Models for hadron-hadron scattering at high energies and rising total cross sections

Kyungsik Kang

Fermi National Accelerator Laboratory, Batavia, Illinois 60510 [~] and Brown University, Providence, Rhode Island 02912[†]

Basarab Nicolescu

Division de Physique Théorique, # IPN and LPT, Paris (Received 22 July 1974)

The recent results of rising total cross sections for π^*p , K^*p , and pp scattering are analyzed by two simple analytic models for high-energy forward scattering which are derived from analyticity, crossing symmetry, and the unitarity constraints of the rigorous results. The numerical fit to the data for $p_L \geq 10$ GeV/c does not rule out the possibility that the crossing-odd amplitude may not be negligible at high energies.

The recent results¹ of an experiment at the Fermi National Accelerator Laboratory (Fermilab) prove that the total cross sections for pp , πp , and Kp scattering all show indeed a remarkable rise in the range of $50 \le p_L \le 200$ GeV/c, thus confirming beautifully the previous observations' made for pp at the CERN ISR. Already a number of theoretical models^{3,4} have been put forth to ex plain such a rise in σ_{bb} seen at the CERN ISR. Among them, the works of Ref. 4, in particular, indicate the existence of a ln²s term in σ_T . However, in actuality these works predict either too fast an increase of σ_r or too rapid a decrease in $\sigma_{\bar{p}p}$ when compared with the Fermilab data. Thus, it will be interesting to develop a theoretical framework that can explain the seemingly general behavior of all σ_T , as well as the ratio $\alpha = \text{Re}F(s)/\sqrt{2}$ $Im F(s)$.

In this paper, we propose some simple analytic

parametrizations for high-energy hadron-hadron scattering, which are derived from the "quasilocal" relations of analyticity and crossing symmetry with the constraints coming from the rigorous studies of analyticity, unitarity, and positivity. Such a quasilocal relation had been suggested some time ago⁵ and several authors⁶ have advocated it recently again.

As has been emphasized by many people, 7 most of the asymptotic statements in the literature involve an *additional* tacit assumption that the crossing-odd amplitude becomes negligible at high energies. But one can construct an example in which the crossing-odd amplitude can even grow in energy and yet is perfectly compatible with all the results of rigorous studies.⁸

Keeping such option in mind, we can then derive from the analyticity relation given by the Sommerfeld-Watson-Regge representation that

$$
\operatorname{Re}[F_{+}(s,t)/s] = \left[\frac{\pi}{2}\frac{\partial}{\partial \ln s} + \frac{1}{3}\left(\frac{\pi}{2}\frac{\partial}{\partial \ln s}\right)^{3} + \frac{2}{15}\left(\frac{\pi}{2}\frac{\partial}{\partial \ln s}\right)^{5} + \cdots\right]\operatorname{Im}[F_{+}(s,t)/s],\tag{1}
$$

$$
\frac{\pi}{2} \frac{\partial}{\partial \ln s} \operatorname{Re} [F_{-}(s, t)/s] = -\left[1 - \frac{1}{3} \left(\frac{\pi}{2} \frac{\partial}{\partial \ln s}\right)^2 - \frac{1}{45} \left(\frac{\pi}{2} \frac{\partial}{\partial \ln s}\right)^4 - \dotsb\right] \operatorname{Im} [F_{-}(s, t)/s], \tag{2}
$$

where the crossing-even and -odd amplitudes are defined as $F_+ = \frac{1}{2}(F_{AB} + F_{AB})$ and normalized so that $s\sigma_{\tau}(s)$ = Im $F(s, 0)$. In order to derive these,⁹ we have assumed that the asymptotic behavior of F_{+} is controlled by the rightmost singularities of $A(l, t)$, whose position is one in the forward direction for the reasons explained above. This is certainly possible even if the analytic continuation of the Froissart-Gribov relation down to $l = 1$ may the Froissart-Gribov relation down to l = 1 may
not coincide with the physical p -wave amplitude.¹⁰

