, at
least formally, by (3.5) and the asymptotic con-
dition. For let the gauge-transformed boson or
fermion fields be

gt(x) = g;(x) + 5P;(x), (3.26)

where 5g;(x) contains all dependences on the gauge
functions A(x). The gauge-transformed version
of (3.10) is

aq (P, X') = af (P, X')

+ d'X dp U~~X, pi --,-5Q x,
(3.27)

where 58(x) contains all dependences on A(x). By
(3.5), as X'- —~, each x,'--~ for j = 1, . . . , n.
Because the gauge functions must be square inte-
grable, A(x) and its derivatives vanish as x,'- —~.
Thus the integral in (3.27) vanishes as X'- -~, so

where 8(x), . . . are time-ordered products of the
type (2.6), and U„, . . . are functions of the form
(3.2), K„, . . . are Klein-Gordon operators in the
average coordinates, and J dx is a 4n-dimensional
integral.

Matrix elements for any operator can be derived
similarly. For example, the transition matrix
element for a current operator Z„(z) between two
bound states

I A) and
I B) is given by

that az(P, -~) is gauge-invariant. Therefore,
a&" (P) is gauge-invariant and so is the S matrix.

The reduction formula (3.23), which is a gen-
eralization of the familiar one for elementary
particle scattering, preserves the usual formal
appearance. We recall that in the case of elemen-
tary particle scattering, a practical way to use the
reduction formula is to expand the Green's func-
tion 9 in terms of Feynman graphs: If n elemen-
tary particles are involved in the reaction, the
relevant Green's function is the sum of all Feyn-
man graphs with n external legs (full propagators).
Application of the Klein-Gordon operators merely
cuts off these legs, which are then replaced by the
wave functions of the particles involved in the re-
action.

Our generalization extends the treatment to
include bound-state scattering. It is of course
also valid for elementary scattering, and contains
new elements even in the latter case. Regardless
of whether the external particles are elementary
or bound states, one starts with a Green's function
9 whose external legs can be grouped into subsets
A, B, C, . . . , such that the quantum numbers of
the elementary particles in each subset add up
to the desired quantum numbers for the corre-
sponding external particles. Beyond this require-
ment, however, there is no restriction on the
number of elementary particles in each subset.
There is, therefore, great arbitrariness in the
choice of a Green's function, corresponding to
the arbitrariness in the choice of a wave function
for an external particle, be it an elementary par-
ticle or a bound state.

As a generalization of the usual procedure of
summing infinite classes of Feynman graphs to
obtain a full propagator for an elementary parti-
cle, one must in this case perform graphical
summation over the infinite set of graphs that
produce the pole of the external particle. The
Klein-Gordon operators then extract these poles.
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This summation will be carried out explicitly in
Sec. VI. From now on we shall focus our attention
on bound-state scattering, although the develop-
ments will also represent a more general way to
treat elementary particle scattering.

If the theory is to be consistent, different
choices of 9 corresponding to the choices of bound-
state wave functions must yield the same S matrix.
We shall explicitly demonstrate that this is so in
Sec. VI. It mill be seen that all choices reduce to
the simplest choice, i.e., irreducible wave func-
tions for all the bound states involved.

Another seeming arbitrariness occurs in the
smearing functions U. In an explicit calculation,
however, they actually drop out, owing to the
normalized condition (3.4), as we shall demon-
strate in Sec. VI. This is the analog of the fact
that when we use the conventional reduction formu-
la for elementary particle scattering the wave-
function renormalization constants always drop
out of the calculation, although they appear in the
reduction formula.

The practical rules for calculating the S matrix
are stated in Fig. 12. Before we proceed to its
derivation, we first discuss some relevant pro-
perties of bound-state wave functions in the next
two sections.

IV. IRREDUCIBLE WAVE FUNCTIONS FOR BOUND

STATES OF IDENTICAL FERMIONS

A wave function for a bound state has been de-
fined in Sec. Il, where a distinctionbetween irre-
ducible and reducible wave functions was also
made. A wave function for the bound state j P, s)
is of the form (0~ Tg;(x, ) ~ g, (x„)~ P, s) . Its
Fourier transform X~,(P„.. . , P„) is defined in

(2.17). The wave function is called irreducible if
X~, has no pole in the invariant mass of any proper.

subset of (P„.. . , P„}that corresponds to a group
of elementary particles having the same discrete
quantum numbers as the bound state. (We recall
that throughout this paper the assumption is made
that for given discrete quantum numbers the bound-
state mass in nondegenerate. ) Wave functions
that do have such poles are called reducible.

For example, in the quark model the proton has
as irreducible wave function ((P6'X) and reducible
wave functions ((P(PAPE), ((P6'X6'PX9t), etc. A
pion has as irreducible wave function a linear com-
bination of (O'P), (XX), and (AX) and reducible wave
functions (6'SPF), ((Pd'XGD. X), etc A.n exotic bary-
on can have as irreducible wave function (6'O'O'KX)

and reducible wave function ((P(P6'TX6'F), etc.
We shall consider from now on only wave func-

tions composed of fermions and antifermions. In
so doing, there is no loss of generality in any
theory in which a boson is coupled only to gP,
where g is a fermion operator. Theories with
self-coupled boson fields require a separate ex-
amination of wave functions involving bosons, and
are not discussed in this paper.

An N-fermion wave function is always irreduc-
ible because of fermion number conservation. A
wave function containing N fermions plus a number
of pairs is irreducible only if there exist conserved
discrete quantum numbers that forbid the annihila-
tion of the pairs, as in the previous example of the
exotic baryon. Similarly, a bound-state wave
function consisting of a fermion-antifermion pair
is always irreducible. One consisting of ~ fer-
mion-antifermion pairs with n &1 can be irreduc-
ible only if quantum numbers forbid their annihi-
lation to m=1. We assume that the wave function
involving the minimum number of fields allowable
by quantum number does not vanish identically. If
this is not the case, the simplest wave function
would contain supernumerary pairs not called for

G ) (o)

where

(277) 8 (p, -p,') & sF (p, ) '(277) 8 (pp-p~') F'(pq), (b)

+ + +- ~ (c)

+ ~ ~ ~

FIG. 1. Nonantisymmetrized Green's function G. Solid lines always denote full fermionpropagators. Wavy lines
always denote bare-boson propagators. All vertices are bare.
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by quantum numbers. This is discussed in Sec.
VII.

We shall consider in this section and the next
the case of identical fermions. Because the irre-
ducible wave functions are only of two types (un-
less we have the special case noted above), the
discussion is simpler, and we can bring out more
clearly the principles of graphical summation
used in analyzing the reduction formula.

Discrete quantum numbers other than spin will
be taken into account in Sec. VII. It will be seen
that, although their existence complicates the
analysis, the final rules for construction of the
8 matrix are the same, apart from trivial counting
factors.

