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The recent data for K ~2m, = ~ Am, and A ~ Xn decays are used to extract solutions for the
parameters of these decays. The available K —i 3m, X —1 Nn', and 0 ~:-m' data are not sufficient to
determine the parameters of these decays. No preference is found for a EI =

~ solution in any of
the three analyzed decays. It may be possible to distinguish between hI =

~ and hI Q -' solutions
for A i Xn by means of a future measurement of the transverse polarization of the neutron in the
A~ neo decay.

I ~ INTRODUCTION K'- w'+w'(A„),

In virtually every elementary particle physics
text and in many journal articles one reads that
the nonleptonic decays of hadrons satisfy the AI= &

rule. However, in 1968 and 19'71 we showed' that
the K-2~ data available then did not favor a M= &

solution over a AI & 2 solution for the decay pa-
rameters. Herein we show that this is still the
case for K-2n and is also true for "-Aw and
A - NTI. The data for K- 3m, z -Nm, and Q- =m

are insufficient for us to make any such judgments
for these decays.

So, as the data presently stand, there is no rea-
son to believe that the AI=-,' rule is valid. We
show herein, however, that there is some hope
that a measurement of the transverse polarization
of the neutron in A -nn' decay would distinguish
between ~=-,' and bJ&-,' solutions.

In the next section we analyze the most recent
K —2 m data using the formalism presented in R efs.
1. Section III contains an analysis of the "-Am

decays and Sec. IV contains an analysis of the
A - Nn decays. In Sec. V we explain the situation
for the Z - Nw, 0- =m, and K- 3m decays for
which there are not sufficient data for analyses.
Finally, in Sec. VI we summarize the noncommittal
verdict of the nonleptonic decay data of hadrons
regarding the validity of the iU= & rule.

w '+ w-(A,' )

~w'+ w'(A~w)

and

w '+w (A, )

~w'+ w'(A„)

where the symbols for the decay amplitudes are
indicated inside the parentheses. For CPT in-
variance the ratio ]A„]'/]A, ]' should be unity,
which it is' within an error of +0.11/p. So in this
and all other decays considered herein we assume
CI'T invariance. (The analyses are impossible to
perform for CPT noninvariance because there are
then many more parameters than there are avail-
able data. )

Typically we want to calculate a decay amplitude
such as (Kw-w'+w & =(w'w ]H]Kw&. To calculate
this and the other decay amplitudes we need the
initial states

fK'& = f-.', ~-,'&, ,

II. K ~ 2m DECAYS

The details of these decays are given in Hefs. 1,
so we only summarize the situation here. The
decays are

and

] Ki& = o(e) [(1+e) ]
K'

&
—(1 —e) i

K') ]

where

11
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IK') = I, --,'&„

IK'& = I-,', +-,'&,

a(e) —= 1/[2(l +
I
e I')] ' ',

and we use the isospin (I}and strangeness (S)
notation I I, I,) e. The complex parameter e is the
usual CP-violation parameter of order 10 ' in
magnitude. We also need the final states

(w'w'I =(2, ~ 1 le"p,
(w' w I

= (-,') ' ~'
&2, 0 I

e' 'p + (-,') ' I'
& 0, 0 I

e' o,
Rnd

(w'w'I =(-',)'"&2, ol e'" -(-')"(o, ol e'"
(4)

where && is the s-wave mm scattering phase shift
for isospin I at the mm c.m. energy equal to the
kaon mass and we use the isospin notation (I, I, I

.
The final state nm interaction is accounted for in
the usual way by the inclusion of the mm phase
shifts in the manner shown.

The basic isospin amplitudes are

&o, o IH I
K'& =-B,e' ", &o, o IHI K &

=-Bpe' ",
(2, 0IHIK')=B, e"p, &2, 0IHIK'&= Bg*e"p, -
(2, 1IH IK+)=B+e' p, and—(2, —1IHIK &=B*e' p,

(5)

where the forms given are determined by CPT in-
variance (with the final state interaction, i.e., the
5's, set equal to zero) and B, is set to be real be-
cause there is an arbitrary overall phase factor.
For CP conservation B+ and B2 would also be real.
Since CP violation is a small effect, Im&, and
ImB2 are of the order 10 ' compared to &o. The
decay amplitudes in terms of these basic ampli-
tudes are

