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“Natural” left-right symmetry

R. N. Mohapatra*
Department of Physics, The City College of The City University of New York, New York, New York 10031

J. C. Patit
Center for Theoretical Physics, Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742
(Received 11 November 1974)

It is remarked that left-right symmetry of the starting gauge interactions is a ‘“natural”
symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The
implications of this result for the unification of coupling constants and for parity nonconservation at low

and high energies are stressed.

In a recent note! it has been pointed out that a
left — right discrete symmetry? in the starting
gauge interactions provides a desirable basis for
introducing CP violation into such a scheme, in
that such a gauge symmetry, subjected to spon-
taneous symmetry breaking, automatically satis-
fies the relation 7n._ =7,, and links the suppression
of CP violation to the krnown suppression of (V +A)
weak interactions. The purpose of this note is to
point out that such a discrete symmetry has a
second desirable feature in that it can indeed be
preserved as a “natural” symmetry, provided we
ensure that the symmetry in question is broken, if
at all, only in a “soft” manner, i.e., via mass
terms of the Higgs scalars.

We point out that such a soft symmetry breaking
is, on the one hand, sufficient to guarantee the
desired mass splittings between the left- and the
right-handed gauge bosons (with My, > m,,L), S0 as
to account for parity nonconservation and dominant
(V = A) character of the known weak interactions.
On the other hand, it does not lead to infinite cor-
rections in higher orders to the difference between
the left- and the right-handed gauge coupling con-
stants g, and gz, so that (g, — g%) is calculable.
This in turn has important implications: (1) A
unifying gauge model of the type SU(r), XSU (1)
based?® on 2n four-component fermions (which may
comprise gauge groups of Ref. 2 as subgroups),
subjected to a discrete left — right symmetry as
above, can be described by a single coupling con-
stant * a feature which is desirable from the point
of view of unification of all forces and all matter.
(2) Parity nonconservation (like CP nonconserva-
tion) can be interpreted as a low-energy phenome-
non to disappear at high energies, as conjectured
in Refs. 1 and 2, We also briefly discuss the im-
plications of such a model for neutral-current
phenomenology.

To make our discussions specific, let us assume,
for illustration only, that the gauge group is of the
form
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8,=SU(2), ®SU(2); ®G, 1)

where SU(2), generates (V —A) known weak inter-
actions, SU(2) generates parallel (V +A) interac-
tions in the manner suggested in Ref. 2, while G
denotes any gauge group commuting with SU(2),
XSU(2)g and generating gauge interactions with
L~ R symmetry. [Examples? of G are SU(4){%%
or SU(3);%% XU(1),+.] We will assume that the
bare coupling constants g{°’ and g{° for the gauge
groups SU(2), and SU(2), are equal; in this case
the gauge interactions generated by the entire
group $, are L — R symmetric. We then show that
the renormalized coupling constants g, and g are
equal up to finite radiative corrections as long as
the L — R symmetry is not broken by the Higgs
potential in a hard manner. [It will be clear from
our discussions that the results obtained are not
limited to the special choice of the gauge group
and are more general; in particular they apply to
a gauge group of the form SU(n), X SU(n); as long
as one satisfies the condition of soft breaking. ]

Once again for illustration only, let us choose
the following sets of Higgs scalars:

¢, (2,2,1)
XL 2,1,1)
XR (1,2,1).

[Additional Higgs scalars needed to generate
masses for the gauge mesons of the group G should
be chosen to have either the representation con-
tent (1, 1, m) or should consist of parallel multi-
plets, i.e., £, =(,1,m)and {£z;=(1, , m), etc., so
that their contributions to the Higgs potential
may also be written in a L -~ R symmetric manner.
We do not exhibit such multiplets for ease of
writing. ]

The choice of the potential consistent with re-
normalizability and the L — R symmetry as men-
tioned above is given by
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V(¢1,27 XL» xn)=; aiITr(¢iT¢j)+ z

i,0,k,171,2,3,4
v 2

i,/=1,2,3,4

where®
G3=T, 0Ty, ¢4572¢;T2. (3)

Note that cubic coupling of the type xchx & €an be
forbidden by imposing the discrete symmetry
XL~ —Xz-

Note the important point that except for the
mass terms for x, and xz, the rest of the poten-
tial respects the L~ R symmetry.