A. N-fermion wave functions

We consider a theory with only one spinor fer-
mion field g(x), interacting through boson ex-
change. An N-fermion bound-state wave function
is always irreducible. To find an integral equation
for it, consider the Green's function

(4.1)

and let G be its Fourier transform to momenta
P].&

' ' '
& PN s P].&

' ' '
& PE '

G =— dxdx'exp i x&
~

p& x,. ~
P& g . 4.2

We expand G into Feynman graphs in the usual
manner. Because of fermion conservation, G is
the sum of all Feynman graphs with N continuous
fermion lines, which can be individually traced
through a Feynman graph. Each fermion line
carries two momentum-spin labels: an unprimed
P; where it enters the graph and a primed P,

' where
it leaves the graph. Any particular graph is char-
acterized by a one-to-one association between
elements of the sets (P„.. . , P„j and (P,', . . . , P„'j.
The identity of the fermions dictates that all pos-
sible associations are included in G, with relative
signs determined by the signature of the permuta-
tion of (p„.. . , p„) that takes the particular as-
sociation to a standard one. Let us take as stan-
dard association P; —P', (i =1, . . . , IV). Consider
the subset of graphs that have the standard as-
sociation. The N fermion lines can be distin-
guished by a line number i corresponding to P;.
For convenience we define a toPological graph to
be a Feynman graph with the standard association
P,' —P;, and with its N fermion lines numbered
from 1 to N. Two topological graphs differing
only in line numbering are considered to be dis-
tinct. A signatured permutation of (P;j then gen-
erates a Feynman graph of the same topological
conneetivity. A topological graph corresponds to
a class of NI Feynman graphs, and a Feynman

graph belongs to one and only one class. Let

G =- sum of all topological graphs .

Then

(4.3)

(4.4.)

where P6I, is a signatured permutation of the labels
of the incoming line terminals (P„.. . , P„), and
the sum consists of N I terms.

Consider the simplest case N = 2, for which G
satisfies the well-known integral equation in Fig.
l(a), where the symbols V and G represent func-
tions of four 4-momenta and four spinor indices,
and each contains an overall 64 of momenta. The
product of VG implies a sum over intermediate
indices and an integration, J d k/(2w)4, over each
intermediate momenta. By convention we draw
the lines 1 and 2 parallel; then a vertical cut in
a graph intersects at least two fermion lines (and
possible a number of boson lines). The kernel
V is defined as the sum of all connected topological
graphs with external legs omitted that cannot be
made disconnected by a vertical cut intersecting
exactly two internal fermion lines and no boson
lines. [See Fig. 1(c)]. This kernel is unrenor-
malized but may be renormalized by dividing
through by four powers of the square root of the
fermion field renormalization constant. Similarly,
G and wave functions occurring in residues of its
poles are unrenormalized but may be renormalized
similarly. These renormalizations are quite ob-
vious and we will continue to write unrenormalized
equations.

For N arbitrary, irreducible kernels will be
defined analogously. Again draw all N-fermion
lines parallel to one another. Then a vertical
cut intersects at least W-fermion lines. Let L
be a subset of the line numbers (I, . . . , A'j. The
irreducible kernel involving L is denoted V~ and
is defined as the sum of all connected topological
graphs involving the lines L that cannot be made
disconnected by cutting exactly nI (i.e. , the num-
ber of lines in I.) internal fermion lines and no
boson lines. Again all external legs are omitted.
For example, the three-line kernel is shown in
Fig. 1(d). The sum of all topological graphs G
is then the sum of all distinct products that can
be formed from the set of all possible kernels
fVz j. It is understood that the identity is included,
and a product between V, and V, includes full
propagators that connect the lines that go between
V, and V, .

Throughout this paper we define many quantities
graphically, such as the VL, . When drawn graph-
ically it is always obvious where full propagators
are needed to connect different graphical units;
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but they are clumsy to write in algebraic form and
tend to obscure. We suppress these propagators,
external or internal, in algebraic expressions,
since from graphical representations it is always
obvious where they should be supplied. Thus, for
example, V,V, means Vyl V2 where I are the
suppressed propagators.

The integral equation for G is of the form Fig.
2(a), where the total kernel is denoted by Z. For
N~3, Z is just the sum of all possible V~. For
N&3, however, it is easy to see that this cannot

be true, for it would lead to double counting. For
example, the kernels V» and V,4 commute, so that
the products V»V„and V,4V» correspond to the
same set of graphs. .In the expansion of Q, there-
for e V]2 V34 should occur only once, whereas in
the expansion (V»+V, ~+ )(V»+V,~+ ) this
product is included twice. Thus Z must contain,
in addition to the sum of all VL, , terms that sub-
tract out overcounted terms. The correct rule
is given in Theorem 1 of Appendix A which states
that

Z = sum of all the V's, minus the product of each pair of commuting V's, plus the product of each
triplet of mutually com~uting V's, minus the product of each quadruplet of mutually commuting V's,
and so on. (4.5)

More explicitly, let (L„L„.. . , L, gabe g disjoint
subsets of the line numbers fl, . . . , Ã} so that the
kernels (V~, , . . . , Vz } form a set of g mutually
commuting kernels. Then

ducible bound-state wave function. First rewrite
Fig. 2(a) in the form of Fig. 2(b). Then we obtain
the integral equation for the fully antisymmetrized
Green's function G in the form of Fig. 2(e) by
applying the prescription (4.4). Let

Z=Q(-I)' ' Q V~ . . . V
I=1 &&i ~ ~ ~ &~&

(4.6)

P= PP;, P'=-+Pl. (4.7)

where the sum extends over all possible choices of
(L„.. . , L~j for a given g. As mentioned before
we have suppressed obvious full propagators,
which include those for the lines not in the set
(L„"., L,).

With the integral equation in Fig. 2(a) we can now

obtain the Bethe-Salpeter equation for the irre-

As we have shown in (2.15), G has a pole at
P' =M', with residue indicated in (2.15). Thus,
letting P'-M' in Fig. 2(e), we obtain Fig. 3(a).
Multiplying the equation in Fig. 3(a) through by
P' -M' and setting P ' =M', w e obtain the Bethe-
Salpeter equation in Fig. 3(c).

gG}: (a)

-I N

(
'

) =- ll (27r) S (p,'. -p", ) iS, (pI)
j a) ocI

j

(c)

I
' =- Q (271) 3 (pj-pj) 8~~ ~

j a)
j

(d)

A (e)

where

A -=Z &p II (27')4 8+(p'-p) 8
P jat J J Kj efpj

FIG. 2. Integral equation for the nonantisymmetrized Green's function G™ and for the fully antisymmetrized one G.
The kernel Z is defined in (4.5) or (4.6).
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where

p/-
,
See Eq. (2. I7)

(c)

FIG. 3. Derivation of the Bethe-SR1peter equation for an N-fermion irreducible bound-state wave function.

