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A method of using interior dispersion relations is presented to measure the relative importance and

spin content of crossed-channel contributions to two-body scattering amplitudes in the physical region.

As an illustration of the method, the B amplitude of ~N scattering is considered. It was found that

in the physical region this amplitude receives contributions essentially only from the two lowest

crossedwhannel spin states. The higher of the two states (J=3) was found to be adequately

described by the g(1680) meson, while the lower (J=1) could not be described by the p(760)
meson alone, but could be described by a sum of the p(760) and the p '(1600) meson.

I. INTRODUCTION

The frequent discovery of new resonances, e.g.,
the p'(1600) meson, ' which should contribute as
crossed channel exchanges to two-body scattering
amplitudes, makes it useful to be able to extract
crossed-channel contributions to physical scatter-
ing amplitudes. The most acceptable methods in-
volve the usage of dispersion relations. "

In the dispersion relation approach, the full
amplitude or a crossed-channel partial-wave
amplitude is written in a representation containing
contributions in the form of integrals from both
the direct (s) and crossed (t) channels. The so-
called discrepancy function is calculated from the
difference of the amplitude and the integral over
the direct channel and is therefore equal to the
contribution of the crossed-channel. In other
words, the t -channel contribution is found by
subtracting the s-channel cut from the amplitude.
If sufficient data are available to evaluate the
integral over the s-channel cut, the t-channel
contribution can be isolated and studied over the
range of t values for which the amplitude is
known.

Clearly the philosophy of the dominance of near-
by cuts implies in the physical region, i.e.,
t «0, where the amplitude is known that the main
contribution comes from the s-channel cut and
not from the t -channel cut. Consequently, the
isolation of the t -channel contribution depends cn
a delicate cancellation between the amplitude and
the integral over the s-channel cut. This means
that such methods can best be applied to reactions
like ~N scattering where sufficient data are avail-
able to give reasonably accurate amplitude de-
terminations.

Previous calculations of this nature have either

used backward dispersion relations for the full
amplitude or dispersion relations for individual
t -channel partial-wave amplitudes. The cut
structure is the same for the full amplitude and
each t -channel partial-wave amplitude. Each of
these two methods has a serious drawback or
difficulty.

The use of a backward dispersion relation for
the full amplitude' gives a discrepancy function
which is the sum of the contributions from all
t -channel partial waves. Consequently, it is not
possible to learn which partial waves are impor-
tant.

In working with a dispersion relation for a t-
channel partial wave amplitude, ' a difficulty is
encountered in the elimination of the s-channel
contribution. In order to evaluate this contribu-
tion, the discontinuity of the partial-wave ampli-
tude must be known along the s-channel cut, i.e.,
t «0. This discontinuity can be calculated only
for those values of t for which a fixed-t dis-
persion relation for the full amplitude can be
written, i.e., 0~ —t~l. , I.~g= 2m„'. Thus, o-nly

a portion of the s-channel cut, i.e., 0« —t«L, can
be removed. Unfortunately, the remaining part
of the s-channel cut, which begins at t = —I-, is
the "nearby" cut for the t region where the am-
plitude is known, i.e., 0 « —t «L. Consequently,
this contribution would not be expected to be
negligible and the isolation of the t-channel con-
tribution would not be possible.

In this paper we present and illustrate, by an
application to n+ scattering, a method using
interior dispersion relations" which allows corn-
plete elimination of the s-channel contribution,
as in the case of backward dispersion relations
for elastic scattering, but which has an extra
degree of freedom and can measure the spin con-
tent of the t -channel contribution.
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II. DESCRIPTION OF METHOD

Most two-body scattering reactions for which
sufficient experimental data are available are of
the type

a+6-c+ d, (2.1)

a =——&p/t' = —4(P,PI sint«, )'/t, (2.2)

where Q is the Kibble boundary function, interior
dispersion relations can be written for all am-
plitudes which then are to be considered functions
of t and the parameter a. This parameterization
results in curves in the Mandelstam plane de-
scribed by

2s=Z —t+ v(t, a),
2u=Z —t —v(t, a),

(2.3)

where Z = m, ' + m, '+ m, '+ «««s' and v (t, a)
= [(4P,PI )'+ 4at j "'. Clearly for a equals zero,
these curves describe for the elastic case the
backward direction, the resultant dispersion re-
lations being the familiar backward dispersion
relations, ' whereas for the inelastic case the
curves describe the boundary of the physical
region, the resultant dispersion relations being
the boundary dispersion relations. '