The relations (I) and (2} are quasilocal due to the inherent asymptotic nature. They imply the convenience of using lns as a natural variable in the high-energy region. Then, together with de facto rise of total cross sections, they are designed to describe as well the situations in which the singularities of $A(l, t)$ in the complex l plane are not necessarily just simple poles. In addition, these quasilocal relations have a number of interesting features: (a) F_{+} is predominantly

2461

imaginary at high energies while F_{-} can be real⁸; (b) if $|F_+| \propto s(\ln s)^{\beta_+}$, with $\beta_* \leq 2$, then we get from (1) that $\alpha_+ = \text{Re}F_+/\text{Im}F_+ + \frac{1}{2}\pi\beta_+(\text{ln}s)^{-1}$, again a well-known result¹¹; (c) if, in addition, $|F_{-}| \propto s(\ln s)^{8}$ such that $\beta_{-} - 1 \leq \frac{1}{2}\beta_{+}$, then it follows from (1) and (2) that $|\sigma_{AB} - \sigma_{AB}|$ $<(\sigma_{AB}+\sigma_{AB})/lns$, the rigorous form of the Pom-
eranchuk theorem.¹² eranchuk theorem.

Denoting $F_{+}(s, 0) = F_{+}(s)$ and allowing that $A(l, t)$ can possess harder singularities than simple poles, we may write

Im[
$$
F_+(s)/s
$$
] = $A_+ + B_+ \ln s + C_+ \ln^2 s + C_R s^{-1/2}$, (3)

Im
$$
[F_{-}(s)/s] = B_{-} + \pi C_{-} \ln s - C_{R} s^{-1/2}
$$
, (4)

which are compatible with the unitarity bounds of the rigorous studies. Here the C_R terms are introduced to represent the over-all contributions of the exchange-degenerate Reggeons. Also it is understood that $\text{ln}s = \text{ln}(s/\text{GeV}^2)$ at this point, but the real scale will be determined by the fit to the experimental data. Then the $exact$ analytic solutions of Re F_+ can be obtained from (1) and (2);

Re[
$$
F_+(s)/s
$$
] = $(\pi/2)[B_+ + 2C_+ \ln s - (2/\pi)C_R s^{-1/2}]$, (5)

$$
\text{Re}[F_{-}(s)/s] = -(2/\pi)[A_{-} + B_{-}\ln s + (\pi/2)C_{-}\ln^{2}s + (\pi/2)C_{R} s^{-1/2}]. \tag{6}
$$

Thus we obtain¹³

$$
F_{+}(s)/is = \sigma_{0} + C_{+}(\ln^{2}s/s_{+} - i\pi \ln s/s_{+}) + C_{R}(i+1)s^{-1/2},
$$
\n(7)

$$
F_{-}(s)/is = iC_{-}(ln^{2}s/s_{-} - i\pi ln s/s_{-}) + C_{R}(i-1)s^{-1/2}.
$$
 (8)

Depending on the absence of the C_{-} and C_{R} terms, we end up with different physical pictures:

(a) *M* model. This is the case of $C = 0$ and is the conventional and perhaps the most "moderate" line of pictures, e.g., the works of Cheng, Walker

FIG. 1. Fits to $\sigma_{\textbf{T}}$. The data on σ_T^{np} for $30 \le p_L \le 60$ GeV/c are excluded.