A„=(w'w'IH IK')=B,e'", A, =(w w'IH IK &=B,*e'"
A, = a(e) [(1+a)(w'w IH IK'&+(1 — )& e' wlHwIK'&J,

Aw, = a(e) [(1+e) (w'w'IH IK') +(1 —e) (w'w'IH
I K'&],

A,' =a(e)[(1+.)(w'w-IHIK'& —(1 —e)&w'w IHIK'&],
-

Rnd

Ap'p = a(e) [(1+e) &w'w'IH IK'& —(1 —e) &w'w'IH IK'&],

where

By a short study of the initial and final states
one observes that the decay Hamiltonian 0 can
change the isospin by either —,', 2, or —,

~ There-
fore, the most general decay Hamiltonian can be
written as

»/2+~ &1/2 ~ »/2
1/2 3 /2 5/2 s (8)

where the subscript is LU and the superscript is
Upon sandwiching this Hamiltonian between

the initial and final states in the basic amplitudes
and using the Wigner-Eckart theorem we obtain

and

B,=A, /v 2,

B, = (Ap +A, )/v 2,
(9)

B =(—)' '(A —-'A )

$ i s
&+-

'

+-~s s s
~oo ' Aoo

s ' s
p» A,

s+ +
p, o A, o

2 S
+s ~s=2.205+0.030

~oo
S

~s+ = 454.6+ 5.3,
@+0

(10)

Rnd

l,
q+ -=ill+ I exp(i4, ) -=; =(2.17~0.07)xlo '

+

xexp[i(46. 6'+2. 5') J,

happ= lq~lexp(ippp) =A (2w. 25+0.09) xlo 'A,o

00

x exp [i (49 + 13')],

where A„=(I IIH„i, II 2) is the reduced matrix ele-
ment for AI =n/2 connecting the initial state with
isospin —, to the final state with isospin I (I= 0 for
n= 1 and I=2 for n=3 or 5). The nI= —,

' rule states
that I Apl ~Ai and IApl Ai or IBpl«B, and

I B, l«B, .
So we have the following kinds of parameters:

(1) CP-violation parameters (Ree, Ime, 1mB„
and ImB );

(2) nI &-,' parameters (ReB, and ReB,);
(3) M= p parameter (Bp).

If, in any good fit to the data, one of the param-
eters Be&, or Re&, is not small compared to &„
then the LU= 2 rule is not proved to be valid.

The experimentally determined quantities' are

(w+w IHIK'&=(-')" B e'"+(-')"B e"p

(w+w IH IK & =(—')' 'B*e' 2+(—'}'I'B e'

&wPwPIHIKP) -(—)&iPB e'~p (1)&IPB e'Pp

and

&w w IHIKp& =(—) B*e'~2 —(—')'i'B e~(p

(7)

where the two-body phase space factors for
a-b+c Rre'

Pp, =([M, ' —(Mp+M, )'] [M, ' —(M, -M, )'])'i'/M, '

(12)

in terms of the masses of a, &, and c. Note that
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2+(ReB,)'+2& 2f ReB,
1+(Re3,)' —2W2f Re+, '

4 2+(HeB, )'+2&2f Re3,
s+ 9 I2

ih ImB,
v 2+hReB, '

(13)

the experimental value, 49'+13', given for fop
is obtained' by combining two experiments. ' The
earlier experiment obtained a value of 51 +30'
and the later experiment yielded 38'+25'. The
same group did both experiments and claimed that
the later experiment is the more reliable of the
two. We shall use both the combined value and the
later value in our analysis.

The equations for the experimentally determined
quantities in terms of the parameters given above
can be found in Refs. 1. Here we give approximate
expressions for I e I« ReB„snd ImB„«HeB„:

@op
= 49'+ 13'

ReB,
IrnS 2

Rem

Ime

~~-&o

X

Probability

ft)pp = 38 + 25

ReB,
rmE,
Ree
Ime

~2-&o

X

Probability

AI =~ solution b, I & ~ solution

0.044 97+ o.000 29
0.0406+ 0.0063

(-0.037 + 0.053) x 10
(1.508+0.080) x 10 ~

(1.597+ 0.078)x 10 '"

-49.0'~ 5.0'
0.0401
0.841

0.0880+ 0.0072
1.68 + 0.18

(0.06 + 0.94) x 10 ~

(1.50+0.14) x 10 ~

(1.58+ 0.33)x 10-'
-49.0'+ 5.0'