Since Fig. 3(a) is nonlinear in the wave functions,
it also fixes their normalization. Multiply the
equation in Fig. 3(a) by P'-M', take e/BP„of
both sides, and integrate the resulting equation
against )t~, (P„', . . . , P', ) to get Fig. 4(a). Setting
I"=-M' and using the Bethe-Salpeter equation give
Fig. 4(b), which leads finally to the normalization
condition in Fig. 4(c).

Note that Fig. 3(c) a.nd Fig. 4(c) are also satisfied
for elementary particles. For example, Fig. 4(c)
mould read

B. Fermion-antifermion wave functions

The fermion-antifermion wave functions will
satisfy an equation 2nd normalization condition
similar to those in Fig. 3(c) and Fig. 4(c), but
mill be further restricted by the orthogonality of
the bound state to all elementary bosons. That
is, the bound state cannot occur as a pole in the
full propagator of any elementary boson.

Let G be the Fourier transform of

=- ( 2IZ)'2~ u„2„a .
™u„,(2mZ, )

~~'

BP„sZ,
(4.8)

where the factor (2m)"' comes from the normal-
ization of states chosen in (2.4).

to momenta P,', P,'; P„P,. We seek a pole in the
variable I'=P, -P', =P,' —P, . Its residue will be
the transform of

Separate out the direct channel disconnected term
by writing G in the form of Fig. 5(a). The leftover
term G' satisfies the integral equation in Fig. 5(b),

i(27r) 8 {P'-P) g

FIG. 4. Derivation of the normalization condition fox' Rn Ã-fermion irreduciMe bound-State wave function.
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P2 ) Pl P2+ ( - P( P2
( GI )

Pl

P = ~ = P'
2 I

(a)

where

I

) ( Pi = (277) 8 (PI-p) iSF (p) '(277) 3 (pz
—pz)(S&(pq)

Pp - - Pi

(b}

(c)

FIG. 5. Integral equation for fermion-antifermion Green's function. It is necessary to isolate the disconnected
graph in (a) because its iteration would lead to unwanted vacuum graphs.

with the kernel V' defined in Fig. 5(c) as the sum
of all connected Feynman graphs with the indicated
external lines that cannot be made disconnected
by cutting just one internal fermion line and one
internal antifermion line.

Figure 5(b) is of the same form as Fig. 1(a) in
the previous section. But here, although G' can
be renormalized, the kernel V' cannot, because
there are no graphs in V' to renormalize the
bare boson propagator in the first graph of Fig.
5(b). Isolate this troublesome graph by defining
V" and G" as in Fig. 6(a). Both V" and G" are
renormalizable. Because the full boson propagator
satisfies Fig. 6(b), the identity

1 1 1 1 1

then shows that Fig. 5(b) is equivalent to Fig. 6(c),
which makes the renormalizability of G' manifest.

Because the bound state is orthogonal to all

~v' ~ ~v" 1

in position space, where I, is the matrix that
occurs in the interaction Lagrangian

(4.9)

elementary particle states,

(0 I B;(x) I P, s) =-0

for all boson fields 8;(x). Thus the full boson
propagator in Fig. 6(c) has no pole at the bound-
state mass and therefore the pole in G' must come
from G". Furthermore, assuming the pole in G'
is of first order requires that the residue of the

apparent double pole in Fig. 6(c) vanish, which is
stated in Fig. 7(a). We then deduce the Bethe-
Salpeter equation and the normalization conditions
for the wave function from Fig. 6(a). They are
given by Fig. 7(b) and Fig. 7(c).

Figure 7(a) restricts the bound-state wave func-
tion to be a particular type of solution to Fig. 7(b)
and Fig. 7(c). This constraint involves a single-
loop integral in momentum space equivalent to the
statement

0) (a)

( )'- = 0,

(c)

( )
2 p)tt

(c)
I.

FIG. 6. Redefining the kernel by subtracting out the
term with one bare boson propagator because there are
no other graphs to renormalize it. Here, a heavy wavy
line denotes full boson propagator.

FIG. 7. Bethe-Salpeter equation and normalization
condition for fermion-antifermion bound-state wave func-
tion. The equation is renormalizable because of (a) .
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- (d2j:,
-

I N

j j (a)

&Xds =

N+j )-,
i 4:-'

(c)

N+j
I

i(:
where

IPl~
~ M+j~
P g+j~
PNe) ~

(olT p(p, ) ti (p& ]) p (0M . ) p(og t)l P (e)

+ per mutations + ~ ~ ~

FIG. 8. Derivation of the relation (d) between a reducible wave function of N fermions+ pairs and the irreducible
one. The quantity Rz is defined in (5.2).

Q, Ttt(x)I',.$(x)B,(x). This constraint could also be
obtained by taking the matrix element of the ca-
nonical field equation for B;(x), or by insisting
that there be no pole in the Fourier transform of
the vertex function (0~ TB;(y)ijt(x, )P(x,) ~

0) .

V. REDUCIBLE %PAVE FUNCTIONS FOR BOUND STATES
OF IDENTICAL FERMIONS

A. N fermions + pairs

We have seen that irreducible wave functions
satisfy homogeneous integral equations of the
Bethe-Salpeter type. We now show that reducible
wave functions may be calculated from the irre-
ducible ones. This observation will be essential
in calculating S-matrix elements in Sec. VI.

A reducible wave function contains an irreducible
"core" plus any number of fermion-antifermion
pairs. We consider here the case where the core
consists of N fermions, and there are j additional
pairs. The appropriate Green's function to start
with is of the form (4.1), with N replaced by
N+ j. Its Fourier transform G therefore corre-
sponds to (4.2) with the set of momentum-spin
labels replaced by (P,', . . . , P„'„;P„.. . , P„„).
Again we follow the convention of drawing all
Feynman graphs such that all N+ j fermion lines
are parallel to one another, and introduce the non-
antisymmetrized Green's function G, which is the

sum of all topological graphs. We look for a
bound-state pole in the variable

N+j
pl- Pp;.

)Q~R) . (b)

FIG. 9. The relation between a reducible wave func-
tion of j pairs (j&1) and the irreducible wave function
of one pair.

Since the fermion lines in G are distinguishable
and numbered with line numbers 1, . . . , N+ j cor-
responding to P„.. . , P„„, the pole we seek is
produced by interactions among the lines numbered

], . . . , N.
Suppose d is an arbitrary topological graph in G.