 11

Parameters	I_{pp}	SI_{ω}	I_{Kb}	SI _{Kp}	$I_{\pi p}$	$SI_{\pi p}$
σ_0 (mb)	39.93	38.95	19.16	17.28	23.46	22.94
C_{+} (mb)	0.53	0.50	0.38	0.24	0.63	0.54
s_+ (GeV ²)	508.8	193.8	61.9	14.6	140.3	111.6
C_{-} (mb)	0.45	0.14	0.17	0.013	0.076	-0.027
s ₋ (GeV ²)	820.7	551	794.7	73.3	984.5	500.2
C_R (mb GeV)	\cdots	19.85	\cdots	10.93	\bullet \bullet \circ	6.01
χ^2 /data points	121/58	58/58	37/35	21/35	37/59	28/59

TABLE I. Parameters used to fit σ_T and χ^2 number of data points, in the I model and in the SI model.

and Wu, and Bourrely and Fischer. But they give in general a faster increase of $\sigma_{\textit{\textbf{T}}}$ than the Fermilab data indicate.

(b) I model. This is the case of $C_R = 0$ so that even ρ does not contribute to F . This may appear to a traditional Reggeist improbable or even "improper." The parametrization of Lukaszuk and Nicolescu is a very special case of this picture, i.e., $C_+ = C_-$ and $s_+ = s_-$, which, however, gives a faster decrease of $\sigma_{\bar{p}_b}$ than the actual data shown.

(c) SI model. This is the case of $C_+ \neq 0$ and $C_R \neq 0$, i.e., the full structure of (7) and (8).

As it seems that the reality may lie somewhere between the full I model and full SI model, we have made a complete χ^2 fit (Fig. 1) to all available data¹⁴ of σ_T with the two analytic parametrizations for πp , Kp , and pp scattering above $p_t \geq 10$ GeV/c. In the case of πp scattering, we have incorporated in addition the 18 data points 14 of the charge -exchange differential cross sections at $t = 0$ (Fig. 3). The ratios $\alpha = \text{Re}F(s)/\text{Im}F(s)$ are predicted and compared with the existing data. The parameters corresponding to the best fit in each picture are summarized in Table I along with the χ^2 value.

One can see that the over-all fit in both parametrizations is quite remarkable in all the cases, considering the simplicity of the models. They give a similar fit to σ_T (Fig. 1). Note from Fig. 2 that both the I and SI models can fit $\Delta\sigma_T$ equally well except the case of πp . Here the SI model appears to be definitely favored by the Fermilab data from the characteristic curvature of the $\ln(\Delta \sigma_{\pmb{T}})$ vs $\ln \rho_L$ plot. In general, the *l* curves fall clearly faster than the trend of the data at high p_L . As we have excluded the Serpukhov data for πp , the fact that the I curve goes through their points in Fig. 2 is a pure accident. From Fig. 3, we see that the data of $d\sigma/dt$ at $t = 0$ for $\pi^- p \to \pi^0 n$

can be fitted equally well by the two parametrizations. (See the Added note.) We note further that α_{pp} and $\alpha_{\bar{p}p}$ can be described more or less to the same fairness by both parametrizations. The only difficulty is in $\alpha_{\pi^- p}$ around $p_L = 58 \text{ GeV}/c$. If the existing (Serpukhov) datum is indeed correct, then models with $\sigma_{\mathbf{z}} \propto \ln^2 s$ including the *M* model will have a serious problem explaining this. The best SI -model value that we can come up with¹⁵ is $\alpha_{\pi^{-}b}(p_{L} = 58 \text{ GeV}/c) \approx 0.01$ instead of -0.08 ± 0.03 and $\alpha_{\pi-\rho}(60) \approx 0$.

To conclude, we may say that though the actual data at this point in time are coarse, they appear, from the favored fit of the SI model, compatible

FIG. 2. Fits to $\Delta \sigma_T$. See the caption of Fig. 1.