0.5334
0.465

0.044 97 + 0.000 29
0.0406 + 0.0062

(-0.038 + 0.053) x10
(1.512 + 0.080) x10
(1.592 + 0.079) x10
-49.0' + 5.0'

0.1105
0.739

0.0880+ 0.0071
1.68+ 0.18

(-0.7+ 1.0) x 10 3

{1.60 + 0.12) x 10
(1.84 + O.32) x 10

-49.0'+ 5.0'
0.0156
0.900

TABLE I. K 27t' fits.

i F2h Ima,
1 —v 2kImB, '

where B„= „B/ Bah —=—exp[i(6, —50)], and

f =-cos(6, —6,).
Note that the wn s-wave scattering phase shifts

enter in only in the combination &, —&0. These mm

phase shifts are experimentally determined in
nP- mPn reactions. Therefore, we can use &, —6,
both as a parameter to be varied in the expressions
above and as an experimental quantity. We use
the ~, —&, value determined by Estabrooks et al. '
except that we approximately double the error to
include other recent determinations of its value;
the value we use is —49'+5'.

Since the experimental values of A~ and R&, are
approximately 2 and 450, respectively, it appears
probable from the equation above that Re&, «1
and ReB,«1, i.e., that M =

& is dominant. How-
ever, it is possible that ReB,«1 but ReB, =1: We
can set 8~ =2 and solve to get HeB, (3HeB, —6v 2f)
=0. One solution is Re8, =0, the bd=& dominance
solution; the other solution is

ReB, =2W2f =2v 2 cos(6, —6,) = 1.85, i.e. ,

We obtain fits to the most recent data' starting
from the solutions found in Befs. 1. There are
seven experimental numbers to be fitted (Az, Rz, ,

Iq+-I, I@001 y+-, yo„and 6, —6,) and six vari-
able parameters (Ree, Ime, I@+ I, ReB„ ImB„
and 6, —6,). The results of the fits are shown in
Table I. We see that the ~ =.

& solution is favored
when we use goo = 49' + 13 ' and the bI +,'- solution
is favored when we use Q~ =38'+25'.

Note in Table I that Im3, is zero within errors.

TABLE II. K - 2~ fits vrith ImB
2

= O.

pop
= 49 + 13' DI = 2 solution &»2 solution

Rex,
Re&
Ime
~2-~o

X

Probability

0.044 97+ 0.000 2S
0.0406 + 0.0063
{1.509 + 0.081)x 10 ~

(1.601+ 0.078) x 10 '
-49.0'+ 5.0'

0.5252
0.769

0.0880 + 0.0072
1.69 + 0.18

(1.509 + 0.081)x 10
(1.601+0.078) x 10 ~

-49.0'+ 5.0
0.5252
0.769

Qpp
—38 + 25

l~, l

ReS,
Ree
Ime
62-6o
X

Prob ab zloty

0.044 97 + 0.000 29
0.0406+ 0.0063
(1.514+0.081)x 10 3

(1.596+0.079)x 1O 3

-49.0'+ 5,0'
0.60S5
0.737

O.OS82 + 0.0072
1.69 + 0.18

(1.514+ O.081)x 10
(1.596 + O.O79) x 10-'
-49.0'+ 5.0'

0.6095
0.73&

Table II shows the results of fits to the data with
Im&, =0. Bather good fits to the data are obtained
in all cases.

We can extend the analysis to include the semi-
leptonic decays of kaons, as we did in our last
paper. ' Then the latest data yield fitted probabil-
ities of P(hl= z) = 0.251 and P(MW&) =0.367 for
P«=49'+13 and of P(M=~) =0.261 and P(M&2)
=0.714 for $00 38 +25 The fitted parameters
are given in Table III. Thus this combined analysis
of nonleptonic and semileptonic decays of kaons
favors the M&2 solution for both values of $00.

We conclude that the M=
& rule is not supported

by the current K-2m data. A more precise mea-
surement of P« is needed to settle the issue. It
is interesting to note that for the I && solution
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TABLE III. Combined nonleptonic and semileptonic
kaon decay fits.