For negative values of a, such dispersion re-
lations receive contributions from the s channel
only from physical scattering angles. In the
t -channel such curves remain within the bound-
aries of the appropriate Lehmann ellipse for a
values greater than a certain value character-
istic of the reaction under consideration, e.g.,
a,"„o-—0.7 GeV'. In general, there is a large
range of a values for which the amplitude and its
discontinuities can be expanded in partial-wave

where m~ =m~. We will accordingly limit our con-
sideration to such reactions and will call reactions
in which m, =m, elastic (irrespective of quantum-
number exchange) and all others inelastic. For
such reactions it is always possible to work with
amplitudes which are either even or odd under
crossing, i.e., v—= s —u- —v. If the parameter a
is defined as

series.
The value of using interior dispersion relations

(IDR) lies in the following kinematic relationship:

Z, (a, t)'= 1+ 4ta/(4t«, P,')'. (2.4)

Since the discrepancy function D is equal to an
integral in t of the t -channel discontinuity of the
amplitude which can be expanded as a sum of
products of partial-wave amplitudes which only
depend on t, and polynomials in Z&, i.e.,
Legendre polynomials or their derivatives which
owing to crossing must be even in Z&, the a de-
pendence will factor out of the integrals and D is
seen to be a polynomial in a. In particular, the
partial-wave amplitude with the lowest spin value
will give a constant in a, the next higher partial-
wave amplitude will give a linear polynomial in a,
etc. The fact that the order of the a dependence
for each partial. wave is simply related to the
value of the spin means that the order of D as a
function of a gives a simple measure of which
partial-wave contributions are important ~

Since the resonances of lowest mass, i.e, those
nearest the physical s-channel region, are ex-
pected to dominate and it is an experimental fact
that they have low spin values, the discrepancy
function can be expected to have a rather simple
a dependence. Assuming this were the case and
also that the important partial-wave amplitudes
could be expressed as a sum of resonances or some
other useful expansion, including perhaps nonreso-
nant background contributions, the highest non-negli-
gible derivative with respect to a of D could be
fitted as a function of t to yield the parameters
for the highest non-negligible partial-wave am-
plitude. Using these parameters and the next-
lowest derivative of D, the parameters of the next-
lower partial-wave amplitude could be determined,
etc. In this way, all the important parameters
could be determined. Thus, for example, in a
resonance dominance model, D would yield not
only the masses and coupling constants, but also
the value of the spin of the resonances. This sit-
uation iS illustrated by the application in the next
section.

III. APPLICATION OF METHOD TO n'N SCATTERING

In this section we apply the method to the invariant vN amplitude, B, which has unit t-channel isospin.
This amplitude has the advantage, at least in the region of small t values, that an unsubtracted fixed-t
dispersion relation can be written, and that the better known direct-channel contributions, such as the
(8= &)N and (J= z)b, are more important for B « than for other vN amplitudes. The IDR for B ' is

OO

) p f I 1 1 I & ) I dt'
ReB '(s, t) =B t„««scP+ImB '(s', t'), +, —, ds'+ —p ImB '(t', z, ),

7r So S —S S —Q S —a g 4p2
t' —t

Here, a is held constant at a value in the range -(««t+ t«, )'& —a& 35««. ', ' and «««and p are nucleon and pion

(3.1)
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masses, respectively. The nucleon Born term is

m' —s m' —u rn' —a

For vV scattering the constant a curves in the s f-plane are such that z, =cos&, =-(s+ a}&'(s —a) and that„
at f = 0, all curves pass through the threshold point s = s, = (m + )2. )'.

Equation (3.1) expresses ReB clearly as being due to contributions from the direct channel (the cut
s, ~ s ~~ and the nucleon pole) and the crossed-channel (the cut 4)2' ~ f& ~). Consequently, the contribu-
tion to ReB from the t channel can be isolated and the discrepancy function written as

D(t, a) = —P ImB (f', z, )
1

" ), dt'
71 4/2

(3.2)
jr s' —s s'- u s'- aSo

We have, in effect, removed from the real part of the full amplitude the part due to the direct-channel
dynamics.