FIG. 3. $(d\sigma/dt)$ for $\pi^- p \to \pi^0 n$ as fitted by the two models.

with the possibility that $C_{-} \neq 0$ (see the Added note), thus suggesting various different physical consequences to anticipate: (1) The crossingodd amplitude can be predominantly real at high energies, allowing the maximal growth of σ_T and $|\Delta \sigma_{\tau}|$ as permitted by the axiomatic asymptotic theorems⁸; (2) if C_{-} > 0, $\sigma_{\bar{A}B}$ and σ_{AB} must cross at some $s \geq s_{-}$ and α_{AB} + - C_{-}/C_{+} , a negative number; (3) if C_{-} <0, then there is no crossover in the total cross sections. But $\Delta\sigma_T$ reaches a minimum at $s=(C_R/2\pi C_*)^2$ and $\alpha_{AB} - C_*/C_+$, a positive limit. From the χ^2 fit, we see that the Kp and pp interactions are of the type (2) in either picture, while the πp interactions again distinguish between the two pictures, i.e., the I model is of the type (2) and the preferred SI model is of the type (3) . In the case of SI model, the crossing occurs after $p_L \ge 1000$ GeV/c for Kp and pp, while there is no crossing for πp and $(\Delta \sigma_{\overline{I}})_{\pi p}$ has a minimum at $p_L \approx 670 \text{ GeV}/c$.

Added note. The new data 16 of the pion exchange reaction for $p_L = 20-101$ GeV/c from Fermilab,

which became available to us after the completion of the present work, have been incorporated along with the earlier data at low energies in a subsequent work¹⁷ and the conclusion reached in this paper is indeed found to be supported. In fact, it is shown that¹⁷ the M-model fit with a single ρ -Regge pole, while it is statistically acceptable, is too steep to explain the trend of the Fermilab $\Delta\sigma_T$ at high energies as well as the low-energy data near $p_L = 10 \text{ GeV}/c$ and it is shown that the SI model can indeed fit $\Delta\sigma_T$ without any discrepancy at high- or low-energy ends and simultaneously with $(d\sigma/dt)_0$. We have received the 1974
analysis of Barger and Phillips,¹⁸ again after th analysis of Barger and Phillips, $^{\rm 18}$ again after the completion of this work, which concludes that there is also a discrepancy between the ρ -Regge model and $\Delta\sigma_T$, thus supporting our results.

We are indebted to B. W. Lee, R. Vinh Mau, G. Bialkowski, H. Cornille, J. Fischer, M. Einhorn, E. Paschos, and A. R. White for discussions.