, (m AI=, (1, 0Ie' ' and, (w AI=, (l, —1Ie' ~

(18)
@op=49 + 13 AI-

& solution AI &2 solution

ReB,
rm82
Ree
Ime
62-hp

Rex
Imv
X

Probability

oo
38'+ 25'

ReB2
lmS,
Re@

Ime

Rex
Imx
X

Probability

0.044 97+ 0.000 28
0.0406 + 0.0065

(-0.034 + 0.053) x 10
(1.593 + 0.057) x 10 3

(1.557 + 0.074) x 10"~

-49,1 + 5.0'
0.022 + 0.017
0.012 + 0.030

2.768
0.251

0.044 97 + 0.000 29
0.0407+ 0.0063

(-0.035+ 0.053) x 10 ~

(1.597+ 0.059)x 10
(1.551+0.075) x 10
-49.1'+ 5.0

0.021+ 0.017
0.010+0.030

2.688
0.261

0.0879+ 0.0069
1.68 + 0.18

(-0.6+ 0.68) x 10
(1'.629+ 0.066) x 10 '
(1.786+ 0.24) x 10-'

-49.2 '+ 4.8
0.015+0.018
0.011+0.030

2.007
0.367

0.0895 + 0.0067
1.72 + 0.17

{-1.10+ 0.82) x 10-3
(1.651~ 0.067) x10 '
(1.91+0.27) x 10 '

-48.0 + 4.7'
0.010+ 0.018
0.011+ 0.030

0.674
0.714

'See Refs. 1 for notation and equations; x is the ratio
of the ~ = -bQ amplitude to the b,S =bQ amplitude for
kaon semileptonic decays.

ill. :"~ Am DECAYS

E, =—0 and B,=——,
' or A, =, l4y and A. , =—&,.

A further interesting question for K-2m decays
is: Can one fit the data with the ~= 2 dominance
solution without any ~= 2 amplitude'? The answer
is "yes." We get fitted probabilities between 0.35
and 0.8 for all fitted attempts for both values of
Qpp with and without semileptonic data included.

in terms of isospin states (I, I,I, and the wA scat-
tering phase shift &7 for angular momentum l at
the mA c.m. energy equal to the = mass. The final
state interaction is accounted for in the usual way
by the inclusion of the m'A phase shifts in the man-
ner shown. The mA phase shifts are not available
from other experiments, so we must consider
them as variable parameters in our fits to the
decay data. Actually, as we shall see below, only
the combination &, —&p occurs in the equations for
the decay amplitudes.

The basic isospin amplitudes are, in this case,
the same as the decay amplitudes

-,' =, (1, 0 IH I 2, + 2) e' ' =B,e' '

(17)

:-, =
z (1, 0 IH I

-,', ——,'& e"~=B,e"~-

We know that in K-2n decays CP violation is a
small effect. So we assume here that CP is con-
served, which implies that Bp7 and 8

7 are real.
We shall see below that the = decay data are some-
what inconsistent with this assumption, but that
the introduction of imaginary parts to the ampli-
tudes would yield more parameters than there are
number of data to be fit ted. In the next section
we shall see that the A decay data can be well fitted
with real amplitudes. So it appears probable that
the inconsistency of the " data with CP conserva-
tion is due to experimental difficulties.

By a short study of the initial and final states
one observes that the decay Hamiltonian 0 can
change the isospin by either & or &. Therefore,
the most general decay Hamiltonian can be written
as

The decays are a=a -"+Bi/2 + 3/2 (18)

:- ' —A + w '(:-,') and:" —A + m (:-,), (14)

in terms of isospin states II, I,&, and the final
states

where the symbols for the decay amplitudes are
indicated inside the parentheses. Since parity is
not conserved, the Am final state can have angular
momentum l equal to zero as well as one. We dis-
tinguish between the amplitudes for the two angu-
lar momenta by a subscript l in the symbols for the
decay amplitudes.

Typically we want to calculate a decay amplitude
such as (:"'-A+m'&, =, (voAIH I:-o&. To calculate
this and the other decay amplitudes we need the
initial states

where the subscript is M and the superscript is
Upon sandwiching this Hamiltonian between

the initial and final states in the decay amplitudes
and using the Wigner-Eekart theorem we obtain

Bo, =(2)' '(A„+A„) and B
g =A„+~A„, (19)

where A„, =, (1IIH„I,II z) is the reduced matrix ele-
ment for M=n/2. The M=-, rule states that either
A ip or + 1] or both are much greater than A3p and
A„.