We can write it as a product d =d, d2 uniquely, as
shown graphically in Fig. 8(a), by demanding that

(a) d, contain only interactions among lines
1, . . . , N; (b) no interaction be included in d„ if
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it can be included in d, .
Because this separation is unique, G is the prod-

uct of the sum of all d1and the sum of all d„as
illustrated by Fig. 8(b), where in the last step
we redraw the graphs such that the j noninteracting
fermion lines entering from the right are bent back
to become antifermions leaving on the left. The
fully antisymmetrized Green's function G is now
obtained by use of (4.4), i.e., by summing a'.1

(N+j)! signatured permutations of (P,', . . . , P„'„j,
the labels of line terminals with arrows directed
out of the graph. The result is shown in Fig. 8(c)
which defines R„:

R„=sum of all Feynman graphs with external
lines as indicated in Fig. 8(c), such that

(a) the first interaction on the right, if it
occurs, must not occur among the N right-
entering lines, i.e. , RN contains no interaction
that can be absorbed into G (the subscript N serves
to remind us of this), and

(b) R„contains no graphs that differ only by a
permutation of the momentum-spin labeling of the
N right-entering lines.

(5 2)

Because of the restriction (b), R„ is not fully
antisymmetric in the W+ j lines leaving from the
left. Nevertheless, the product R„G is fully anti-
symmetric in these N+j lines because G is fully
antisymmetric in its W lines. Antisymmetry in

the j lines entering from the left is already con-
tained in the definition of R~. Antisymmetry among
all N+j lines entering (left or right) may be con-
firmed by the following counting: The set of N
lines entering from the right may emerge on the
left in any of ("g') possible subsets. For each
such subset there are j t possible permutations
included in R„of the j lines entering from the
left, and there are Nl possible permutations in-
cluded in G of the N lines entering from the right.
Hence, there are a total of ("„")N!j!= (N+j)! per-
mutations of the N+ j entering fermion lines.

By (2.15), G on the left side of Fig. 8(c) has a
pole whose residue is the product of an (N+2j)-
line reducible wave function and an N-line irre-
ducible wave function. The G on the right side of

Fig. 8(c) has a pole whose residue is the product
of two N-line irreducible wave functions. There-
fore, by going to the limit P'-M', where P is
defined in (5.1), we obtain a relation between the
reducible wave function and the irreducible one,
as stated by Fig. 8(d).

Simple relations like Fig. 8(d) do not exist re-
lating two reducible wave functions, only relating
reducible wave functions to the irreducible one.
An example is given by Fig. 8(f). In this example
there are only 3!/2!= 3 permutations to be per-
formed because of the restrictions on RN. The
three disconnected pieces in Fig. 8(f) are present
because (OI Tg(x, )g(x, )f(y)!)(z)IP, s) contains
(0 I Tg(y)!7!(z)I0) && (OI T((x,)!)!(x,) I P, s) and iwo
other similar terms.

The original definition of a reducible wave func-
tion in Sec. EE requires that it have a pole in some
subset of the momenta representing the very same
bound state, and a residue containing a wave func-
tion with fewer constituent fields. In Fig. 8(d),
R„ is immediately reducible from the left, and
contains the same bound-state pole as required
plus other subpoles. This observation will be
applied in Sec. VE.

I —2 1=2

group G as in Fig. 9(a). The G on the right side
of Fig. 9(a) is the same as in Fig. 5(a). A is the
sum of all graphs with the indicated pattern of
external propagators, with the restriction that R
contain no graph that can be absorbed into G.

As a check that the right side of Fig. 9(a) is
fully antisymmetric in the j+1 entering fermion
lines, we perform the following counting: The
line entering from the right may leave on the left

B. Fermion-antifermion + pairs

Let G be the Fourier transform of

(OI Ty(x,') ~ ~ ~ q(x,'„)q(x,) ~ ~ ~ q(x, „)I 0)

to momenta P,', . . . , P,'„;P„.. . , P,„.To isolate
a pole in the variable

Pl ~1
2+1

(5 8)

) NA+)

)i

NA NA

I RA }: (G):.( RA I'=- + ~hG l=, (a)

~ C

4 4g (k; Pp) =
, = ~, RA !:: (27r) 8 (Xk —PA). (b)

FIG. 10. Extracting a bound-state pole from a Green's function that appears in the reduction formu'a. R& has the
same meaning as Rz in Fig. 8(d).
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in any of j positions, and the line leaving on the
right may enter from the left in any of j positions.
For each such choice there are (j —1)! possible
permutations included in A of the remaining j —1
lines that both enter and emerge on the left. Thus,
there are j (j —1). possibilities of this type. In
addition, the line entering from the right may
emerge on the right, in which case A contains j.
permutations of the j lines that both enter and
emerge on the left. Hence, the right side of Fig.
9(a) contains j '( j —1)!+j!= (j + 1)!permutat ion s
of the entering fermion lines, just as it should.

The equation in Fig. 9(a) immediately gives
Fig. 9(b), which is the desired relation between
a reducible wave function and the irreducible one.

VI. THE S MATRIX

The completely general reduction formula (3.23)
can now be applied to the case considered in

Secs. IV and V in which there is only one elemen-
tary fermion field from which all irreducible wave

functions are built. We will see that S-matrix
elements do not depend on the choice of the number
of constituents or the smearing functions U, and
that their calculation always collapses to that
involving irreducible wave functions. More im-
portantly, we will derive Feynman-type rules for
calculating any S-matrix element involving bound
states.

To calculate the scattering A+ ~ ~ +C-D+ ~ ~ ~ +E
requires choosing sets of fields to describe each
bound state and corresponding smearing functions
U. Each set of fields has an irreducible subset
that consists either of N-fermion fields or of one
fermion and one antifermion field. The case in

which the bound states have irreducible wave
functions of the N-fermion type will be treated ex-
plicitly. The inclusion of fermion-antifermion
types will be a simple extension.

To calculate a scattering amplitude involving a
bound state ~&), the reduction formula (3.23) re-
quires, as a first step, evaluating

8(&;p I= 1,f (&plG(&„, & ;p , p..)~(M„' &,'v& (D„-p.I~ (p -,Ep;'),
P~ m~

(8 1)

where all functions of position have been Fourier-
transformed, I'& is the total momentum of the
bound state

~ &), and k —=(k„.. . , k„j are momenta
of external legs of the Green's function G not in-
volved in the bound state ~&). The momenta

P„.. . , P„are those of the n elementary particles
chosen to constitute a, wa, ve function for ~&). Let
the irreducible wave function for ~&) contain N„
fermions so that in general n=N„+2j, where j is
the number of fermion-antifermion pairs. It fol-
lows from fermion conservation that in

G(k„. . . , k; P„.. . , P„), m =N„+2j ' (j' ~0).
Now draw all the Feynman graphs of C in the

form of the right-hand side of Fig. 10(a), in which
the N„+2j lines constituting the bound-state wave
function are on the right, and the rest of the lines
on the left. As one reads any graph from right to
left, there are no intermediate states with fewer
than N„ fermion lines. Hence, C can be uniquely
decomposed into two terms as done in Fig. 10(a),
where AG contains only graphs that have more
than N„ fermion lines in any intermediate state;
Jl„ is irreducible in the N„ lines on its right (i.e. ,
contains no inte rac tions that can be slid to the
right off the graphs) and contains no graphs that
differ from each other only by a permutation of
the right legs; A„—is irreducible in the N~ legs on
its left, and contains no graphs that differ from

each other only by a permutation of the left legs.
By (2.15) the left side of Fig. 10 (a) has a. pole

whose residue is

f(»)'5'(Qk-Qj) gX. (N +2j')X. (N +2j).