First we remark that it is easy to arrange (with
appropriate choice of signs®) that the vacuum ex-
pectation values (x,) and (xz) are each nonzero,
and secondly (if up>p,), one would obtain (Xgr)
> (x.?, which in turn would lead to myzy > mw, .
This is sufficient to account for the phenomenology
of the known weak interactions.

On the other hand, we now argue that a breaking
of the L — R symmetry due solely to unequal mass
terms for x; and x, cannot lead to infinite correc-

w

(c)

FIG. 1. One-loop corrections to gg.

b Tr(¢f¢,¢:¢z)+ Z
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Cijri Tr(¢f¢,)Tr(¢I¢,)

i,5,k,1=1,2,3,4

di; Tr(p] ¢, (xLxe +xkxe)+el(xIx.)? + (Xx P +f (X2 X hXe) +B22XIXL + LR*X kXRs

2)

r

tion to the relation g, =g5.
are the following:

(1) The corrections in question due to mass
terms are always more convergent by at least two
powers of momenta than those due to interactions.

(2) The vertex coupling (Wyy or W,¢d,¢,
etc.), all the quartic scalar field couplings, and
the kinetic-energy terms” being of dimension
four, the most divergent corrections to them (in a
renormalizable field theory) are necessarily loga-
rithmic, arising from the most singular terms in
the propagator.? (We work in the R gauge so that
the vector as well as scalar propagators behave
as k72 for large ¥%). This makes it clear that the
infinite corrections to the vertex as well as to the
quartic scalar-field couplings must be independent
of the masses of the Higgs bosons. Hence the
result g, =g + (finite corrections).

The working of this general argument may be
verified by examining explicitly the Feynman dia-

The reasons for this

FIG. 2. One-loop corrections to gg.
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grams for radiative correction to g, and g;. Be-
low, we exhibit these for vertices with (W ¢, ;)
and (Wgy i) external lines with one and two loops
only, although the result holds to all orders. In
drawing these diagrams, we have allowed for the
possibility that the ¢ fields may, in general, pos-
sess Yukawa couplings of the form (¥, ¢yg+H.c.),
which are needed to ultimately provide masses to
the fermions.

The one-loop corrections to g, and g with fer-
mion—gauge-boson external lines are exhibited in
Figs. 1 and 2 respectively. It is clear that if the
bare coupling constants g{’ and g¥’ are equal, the
infinite corrections due to Fig. 1 are exactly equal
to those of Fig. 2. Finite corrections due to Figs.
1 and 2 will of course differ since mw, # my,.
[Note, we have not exhibited diagrams of classes
1(c) and 2(c) leading to (W yR¥z) and (Wri,¥,) ex-
ternal lines, respectively. These are new induced
vertices, but these diagrams are convergent any -
how. |

The two-loop corrections to g, with (W p, ;)
external lines are exhibited in Fig. 3. Counterpart
diagrams showing analogous corrections to g with
(Weirg) external lines are not drawn, but may be
obtained from Fig. 3 with the substitution L <~ R
for every line. Once again, with g{¥ =g, the
divergent parts of Fig. 3 match those of the count-
erpart diagrams mentioned above.

It is worthwhile pointing out the graphs which,
in the absence of left-right symmetry of the quartic
couplings, would make different divergent con-
tribution to (g, — g¢). This happens starting at the
two-loop level for the graphs involving ¢ ¢W ver-
tices. (See diagrams in Fig. 4; the right-handed
counterpart diagrams are obtained by the sub-
stitution L —R). Note that the divergent contribu-
tions from these diagrams are L~ R symmetric
provided we choose the quartic couplings
Tr(¢'¢)(xIx, +xkxg) in the L~ R symmetric®
form in the first place.

It is clear from the line of arguments presented
above, in particular the general arguments, that
they are not limited to the special choice of the
gauge group, and we conclude that the class of
renormalizable gauge models, which respect the
L —~ R discrete symmetry everywhere in the La-
grangian except possibly in the scalar mass terms,
preserve the “naturalness” of the L — R symmetry
in spite of radiative corrections. This in turn has
the following implications: (a) Local gauge sym-
metries of the form SU(r), X SU(n)g, subjected to
the discrete symmetry as mentioned above, in-
volve a single fundamental coupling constant.

(b) Since all masses and mass differences [1ike
(kg - py) and (my, - my,)] canbe neglected in a
renormalizable theory at sufficiently high energy,

FIG. 3. Two-loop corrections to g;. Counterpart
diagrams for corrections to gz are obtained by the
substitution L =R for every line.

parity nonconservation should disappear in theories
of the type discussed here at high energies (>>mWR),
parity nonconservation at low energies being pri-
marily'® a consequence of the large mass differ-
ence between W, and W,. Lastly, we observe that
in the case of the SU(2), XSU(2)zX G gauge group,
the weak mixing angle 6, is predicted®!! to be
sin?8,=gz%/(gg? +g.%)~0.5.