So we have the following kinds of parameters:

(1) M & —, parameters (A» and A»);
(2) M= ~ parameters (A „and A»).

If, in any good fit to the data, one of the param-
eters -43p or A» is not small compared to the
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larger of the parameters Ayp and Ay] then the
M= 2 rule is not proved to be valid.

The experimentally determined quantities' are
~0 2+ ~0 2

0 ' -PPL ~ ~R 0 558~0024
p i=, l'+ t", t' p 8 p

a, =—2 Re(" o*:-o)/R, = —0.44 +0.08,
(20)

a =2 Re(:-o * =, )/R = —0.393 +0.023,

P, = sin ' [I8,/(1 —a,')'~'] = 21'+12',

We see from the values of $0 and Q given above
that experimentally yp & 0 and y1 + 0 The n„are
related to the decay symmetry of a polarized "
and the longitudinal polarization of the A. The p„
and y„are related to the transverse polarization
of the A. See Ref. 6 for the details.

The equations for the experimentally determined
quantities in terms of the parameters given above
are

and

=sin '[P /(1 —a ')'~'] =2'+7', and

a„=2R„,R„,f/R„, P„=2R„,R„,g/R„,
(21)

where the phase space factors p„are defined as
in the previous section and P„-=2 Im(:"", :"",)/R„.
There is another quantity y„=—(( "",(' —):"",(')/R„,
but one can show that e„'+p„'+y„' =1. There-
fore, if e„and P„are known, then y„ is fixed ex-
cept for sign. So, all solutions obtained must be
checked to ensure that yp and y have the correct
signs as determined by experiment. If y„~ 0 then
—v/2 & P„&w/2 and if y„&0 then v/2 & ]„&3v/2.

where f —= cos(&, —&o) and g—= sin(&, —do). Since
these equations contain only bilinear combinations of
the decay amplitudes, we can only determine the am-
plitudes relative to some specified amplitude. We
choose A 10 1 and then determine all other ampli-
tudes relative to it.

One observes immediately from these equations
that

P,la, = (1 —a,') ' I'
sing, /a, = —= (1 —a')' ~'

sing /a = p /a (22)

Upon putting in the experimental numbers on both
sides of this equation we got —0.73 +0.41 = —0.08
+0.28. The errors on these two numbers just
barely overlap; so, as mentioned previously, the
formalism with CP conservation is not strongly
supported by the data. However, if we allowed all
but one of the reduced matrix elements to be corn-
plex (one can be taken to be real because of an
arbitrary overall phase factor), we would have six
amplitude ratios to be determined by fitting five
experimental numbers. So, because of this and
arguments previously given, we shall maintain CP
conservation, but we cannot expect to achieve low
g"s in our fits.

Note that the mA s- and P-wave scattering phase
shifts enter in Eqs. (21) only in the combination

~p This is a parameter to be varied in our
fits.

For bI= & Eqs. (21), and also more general equa-
tions without CP conservation, yield

R=RO/R = —,', ao=a, and Q, =Q . (23)

(One can show that some ddt-, solutions also sat-
isfy these equations. ) We see that P, =P is not
well satisfied by the data, but this is essentially
the same as the CP conservation discrepancy dis-
cussed above (because a, = a ). So, if CP is not
conserved, it appears that M +& also.

Now we can obtain fits to the most recent data'

IV. A ~ Xm DECAYS

The decays are

A n+ vo(A„—) and A —P+ v (A,), (24)

where the symbols for the decay amplitudes are
indicated inside the parentheses. The same angu-
lar momentum situation and notation apply as in
the last section.

starting from many random inputs and from var-
ious algebraic solutions to the equations A = &,

np= n, and $0=(t) . There are five experimental
numbers (R, ao, a, Po, and @ . Also, one must
check the signs of y, and y as explained above)
and four variable parameters (X», X„, 2», and

d, —5o where X„,~A„,/A»). The results of the fits
are shown in Table IV. We see that the M =-,'

solutions and the bI &2 solutions are equally good,
both types having a rather high g', the reason for
which is the data discrepancy described above.

We conclude from Table IV that the iV=2 rule
is not supported by the =- Am data. Future ex-
perimental work should be directed toward more
precise measurements of fIt)0 and Q . Also, an
independent determination of the ~A scattering
phase shifts &, and &0 would be helpful. It is inter-
esting to note that for the dZ&-', solution A»/A»-=—,'—

, A„/A„—= —'-„A„o/A„, =+4.
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TABLE IV. " 4+m' fits.