The first term on the right side of Fig. 10(a) has
a pole whose residue is recognizable from Fig.
8(d) as the product of the explicitly reduced forms
of the same two wave functions in the previous
residue. Therefore, AG has no pole, and (6.1)
becomes

(R(k; P„)= (2m)'5'(P„—g k)

x g X. (k) (dP)5'(P. -/P)X. (P)U, (P).
S

By the normalization (3.4) of the U functions, the

J (dP) integral is just a Kronecker & in the dis-
crete indices s and s'. Hence, S is given by
Fig. 10(b), where A„has the same meaning as
in Fig. 8(d), and is defined in (5.2). The subscript
A merely serves to remind us that A~ contains no
interactions that can be slid off the N„ legs on its
right. This result shows that neither the number
of fields nor the specific choice of the U functions
used to define the creation and annihilation opera-
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::(R, )::P
x 0

~ ~ ~

(a)

where

4 LZp ~ x
(27r) 3 (Zp;-P ) = Jd x, ~" d x 6 ' ) (ol Tp(» ) "4(x,) IP, s), (b)

jx-:.IRx, '=- „B-X
(c)

X

g (k; Ps, Px)
XsO

X
PA

FIG. 11. Extracting a second bound-state pole 8, after the first one, A, has been extracted as in Fig. ].0.

tore of bound states (or of elementary particles)
enters in an S-matrix calculation. Note that,
although A„contains an overall 6' of momenta,
X does not, so that their integrated product A~X
does not.

If the S-matrix element to be calculated involves
only one bound state

~ A), we are finished, because
the remaining elementary particle poles can be
immediately extracted by conventional means. If,
however, there is another bound state

~ B), we
must extract a pole from the appropriate subset
of the k's in 6((k; P„) of Fig. 10(b). If the chosen
set of fields S is reducible, again only those graphs
with exactly N~ intermediate fermion lines will
produce a pole. We may, therefore, adopt the

irreducible description of
~
B) immediately. Sup-

pose the Ns lines are out-going. (The in-going
case will be simpler. ) Group the graphs of Fig.
10(b) as in Fig. 11(a), where a convenient graph-
ical symbol for a wave function times
(2m)'&'(QP, —P„) is introduced in Fig. 11(b). The
principle is that all interactions in A„ involving
the K~ lines on the left forming the bound state
are grouped into A„. After this is done, there
will in general be x lines free of further inter-
actions, and other lines that have at least one
further interaction. The latter are grouped into
A~ „~,, which is defined as the sum of all graphs
of the pattern indicated in Fig. 11(a) that (a) con-
tains no graphs in which any of the N„—x entering

PD

( D "F I S-!IA" C) (a)

PF pc

=- fd~x e (olf(x)lk, s) = (271) 3 (p-k)u(k, s)42mZ (b)

FIG. 12. Graphical rule for the S matrix. All wave functions are irreducible. The graphical symbol for a wave func-
tion is defined in Fig. 11(b). The rules for Ra„.,z z...c are given in the text. The generalization in Sec. VII shows
that if any irreducible wave function involves more than one pair, then an extra factor (N!M!co)

~ must be included for
each such wave function, where N =no. of fermions, M =no. of antifermions, co is given in Fig. 22(c).
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lines emerge as one of the N~ —x lines without
having intera. cted; (b) contains no graphs reducible
in the N~ —x lines on the right or reducible in the

x lines on the left; and (c) contains no graphs
that differ from each other only by a permutation
of the N„—x right legs or of the X~ —x left legs.

Finally, A„ is the sum of all graphs of the indi-
cated pattern that contains no graphs reducible in
the x lines on the right. Because by construction
A„contains all graphs differing in permutations of
the momentun-spin labeling of the N~ lines enter-
ing from its right, and because the wave function
on the far right of Fig. 11(a) is automatically anti-
symmetric in its 1V„ lines, the factor (x.)

' in
Fig. 11(a) is needed to prevent overcounting.

For x=0 or x=1, R„=G and we may immediately
extract the pole for

~
8) . For x&1, however, II„

does not contain all the graphs to be a Green's
function, because by construction those interac-
tions among the x lines that can be slid off to the
right are not there, having been absorbed into the
wave function on the far right earlier, in the steps
in Fig. 10. The general relation between A„and G

is given by Theorem 2 of Appendix A, and is stated
in Fig. 11(c), where Z is the kernel defined in
(4.5) or (4.6) for x lines. With Fig. 11(c) inserted
into Fig. 11(a) we can easily extract the pole of G

at P&' ——M~'. Integrating away the U~ functions as
before gives Fig. 11(d), which is the desired
result.

If the N~ lines had been in-going, only x =0 would
have been possible and the N~ lines would have to
be reversed. If

~
B) had an irreducible wave func-

tion of the fermion-antif ermion type, the appro-
priate .R~ ~ would have been the same only with
x = 0, 1 and a few obvious line reversals.

Extracting poles from the remaining (kj requires
no new procedures. The general result is Fig.
12(a). In this equation all wave functions are irre-
ducible. Initial and final states differ in the direc-
tion of energy flow. Particles and antiparticles
differ in the correlation of fermion number flow
with energy flow. An overall (2v)46' of momenta
is automatically contained in Fig. 12(a) because of
the definition Fig. 11(b). Most importantly,
AD. ..~ &. ..~ is the sum of all Feynman graphs with
the indicated pattern of external propagators with
the following restrictions:

(a) II contains no graphs that are reducible in
the bound groups (i.e., in the set of fermion lines
attached to each bound-state wave function);

(b) A contains no graphs that differ from each
other only by a permutation of lines within bound
gl oups ~

(c) R contains, for ea.ch graph in which a subset
of x lines of one bound-group terminates entirely
within another bound group without having inter-

acted with another line, an additive contribution of
compensating graphs, which is obtained by insert-
ing in place of the x noninteracting lines the neg-
ative of the interaction kernel Z of (4.5) or (4.6)
appropriate to those x lines; and

(d) A contains, for the sum of each graph of (c)
and its compensating graphs, a numerical factor
(&r) '

If one of the external particles in Fig. 12(a) is
elementary, the formula becomes a more familiar
one, because by Fig. 11(b) the wave function re-
duces to Fig. 12(b). Thus, in this case, the prop-
agator of the particle is not really present, though
it appears to be in Fig. 12(a).