We thank Professor Abdus Salam for several
illuminating discussions on the notion of left-right
symmetry.
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FIG. 4. Corrections to ¢ W vertex sensitive to the
left-right symmetry of the quartic couplings.
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30ne must choose 2z rather than z (if » >2) to avoid
Adler-Bell-Jackiw anomalies. For the basic model of
Ref. 2, the group in question will be SU(16)x SU(16)g,
which if gauged will require a new 16-plet of four-
component fermions to avoid anomalies.

“The desirability of a single coupling constant has been
advanced by J. C. Pati and Abdus Salam, Phys. Rev.

D 8, 1240 (1973); and H. Georgi and S. L. Glashow,
Phys. Rev. Lett. 32, 438 (1974). Note that the manner
of obtaining a single coupling constant for SU(n)

x SU(n)g local symmetry with the L —— R reflection
symmetry, as suggested here, is distinct from that
obtained under a single SU(z) local symmetry suggested
by Georgi and Glashow.

The appearance of ¢; and ¢, related to ¢ and ¢, is
typical of the SU(2) group.

The appropriate choice of couplings which gives the
desired pattern of vacuum expectation values mentioned
is up?<0 and pg?<0, pgp>>pg, and f << (x2)?/ (Xr)%;
then we get

Ky gt E1:2 0
<¢’1,2>=< 0 K} zeiéi.2>r
—_ 2 2_D
<XL>= #L ef(XR) ’
(Xm) = Br" = f{Xp) D’

[

where D =37;.d;; Tr({(¢§)(¢;)). One gets for the
masses my} and M; } the following values:

myt2 =gt ke + 1P+ (x 1))
and
my 2= gp¥ (ki + Ky + (xp)?)-

Therefore, if «;~ (x 1), we get myr2>> my ;2. Note

that the complex (¢ ,) given above generate CP viola-
tion as suggested in Ref. 1.

"This implies that the wave-function renormalizations,
which enter into the definitions of the renormalized
coupling constants, are at most logarithmically di-
vergent, and therefore their divergent parts are in-
dependent of mass terms and hence L =—R symmetric
(following the same arguments as discussed in the text).

%This result actually follows from a theorem due to
K. Symanzik [in Fundamental Intevactions at High
Energies, edited by A. Perlmutter, et al. (Gordon
and Breach, New York, 1970)] quoted by T. Hagiwara
and B. W. Lee, Phys. Rev. D 7, 459 (1973). The
theorem states that when a total symmetry of the
Lagrangian is “softly” broken, vertices of higher di-
mension (than those of the symmetry-breaking terms)
suffer only finite renormalization due to the symmetry-
breaking terms. Here the global symmetry in question
is the reflection symmetry which takes L «—R.

% a manner similar to that discussed for Wyy and Wo¢
couplings, it is, of course, easy to verify diagram-
atically that divergent parts of radiative corrections
to quartic couplings also remain L «—R symmetric,
once the starting Lagrangian is L «— R symmetric
except for pp = pp.

19Note that parity-nonconservation at low energies has

two sources: (1) My >> My, and (2) (g7 —&g) # 0. The
former source leads to parity violation of order (g.2/
my Lz), while the latter, by itself, would lead to parity
violation of order g, (g, ~&g)/my, 2~ aGp, which is
small compared to Gg. Thus, observed parity violation
to order Gg,,,; is entirely a consequence of My >> My,
which, in turn, can be attributed to a joint consequence
of spontaneous symmetry breaking and the choice

Hr #pr. If one can dispense with the Higgs-Kibble
mechanism in favor of dynamical symmetry breaking,
one could attribute parity nonconservation in theories

of the type discussed here entirely to spontaneous
symmetry breaking.

111f one assumes that left— and right-handed Cabibbo

angles are comparable and that the CP -violating phase
is maximal, from Ref. 1. We may deduce that

(my, /my, )2 |n, _|~ 1073, Since in the scheme pre-
sented in this paper | (g, —&r)/&y| is of order « Ingny,/
mWL)2, we expect g, to differ from gy by at most a

few percent, and therefore sin%0,,~ 0.5.