A(p
A((
A3p
A. )(

6( -6p

1
0.170+ 0.065
0.127 + 0.064
0.114+ 0.11

164+ 13

1
-0.172 + 0.060

0.128 + 0.060
-0.110+ 0.11

-16+13

1
0.226 + 0.019

-1.3464 + 0.0057
-0.313+ 0.034

164+ 13

1
-0.226+ 0.021

-1.3464 + 0.0061
0.313+0.037
-16+ 13

There are two solutions of each type because the observable equations are invariant under the
following simultaneous transformations:

&1-&p-180'+ (~&-~p) [i.e. , cos(&&-&p) —-cos(6&-4p) and sin(&&-5p)--sin(4&-~p)l and A„& -A„&.

All solutions have X =—1.648 (probability=0. 20).

All. solutions predict the same values of Qp, Q, yp, and y:

Predicted values Experimental values '

4p

yp

y-

8.5'+ 6.8'
7 ~ 1 +5.6'

0.882 + 0.048
0.913+0.012

21 +12'
2 +7'
0.84
0.92

'See Ref. 2.

Typically we want to calculate a decay amplitude
such as (A-n+ w'), =,(w'nIH Ih). To calculate this
and the other decay amplitude we need the initial
state Ih) = I0, 0) in terms of the I= 0 isospin state
and the final states

and

A =(-')'/'A e' ~i+(-')'/'A e' &'

(I)1/2A ei63l (2)1/2A eis&i

(2')

and

,(s'nI=(-')" (-' -2Ie"»+(k)'" &-' -2Ie'"'
(25)

By a short study of the initial and final states
one observes that the decay Hamiltonian H can
change the isospin by either —,

' or —,'. Therefore,
the most general decay Hamiltonian can be written
as

in terms of isospin states (I, I, I and the nN scat-
tering phase shifts &,I &

for isospin I and angular
momentum l at the nN c.m. energy equal to the A

mass. The final state mN interaction is accounted
for in the usual way by the inclusion of the wN

phase shifts in the manner shown.
The basic isospin amplitudes are

,&-,', --,

'IHIP'

=-A„e'"

and

,(-,', --;I@I&-=A„e"i .

(26)

We assume that CP is conserved, which implies
that the A„, are real. Making theA„, complex would
yield more parameters than there are data to be
fitted. The decay amplitudes in terms of these
basic amplitudes are

+Hi/2 3/2 (28)

where the subscript is ~ and the superscript is
Upon sandwiching this Hamiltonian between

the initial and final states in the basic amplitudes
and using the Wigner-Eckart theorem we obtain

Ani =,(n/2 II"„/, II0&,

the reduced matrix element for hI=n/2 The M.= —,
'

rule states that either A„or A1y or both are much
greater than A, o and Agy.

So we have the following kinds of parameters:

(1) hl&-,' parameters (A„ and A„);
(2) dJ= —,

' parameters (A» and A»).

If, in any good fit to the data, one of the param-
eters A, o or A» is not small compared to the
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larger of the parameters A„and A„, then the
bI=& rule is not proved to be valid.

The experimentally determined quantities' are

P l&PI + l&1 I P&P~]qg3002g
Pp ~~PP ~ + ~~01~ PP P PP

a —= 2 Re(A*o A, )/R = 0.647 +0.013,
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where f =—cos(6» —6») and g=sin(6» —6»). (One
can show that some dd &2 solutions also satisfy
these equations. ) Since these equations contain
only bilinear combinations of the basic amplitudes,
we can only determine the amplitudes relative to
some specified amplitude. We choose A.1p 1 and
then determine all other amplitudes relative to it.

Three slightly different sets of low-energy pion-
nucleon scattering phase shifts are reported by
Nielsen and Oades. ' We use the four phase shifts
(6,z I for f= 2and & and f = 0-and 1) at the vN c.m.
energy equal to the A mass (44.5 MeV vN labora-
tory kinetic energy) both as parameters to be var-
ied in the fits and as experimental quantities
themselves, using the three Nielsen-Oades phase
shift sets in three separate fits.