The complete S matrix of the theory connects
all states made of elementary particles and bound
states. Its matrix elements as calculated by
Fig. 12(a) satisfy Lorentz covariance, crossing,
and unitarity. In Sec. VII other quantum numbers
will be introduced and the matrix elements will
then be covariant with respect to the appropriate
internal-symmetry groups. The analytic proper-
ties of these matrix elements are not obvious,
owing to the complications introduced by the wave
functions. Thus, for example, whereas off-mass-
shell elementary particles can be easily defined,
off-mass-shell bound states do not have an inter-
mediate natural definition.

We close this section by illustrating the effect
of the compensating graphs -Z. Consider a term
in the graphical expansion of the proton form factor
(P'~ J(x)~ P) for a proton

~
P) whose irreducible

wave function is composed of three quarks, as
shown in Fig. 13(a). The full kernel for the wave
function is V„+V„+V„+V„,. Therefore, the
quantity in the square brackets in Fig. 13(a) may be
replaced by V»+V»+ V»„either to the right or to
the left of the interaction with the external field
(but not both). Hence, Fig. 13(a) contains graphs
like those of Fig. 13(b), and does not contain a
graph that is zero order in the quark-gluon cou-
pling constant, as one might think at first glance.

VII. GENERALIZATION TO NONIDENTICAL FERMIONS

In Secs. IV, V, and VI we have dealt with bound
states whose irreducible wave functions are built
from a single elementary fermion spinor field.
We now extend the discussion to the case where
there are different fermion species.

It is useful to define two fermion spinor fields
g, and P, to be equivalent if there is an interaction
$, 1",,P,B, which transforms one into the other with
the emission of a virtual boson. For example, in
the quark model A. is equivalent to (P and X only if
there are strange bosons that couple them. The
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FIG. 13. Illustration of the effect of subtraction of redundant graphs. See text for explanation.

proton field is not equivalent to the electron field
in whatever theory. If the discrete quantum num-
bers distinguishing the equivalent fermions are
conserved, as we assume, then it is useful and
conventional to regard the set of equivalent fields
(g„g„.. .) formally as a single multicomponent
fermion field, by specifying that at spacelike
separations different equivalent fields anticom-
mute (instead of commute), so that wave functions
are antisymmetric under the interchange of the
coordinates and discrete indices of any two equiv-
alent constituents. Once we adopt this convention,
the discussions of N-fermion wave functions and
fermion-antifermion wave functions become trivial
extensions of previous cases. They merely ac-
quire discrete quantum number indices which are
summed over in all integral equations and in the
final answer in Fig. 12(a), just as the discrete
spinor indices were summed. Thus, all formulas
involving these types of wave functions, including
the reduction formula, remain the same if the set
of spinor indices is enlarged to include other quan-
tum numbers.

The only really new element is that now it is
possible to have a bound state whose irreducible
wave function contains more than one fermion-
antifermion pair, namely, one that contains both
a field and the adjoint of an equivalent but not
identical field. (If it contained the adjoint of an
identical field it would be reducible. ) What makes
the situation new is that, in addition to graphs of
the propagating type shown in Fig. 14(a), there
now exist Feynman graphs like those in Fig. 14(b),

(a)

6
p'„

I
Pj = .
PN

-q

q M

(b)

( ¹ 9

p

)

=

-qM

(c)
pl

E(p, , -q,') P2

-q,

pi

P2
I-q

pl

P2

ql
I

P2

in which annihilations between equivalent, but not
identical, fields occur. Our development will
show that these annihilation graphs do not contrib-
ute to the kernel of the Bethe-Salpeter equation,
by reason of renormalizability. This makes the
procedure of pole extraction in the reduction for-
mula the same as before, and one will arrive at
the same formula a,s Fig. 12(a) for the S matrix,
apart from trivial counting factors.

We are interested in an irreducible wave func-
tion consisting of N fermions and M antifermions.
Without loss of generality we assume N~M. To
begin, we consider the Green's function C shown
in Fig. 15(a), in which N fermion lines and M anti-
fermion lines flow through the graphs, with the

(b)

pi=
I

q

P2 P2

P

n P
n

FIG. 14. Typical types of graphs involving non-
identical fermions.

FIG. 15. {a) Convention for momentum assignment for
the general Green's function. {b) Hedrawing {a) to make
all fermion lines flow in the same direction, in order to
clarify the process of antisymmetrization. {c) Example
of how flow patterns originate.
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momenta of the external particles assigned as
follows:

Initial fermions: p, ~ ~ ~ pN,

Initial antifermions: q, ~ ~ q'„,

Final fermions: P
' ~ ~ P

'

Final antifermions: q', ~ ~ q„' .

(7.1)

N N

=g p,. + Pq, , (7.2)

i.e. , in the total momentum that flows from right
to left in Fig. 15(a).

If one makes vertical cuts in the graphs of Fig.
15(a), always cutting only fermion or antifermion
lines but no boson lines, then owing to the choice
of quantum numbers any such cut must intersect
at least N internal fermion lines and M internal
antifermion lines. That is, by assumption there
exists no state containing fewer particles having
the given quantum numbers.

If one traces a fermion line as it goes through a
graph in G, it either propagates continuously
through the graph from right to left (or vice
versa), or it may both enter and leave the graph
on the same side (left or right). We find it useful
to distinguish between propagating lines and back-
flowing lines: A propagating line is a fermion line
that flows from p; to p,' or from -q,' to -q, . A

back-floggin line is a fermion line that flows from
P; to -q, or from -q,' to p,'.

Back-flowing lines always come in pairs. In
any Feynman graph of G, if there are n back-
flowing lines on the right, then there are n back-
flowing lines on the left. The number of pairs of
back-flowing lines n characterizes the flozv pattern
of a graph independent of the number of interaction
vertices, the connectivity of boson lines, or the
number of closed fermion loops. Because ¹M
by convention, a=0, 1, . . . ,M. Let I be the sum
of all Feynman graphs in G with flow pattern n.
Then

(7.3)

To clarify the antisymmetrization of labels on
external legs, especially when different flow pat-
terns are possible, redraw the graphs in Fig.

We also include in the label P; or q, the set of
discrete quantum numbers associated with an
external particle. The irreducible wave function
we are interested in is contained in the residue of
a pole in the variable

N N

P=Q p, +g q,

15(a) in the form shown in Fig. 15(b), in which all
arrows of fermion lines point in the same direc-
tion. Then each fermion line flows through the
graph from right to left. Each Feynman graph is
characterized by a one-to-one association between
elements of the sets (p„.. . , p„; -q,', . . . , -q„'j and

(p,', . . . , p„'; -q„.. . , -q~}. As before, define
topological gxaPhs to be the subset of Feynman
graphs with the standard association

P; —P,' (i= 1, . . . , N),

q, —q,' (j= I, . . . ,M),
(7.4)

and denote the sum of all topological graphs
by G. Then G is obtainable from G by adding
all signatured permutations on the set
fp„. . . , p„; -q,', . . . , q„'j, or on-the set
$P,', . . . , P„'; -q„.. ., -q„}. One may also do
both and divide by (N+M)! .