Except near threshold, we can use partial-wave amplitudes to evaluate Re B '. Near threshold, we
make use of the fact that for t~26l2'-, the fixed-t (Ft) dispersion relation

ReB (s t}=B+ '+ —P ImB (s' t) -- + ds'1 1 1
Ft s-s s —uSp

is valid, and the discrepancy D(t, a) can then be written in the form

(3.3}

D(t, a) =
G' 1

"ds'. . . 2s'+ t-Z
+ —P, Im(B(s', f) —B(s', t')), +1mB(s', t')

S0

(3 4)

where t' = -4q(s'}'[I —z, (s', a)] .
Equation (3.4) shows that the t dependence of

D(t, a) is determined by the product of (2s'+ t —&)
and the derivativelike term Im(B(s', t )- B(s ', t'))/
(f —t'), the latter of which is strongly dependent
upon the higher partial-wave amplitudes. The
relative importance of the high partial waves with
respect to the N and 4 is illustrated by the fact
that saturation of Eq. (3, 4) by these poles results
in a negative value for &D(t, a) laf, ' whereas in-
clusion of higher partial waves results in a pos-
itive value. Consequently, the uncertainty in our
results will not be given as much by that of the &

contribution, which is well known experimentally,
as by the lesser known J= &. . .~ partial-wave
amplitudes. This difficulty, which is character-
istic of all backward dispersion relation (a =0)
calculations, underlines the importance of ac-
curate amplitude analysis and cautions us against
a too quantitative interpretation of such results. In
this calculation we have used the recent Lovelace-
Ahmehed nX phase shifts. '

The advantage of using IDR to analyze the spin
content of the contributions is apparent when the
t -channel partial-wave expansion, '

(2d+ I)(pip2)' '&g(z2)f'(&) (3 6)
[J(J+ 1)]"'

ls3s ~ ~ ~

is substituted into Eq. (3.2) to give

D(t, a) 1 3 ", , dt'

3, dk'
+ 7&3 Imf'(t')

4p 2

Imf'(t') t'dt'

(4p p/ )2 il

(3.6}

Thus, a partial wave of spin J will contribute an
a dependence of order —,(d- 1) to D(t, a).

The a dependence of D(t, a) (Fig. 1}is seen to
be linear (to within -3% over the range 0 ~ —a
~ 35'. ') and furthermore, the t dependence of
BD(t, a)/Ba can be explained and fit by a single
g(3 } meson of mass 1680 MeV/c2. ' Using the fit
parameters, the complete g meson contribution,
which at 1=a =0 is —19.6 (GeV) ', was subtracted
out of D(t, a) to obtain the J= 1 contribution as
shown in Fig. 2 (dashed line),

The dotted curve in Fig. 2 (which contains the
p and g contribution) has been drawn to illustrate
the t dependence expected if the J=1 contribution
were due solely to the p(770) meson. It is ap-
parent that the p(770) is not adequate to explain
the t behavior. We therefore conclude that a
heavier p'(1 ) meson contributes in this reaction.
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FIG. 1. D(0, a) as calculated from Eq. (3.4) (&~X) and
from the best fit with p, p', and g contributions (—).

( p„p„'„mt'')/-(Gp'. . t„„mp'}=1.06, (3.7)

where we have taken the narrow-width approxi-
mation

(t) = m' —t
P

(3.8)

and similarly for p'. The effect, for negative
values of t, of including resonance widths gives
a correction of order (I'/ms)', which being on the
order of a few percent is mell mithin expected
errors.

Since the uncertainties in D(t, a) are due mainly
to the uncertainties in the higher s-channel partial
waves at lower energies and since we have sub-
tracted out, in a model-dependent way, the 4=3
contributions, a quantitative determination of the
mass of the p' is precluded in our present analy-
sis. Indeed, reasonable fits are obtained for p'
masses between 1300 and 1900 MeV/c'. In Fig. 2

we show the fit obtained for mz = 1600 MeV./c',
that being the mass most commonly attributed to
the p'. "" At this mass, we obtain

FIG. 2. D(t, 0) as calculated from Eq. (3.2) (++++)
and from Eq. (3.4) (short solid line). The long solid line
is the best fit with p, p', and g contributions for m&
=1600 MeV/c2. The dashed line is the 4=1 (p and p')
contribution alone, and the dotted line represents the
extent to which the p and g contribute to the best fit.

IV. CONCLUSION

In this paper we have presented a dispersion
relation method of isolating and studying crossed-
channel contributions to the full amplitude in the
physical direct-channel region. As an example
of the power of this method, we considered the
crossed-channel contributions to the 8 ampli-
tude of wN scattering and were able to show that
(i) only spin 1 and 3 contributions are necessary,
(ii) the spin 3 contribution is adequately accounted
for by the g(1680) meson, and (iii) the spin 1 con-
tribution cannot be due solely to the p(770}, but

requires the addition of a heavier p'.
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