Now we can obtain fits to the most recent data'
starting from many random inputs and from var-
ious algebraic solutions to the equations A =2,
up=a, and Pp=p . There are eight experimental
numbers (R, a, a„41, 6», 6», 6», and 6„.
Also, one must check the sign of y ) and seven
variable parameters (X», X„, X„, 610, 6„, 6„,
and 6», where A„, =—A„,/A»). The results of the
fits are shown in Table V for the three Nielsen-
Oades sets of nN phase shifts. We see that the
M=2 and dd && solutions are generally equally
good. There is a preference for the M=2 solu-

P, —= sin ' [P,/(1 —cI,')' '] = 7 (not yet measured),

where the phase space factors p„are defined as in
Sec. II and P„=2lm(A„*,A„,)/R„. As explained in
the last section, a solution's prediction of the quan-
tities y„=((A„,(' —)A„, (')/R„must be checked
against the experimental signs. We see from the
value of Q given above that y &0; the y, sign
has not been measured.

The equations for the experimentally determined
quantities in terms of the parameters are rather
long, so we only give them here for the special
case of bI=~:
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tion when using the Nielsen-Oades set No. 3. Note
that small changes in the mN phase shifts can shift
the preference from one type of solution to another.

We conclude from Table V that the M=& rule
is not supported by the A —Nm data. The predicted
value of the unmeasured quantity P, is quite dif-
ferent for the two kinds of solutions; perhaps a
measurement of this quantity would help resolve
the issue. However, we caution that we may not
have found all possible solutions in our random
fits. It is interesting to note that for the M4&
solution A,o/A, a —= ——,', A»/A» ——v 2/2 and A»/A»

V, OTHER DECAYS

Data for Z -Nm are available' only for Z'. The
dominant Z' decay mode is A+@ and it swamps
the nonleptonic channels n+m' and p+n . There
are ten reduced matrix elements, A„,
-=&(n/2 (]A g, )( 1), because M= —,', &, and & are al-
lowed for Z decays. Thus there are nine ratios to
be determined, but there are only eight experi-
mental quantities' to be fitted. One needs at least
one experimental number for Z'-

¹ in order to
determine the decay parameters. We tried to fit
the Z' data by setting the dd =

& amplitudes equal
to zero, but failed to find a solution with a prob-
ability greater than 0.05. (This does not mean
that a dd= & solution does not exist, because the
inclusion or exclusion of small dd= & or & param-
eters can make a large difference in the quality
of fit for a dZ= & solution. E.g. , for the M=2
solution for A-¹in Table V, when one sets
A30=A» =0 then )(' =—25 which corresponds to a
probability of essentially zero. Almost all of the
X' comes from the fact that R is 1.850 +0.030
rather than the value of 2 mandated by M=-,'.)

There are no data available' for Q- -m.

The situation for K-3n is complicated. ' Suffice
it to state here that there are six experimental
numbers, ' but there are almost twice that many
parameters even under the assumption of CP con-

servation. The possibility of being able to deter-
mine anything definite about the M=

& rule on the
basis of K-3m data seems very remote, despite
the many comments to the contrary in books and
articles.

VI. CONCLUSION

We have shown that none of the nonleptonic de-
cays of hadrons gives a definite verdict concern-
ing the validity of the M=-,' rule.

In K-2m decays the LhI = 2 solution is favored
when the world average (two combined experi-
ments) for PM is used as data. However, the
dI&2 solution is favored when the most recent
value of Q~ is used. When semileptonic data are
added, the M&& solution is favored for both values
of Q«. A more precise measurement of |t)po is
desirable.

In "-A~ decays the M=& and M2 solutions
fit the data equally well, although neither fit is
very good (probability = 0.20) apparently because
of a discrepancy between the measured values of

fp and P . More precise measurements of P, and
are desirable.

In A -
¹ decays the bI =

& and bJ & & solutions are
variously favored, depending on which set of pion-
nucleon scattering phase shifts are used for the final
state interaction. The two solutions predict quite dif-
ferent values for the, as yet unmeasured, quan-
tity |QI),. The M=2 solution predicts ft)p= 7 +1 5'
and the LU'&& solution predicts Q, = —161'+2'.

There are not enough experimental numbers to
determine the parameters for K-3n, Z-Nn, and
0- =m decays, and it does not appear likely that
there soon will be.

In conclusion, none of the nonleptonic decays of
hadrons indicates the validity of the M= 2 rule.
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