Because we are eventually interested in the
choice of initial and final states as indicated in
Fig. 15(a) and not Fig. 15(b), some of the permu-
tations above interchange final and initial labels,
and it is necessary to distinguish between those
that do and those that do not. Accordingly, we
carry out an arbitrary permutation on (—q,';p;j in
the following manner. Call the M letters that
stand to the left of the semicolon the left subset,
and the N letters that stand to the right the right
subset. First, choose arbitrarily n letters each
from the left and right subsets, and move them
across the semicolon from one subset to the other,
placing them in any order whatsoever. After this
is done permute the new set of letters by PQ',
where P is a permutation of the new right subset,
and Q' is a, permutation of the new left subset. In
this way a permutation on ( -q;;p;j is specified by
P and Q' and the names (i„.. . , i~j and fj„.. . ,j„j
of the exchanged letters:

Perm =PQ'[E(i„j,) ~ ~ E(i„,j„)], (7.5)

where E(i, j) interchanges p; and —q,'. The signa-
ture of (7.5) is bubo. (-1)", where 6~, 0@. are re-
spectively the signature of P and Q'. As a check,
note that the number of operations of the form
(7.5) is N!M! ("„)(„),and the total number of per-
mutations is

¹~M~ = N+M f.'
a=O

(7 5)

After the exchanges E(i, j) in (7.5) are carried out,
redraw the graphs in the desired division of initial
and final states, as indicated in Fig. 15(a). The
permutations P and Q' then act respectively on
the initial labels (P;j and the final labels (-q,'. j.
The different exchanges give rise to the different
flow patterns mentioned earlier. An example is
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given in Fig. 15(c).
In general each E(i, j) gives rise to a pair of

back-flowing lines, so that the permutation (7.5)
gives rise to a graph of flow pattern n. For a
given n, there are (")(„")possible choices of
(i„.. . , i„j and fj „.. . ,j Jt, all leading to the
same flow pattern. The different choices even-
tually give the same set of Feynman graphs, after
we sum over all permutations PQ' with signature.
Therefore, if l is the sum of all topological
graphs of flow pattern n, then

(7.7)

The signature factor (-1) is absorbed into I' .
To obtain a more symmetrical representation,
we may apply to (7.7) the operation ZP'5~. ZQ5o,
and divide by N!M~. Thus we obtain

(7.8)

where, to reiterate, I' is the sum of all topologi-
cal graphs of flow pattern n, and A the sum of all
signatured permutations of initial and final fermion
and antifermion labels within each set separately:

Next we regroup the topological graphs in I' into
irreducible subsets. First, we reemphasize that
the choice of quantum numbers is such that any
vertical cut in a graph that does not intersect a
boson line must intersect at least N fermion lines
and M antifermion lines. For example, the graph
in Fig. 16(a) does not exist, but the one in Fig.
16(b) does. To define our procedures clearly, we

establish special conventions in drawing the topo-
logical graphs. For a particular topological graph
draw all lines parallel. Disconnected subgraphs,
if any, are to be drawn as separate nonoverlapping
tiers, as if the graph had been "combed. " In each
connected subgraph, the back-flowing pairs, if
any, are to be paired arbitrarily, with respect to
the vertical positioning of each member of the
pair. A "combed" graph is shown in Fig. 17(a).

(a) (b)

Now a natural pairing of the back-flowing lines is
established as follows. Make all possible distinct
cuts in the graph, with each cut intersecting ex-
actly N fermion lines, M antifermion lines, and no
boson lines. A graph segment between two suc-
cessive cuts may be disconnected, even if the
whole graph is connected. We specify that the
graph shall be so drawn that all segments be
already "combed. " The graph is then said to
be "well-combed. " Figure 17(b) shows the well-
combed form of Fig. 17(a). If a graph is not in
well-combed form, it can always be redrawn in
well-combed form by permuting the order of
back-flowing lines in the initial and/or final
states —like twisting the ends of a rope to dis-
entangle its strands. Ambiguity arises when a
permutation of two back-flowing lines in the initial
or final state does not destroy the well-combed
form. In that case, an arbitrary choice shall be
made.

Consider a topological graph drawn in well-
combed form. Imagine that all possible cuts that
intersect exactly N+~& lines are made, and num-
ber each line intersected by a cut in an order that
is the same for all cuts. That order is specified
by the numbering of lines in the initial state, for
which the following convention is adopted: Number
the ends of a back-flowing line by i and z, respec-
tively, for the fermion and antifermion end, with
i =1, 2, . . . , n. Number the propagating fermion
lines by j, with j = &+1, . . . , of+N. Number the
propagating antifermion lines by R, with
k= ++1, . . . , &+M. An example of this convention
is shown in Fig. 18. Between two successive cuts
lies an irreducible subgraph. An ambiguity in line
numbering can occur only when there is an irre-
ducible subgraph involving more than one back-
flowing pair. In that case we make an arbitrary
choice, and the arbitrariness will be taken into
account later in our definition of irreducible ker-
nels.

An i~~educible graPh is defined to be a connected
topological graph with a propagating lines (fermion
or antifermion) and 5 back-flowing pairs that can-

{a) (b)

P

Non ex istent
Ferrn |on

FIG. 16. Graph (a) does not exist because of the choice
of quantum numbers. Graph (b) exists.

FIG. 17. (a) A graph in "combed" but not "we11-
combed" form. (b) The '+e11-combed" form of {a).
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FIG. 18. Example illustrating the convention for line
numbering in a topological graph. FIG. 19. Examples of irreducible kernels.

not be made disconnected by a vertical cut inter-
secting a+ 2b or fewer lines (fermion or antifer-
mion), and intersecting no boson lines.

An irreducible &erne/ VJ, is defined as follows:
(a) Choose a set L of line numbers of propagating

lines (fermion or antifermion), and choose a set
A of fermion line numbers of back-flowing pairs:

Lc{1,. . . , N; 1, . . . , M},

with the kernel Z given by

(7.1O)

where {L„.. . , I.,}and {A„.. . , A, }are such that

{Vq', . . . , V)),&} is a set of mutually commuting ker-
nels, and

Ac {1,. . . ,N}
(7.9) I,,c{1,. . . , N; 1, . . . , M},

with the restriction that L and A cannot be both

empty, and that if A. HA, then Xg L and )).g L:

AUL&g

An L= Q, An L= (t).