- *Operated by Universities Research Association Inc. under contract with the United States Atomic Energy Commis sion.
-)Permanent address. Work supported in part by the U. S. Atomic Energy Commission (Report No. C00-3130TA-310).
- #Postal address: Tour 16-ler étage, Université de Paris VI, 4, Place Jussieu, 75230 Paris CEDEX 05, France; Laboratoire associé au CNRS.
- ¹W. F. Baker et al. (Brookhaven-Fermilab-Rockefeller Collaboration), Phys. Rev. Lett. 33, 928 (1974); 33, 932 (1974). We thank Dr. Baker for providing us with the Fermilab data on σ_T .
- ²U. Amaldi et al., Phys. Lett. $44B$, 112 (1973); S. R. Amendolia et al., ibid. 44B, 119 (1973).
- ³A list of the models considered can be found in work by L. Caneschi and M. Ciafaloni, in proceedings of the Second International Conference on Elementary Particles, Aix-en-Provence, 1973 [J. Phys. (Paris) Suppl. 34, C1-268 (1973)], and by A. Mueller, *ibid*. [J. Phys. (Paris) Suppl. 34, Cl-307 (1973)].
- ⁴H. Cheng, J. K. Walker, and T. T. Wu, Phys. Lett. 44B, 97 (1973); C. Bourrely and J. Fischer, Nucl. Phys. B61, 513 (1973); C. Bourrely, J. Fischer, and Z. Sekera, $ibid.$ B67, 452 (1973); L. Lukaszuk and B. Nicolescu, Nuovo Cimento Lett. 8, 405 (1973).
- $5V.$ N. Gribov and A. A. Migdal, Yad. Fiz. 8, 1002 (1968) [Sov. J. Nucl. Phys. 8, 583 (1969)].
- 6 J. B. Bronzan, G. L. Kane, and U. P. Sukhatme, Phys. Lett. 49B, 272 (1974), and references therein.
- ⁷H. Cornille and R. E. Hendrick, Phys. Rev. D 10, 3805 (1974); M. Jacob, NAL Report No. NAL-Conf-74/26, 1974 (unpublished); also see work by Lukaszuk and Nicolescu in Ref. 4.
- $8A.$ Martin, in Proceedings of the VIII Recontre de Moriond, edited by J. Tran Thanh Van (Univ. de Paris-Sud, Orsay, France, 1973); H. Cornille, Nuovo Cimento Lett. 4, 267 (1970).
- 9 Equation (2) is the more convenient form to deal with the possibility that $\text{Im}[F_-(s)/s] \propto (\text{ln}s)^{\beta}$, with $0 < \beta_- \leq 1$. For a decreasing power form of $\text{Im}[F_{-}(s)/s]$, it reduces to the result of Ref. 6.
- ¹⁰Then the p -wave amplitude should be given from the outset by the subtraction term, and the contour of the Sommerfeld-Watson-Regge transformation should be chosen so as not to include the point $l = 1$. We thank Alan R. White for the clarifying discussions on this technicality.
- 11 N. Khuri and T. Kinoshita, Phys. Rev. 140 , B706 (1965).
- $12R.$ J. Eden, Phys. Rev. Lett. 16, 39 (1966); T. Kinoshita, Perspective in Modern Physics (Interscience, New York, 1966).
- ¹³We have set $\sigma_0 = A_+ C_+ \ln^2 s_+$, $B_+ = -2C_+ \ln s_+$, $B_ =-\pi C_{\text{ln}} s_{\text{ln}}$, and $A_{\text{ln}} = \frac{1}{2}\pi C_{\text{ln}}^2 s_{\text{ln}}$. In general we can allow one more parameter $\sigma_1 = (2/\pi)A$ - C_1n^2s , but

from the data of $\Delta\sigma_T$, $\sigma_1 = 0$ seems to be supported a posteriori. See R. Oehme, Phys. Rev. ^D 9, 2695 (1974), for another reason.

- ¹⁴Experimental data for σ_T are quoted from the summary by the Particle Data Group, Phys. Lett. 508, 1 (1974) (excluding the Serpukhov data for πp), as well as Ref. 1 and Ref. 2. $\Delta \sigma_T$ at low energies is from work by K. J. Foley et al., Phys. Rev. Lett. 19, 330 (1967). $(d\sigma/dt)_0$ at low energies are from I. Mannelli et al., ibid. 14, 408 (1965); A. V. Stirling et al., ibid. 14, 763 (1965); and V. N. Bolotov *et al*., presented to the XVI International Conference on High-Energy Physics, Chicago-Batavia, Illinois, 1972 (unpublished). Exclusion of this last data and inclusion of the new data (Ref. 16) of $(d\sigma/dt)$ ₀ support more favorably the conclusion of this paper (see the Added note).
- ¹⁵After the completion of this work, we received the revised Serpukhov data for $\alpha_{\pi-p}$: V. D. Apokin et al., presented to the XVII International Conference on High Energy Physics, London, 1974 (unpublished). Their corrected data shows now $\alpha_{\pi-\rho}(p_L \approx 60 \text{ GeV}/c) \approx 0$ in agreement with our prediction.
- 16 A. V. Barnes et al., Caltech-LBL Report No. CALT-68-465 (unpublished) (presented to the XVII International Conference on High Energy Physics, London, 1974).
- ¹⁷G. Bialkowski, K. Kang, and B. Nicolescu, Orsay Report No. IPNO/TH 74-32, 1974 (unpublished).
- ¹⁸V. Barger and R. J. N. Phillips, Phys. Lett. 53B, 195 (1974) .