A, c{1,. . . , o(},

A,.UI, , &y,

A, n I„
A,. nI. , =y.

(7.11)

(b) Draw all irreducible topological graphs in-
volving the lines in L and the pairs in A. If there
is more than one pair, then a permutation of back-
flowing lines in the initial or final state shall not
lead to a distinct graph.

(c) Sum all the graphs mentioned above, remove
all external legs, and multiply by (-1)', where b

is the number of pairs (i.e. , number of elements
in A).

Some examples of kernels are shown in Fig. 19.
Note that the first term of Fig. 19(b) is not renor-
malizable, just a.s the first term of Fig. 5(c) is not.

The sum G of all topological graphs containing,
at most, n pairs is the sum of all distinct products
of those kernels containing, at most, n pairs. It,
therefore, satisfies the integral equation in Fig. 20,

More explicitly, G is the sum of all topological
graphs with either no back-flowing lines, or one
pair of back-flowing lines in any of (,) positions,
or two pairs of back-flowing lines in any of (,)

positions, . . . , or + pairs of back-flowing lines in
one possible position. Hence,

G.-g(;) r', (7.12)

p( )) --(')c.. (7.18)

where the symbol —means "topologically equiva-
lent to", that is, both sides of the relation yield
the same result upon application of the permutation
operator A in (7.8). inverting this leads to

FIG. 20. The integral equation for G~, the sum of all topological graphs containing at most n pairs of back-flowing
lines. The equation is not renormalizable if n &0, owing to graphs in Z that have no renormalizing partners.
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Substituting this into (7.8) we obtain

G=A Pc G (7.14)

(7.15)

These formulas collapse to those of Sec. IV for the
case N arbitrary, I=0, and the case N =~ = 1.

A bound-state pole can occur in G only if it oc-
curs in at least one of the G . Although G itself
is renormalizable, the integral equation for it in
Fig. 20 is not if u&0, because its kernel contains
bare-boson propagators with no graphs to renor-
malize them, as in the first graph of Fig. 1S(b).
More importantly, if o. &0, then the integral equa-
tion for the corresponding bound-state wave func-
tion is not renormalizable, except in the special
case of N=~=1 discussed in Sec. IVB. We recall
that in that special case renormalizability is guar-
anteed by Fig. 7(a), which gets rid of the unrenor-
malizable graph. In the general case here, in con-
trast to Sec. IVB, there is no reason for integrals
like that of Fig. 21 to vanish automatically. A re-
normalizable Bethe-Salpeter equation can result
only if the bound-state pole in G occurs in G' alone.
By Fig. 20, the wave function then satisfies Fig.
22(a) and Fig. 22(b). These results collapse to those
those of Sec. IVA for N arbitrary, ~=0. For the
special case N = ~ = 1, one finds that c, = 0; thus
the pole occurs in G', and the integral in Fig. 21
does vanish automatically. The discussion then
reduces to those in Sec. IVB.

Since the kernel Z' of the Bethe-Salpeter equa-
tion in Fig. 22(a) involves only graphs with propa-
gating lines (fermion or antifermion), the extrac-
tion of the corresponding bound-state poie in the
reduction formula proceeds the same way as in
Sec. VI. Consequently, the S matrix is still given
by Fig. 12(a) except for extra counting factors, as
long as spinor indices are generalized to include
indices corresponding to other discrete quantum
numbers. 'The extra counting factors arise be-
cause of the factor c, in Fig. 22(b), which is the
weight of G' in (7.14). The new rule appended to
Fig. 12(a) is as follows: For each irreducible
wave function in Fig. 1,2(a) that involves more than
one fermion-antifermion pair and which contains
N fermions and ~ antiferrnions, multiply the ma-
trix element in Fig. 12(a} by (N!))f!c,) ', where c,
is given by Fig. 22(c). To check that this reduces
to the old case, note that c, = (Ã!) ' if M =0.

In our discussion of identical fermions in Sec. IV,
we assumed that irreducible wave functions are
constituted either of N fermions or of one pair.
'This may not be so, if for some reason the mini;:

FIG. 21. There is no reason for this to be identically
zero. If there were, then Fig. 20 would have been
renormalizable for all m.

mal wave function vanishes identically. In such a
case, the irreducible wave function may involve
supernumerary pairs, and the discussion in this
section applies without essential change. 'The final
result for the Bethe-Salpeter equation is the same
as Fig. 22(a) and Fig. 22(b), and rules for the S
matrix are amended by the same factor (N!M!c,)

'
as explained in the last paragraph.

Z(V)=—gv;-gv, v, + Pv, v&v, —
&ien&

and (ij) denotes distinct pairs of commuting opera. —

tors, (ijk) denotes distinct triplets of mutually
commuting operators, etc.

I'roof. The theorem is obviously true for r =1.
Assume it is true for 2, . . . , x and consider the set
V' =(v„.. . , v„, v'] of r+1 operators. We will

ZO 0, {a)

ZO

co ( N! M! ) 3

{b)

M

(N-P)! (M-P)! (g!) {c)

FIG. 22. Bethe-Salpeter equation and normalization
condition for irreducible wave function containing more
than one fermion-antifer~nion pair.

APPENDIX A: TWO THEOREMS

Lemma. Let V=] v„. . . , v„] be a set of r opera-
tors. The sum of all distinct products of the v's
is given by the expansion of [1 —Z(V)] ', where
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show that [1 —Z(V')] ' is the sum of all distinct
products of the ~+1 v's. First, let C be the set
of all operators in V that commute with v'. Then
from the definition of Z we may write

Z(V') = Z(V) + [1 —Z(C)]v'.

Hence,

1 1
1 —Z(V') 1 —Z(V) —[1 -Z(C)]v'

=(1+Rv'+Rv'Rv'+ ' 1
1 —Z(V) '

right. Call such a product a good product. Every
product of f v„. . . v„) is either good or can be
written as a good product multiplied from the right
by any product of elements in C. Hence, the sum
of all distinct products of (v„.. . v„) can be written
as the sum of all distinct good products of the v's
multiplied from the right by the sum of all distinct
products in C. From the inductive hypothesis this
means that

1 = (sum of all distinct good products)

where

(Al) 1
1-Z(C)

(A2)

The right side of (A1) is the sum of all distinct
products of f v„. . . , v„, v'), as claimed, only if R
is the sum of all distinct products of f v„. . . , v„)
that cannot be written with a member of C on the

Thus R in (A2) is the sum of all distinct good pro-
ducts and the lemma is proved.

Theo~em l. If G is the sum of all distinct pro-
ducts of V, then G =1+Z(V)G.

Theo~eyn 2. If A~ is the sum of all distinct pro-
ducts of V that cannot be written with a member of
the set CL V on the right, then Rc =G[1 -Z(C)].
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