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Behavior of matter at superhigh density
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The behavior of matter at densities higher than 10' g/cm' is investigated. It is found that little
information can be gained from the data on neutron stars, whose properties are essentially determined

by the behavior of p = c, c in the region 10'" & p = e/c ( 5 && 10' g/cm'. On the contrary, the
study of the properties of the p-p collision in the GeV region seems to provide more stringent
conditions. The Landau model is used to analyze data concerning the average multiplicity, the
constancy of transverse momenta, and the behavior of the energy per particle. Using a newly derived
relation for the hadronic viscosity q —T"*,we show that the Landau hydrodynamic model
reproduces the same results as the multiperipheral model without the need of any extra hypothesis, if
the value c, = 1 is adopted. Once this conclusion is reached, several pion-pion Lagrangians are
analyzed and their predictions for c, investigated. The fundamental assumption of the Landau
hydrodynamical model, i.e., the laminar nature of the flow, is also investigated. The result is found that
the pion fluid can become turbulent in the later stages of evolution, thus giving rise to eddies or
clumps of matter tentatively identified with the clusters found in the p-p scattering.

I. INTRODUCTION

The need for an accurate description of the be-
havior of matter at very high densities, p&10" g/
cm', arose from the study of the structure and
dynamics of rotating neutron stars (pulsars).
Given an equation of state P=c, 'e, e = pc' (c, is
the velocity of sound in units of c), where P is
the pressure and e the total energy density, the
relativistic equations of stellar structure can be
integrated to obtain the mass and radius and hence
the moment of inertia as functions of the central
density. ' The moment of inertia I is related to the
rate of loss of rotational energy and can be de-
termined for at least one pulsar, viz. , the Crab
pulsar PSB,0534. It was therefore hoped that a
comparison of the observational moment of inertia
with those obtained theoretically from various
equations of state would allow one to narrow down

the choice.
In particular, for the Crab pulsar, the lower

limit for I is 0.62 x10, 1.72 x104, or 2.69 x10 '
g cm', depending on the assumed value for its
distance: 1.2, 2, or 2.5 kpc. ' Present observa-
tional data do not allow a narrower margin, All
but one of the equations of state published so far
give a value for I greater than 1044 gcm', for a
density region of interest in neutron stars. See
Fig. 6 of Ref. 3.

In Fig. 1 we present the relation P vs p. The
curve represents an average of all the nonrelativ-
istic equations of state published so far. 4 They
are all based on the best known N-N potential and
on the most reliable many-body techniques. All
of these satisfy the moment-of-inertia criterion

within the mass range 0.13 &M/Mo &2 and they are
the best one can presently produce. The important
feature they all share is their stiffness in the den-
sity region of interest for neutron stars, i.e., be-
tween 10'~ and 5x10" g/cm'. The stiffness is
clearly related to their predicted values of the
velocity of sound c„which are greater than 1/v 3,
the value for a noninteracting system.

Since we have good reason to believe in the solid
curve in Fig. 1 up to 5x10" g/cm', we can expect
thai as p-~, the equation of state will approach
either of the following two limits:

(a) c,'-1, i.e., the pressure p keeps on in-
creasing and approaches e asymptotically;

(b) c,'- —,', i.e., we recover the result for a non-
interacting system (asymptotic freedom).

Either of the above cases is consistent with
astronomical data, and the choice between (a) and

(b) has to be decided by some other means. lt
appeared to us that one could possibly decide be-
tween (a) and (b) by studying the phenomenon of
multiparticle production that characterizes the
P-P and e'e collisions at very high energies
(&10' GeV).

In the case of a P-P collision, two ultrarelativ-
istic nucleons, Lorentz-contracted into flattened
disks, approach each other in the c.m. system.
The volume of each disk is (k= c = 1)

4~ 1 2M

where M is the nucleon rest mass, m, the pion
rest mass, and E the c.m. energy of each nucleon.
The factor (M/Z) is the Lorentz-contraction factor.

The corresponding density is easily seen to be

Copyright 1975 by The American Physical Society.



V. CANUTO AND Z. LODENQUAI

E
p=

c'V

=1.5x10'4' (g/cm'),

where E~ (in GeV) is the kinetic energy of the in-
cident nucleon in the laboratory frame. Typically,
for Ez -10' GeV, p-10" g/cm'. We therefore see
that the N-N scattering phenomena can indeed offer
the possibility of obtaining information on the high-
density portion of the P=P(e) curve shown in Fig. 1.

In the e'e collision, there is no Lorentz con-
traction, the electron and positron being treated
as point particles. They annihilate into a massive
photon which is subsequently converted into ha-
dronic matter. In contrast to the pancake shape
of the P-P initial blob, the decay of the massive
photon has a spherical geometry. Recently, "the
Landau hydrodynamic model, originally developed
for the P-P case, has also been applied to this
spherical case and we have therefore decided to
use the few data on e'e for the purpose of decid-
ing the possible value of c,'.

a relation can be derived from the many-body
treatment of the Lagrangian describing the system
of strongly interacting hadrons. This has actually
been done by several authors, who used different
Lagrangians and many-body techniques. 4 In spite
of the great amount of work done, there isnoQnan-
imous consensus on whether P should approach
—,'e or e itself as e -~, even though the more real-
istic models give rise to P- c.

In this paper we have therefore decided to adopt
the following philosophy in obtaining the high-den-
sity equation of state: Assuming the validity of
the Landau model, we use its predictions to decide
upon the value of c,' in the relation p=c, 'c and

after having converged hopefully on a unique value
of c,', we use it to choose among several pro-
posed pionic Lagrangians.

We shall make use of two quantities that can be
compared with observational data, namely, the
charged-particle multiplicity N and the constancy
of the transverse momentum (Pz, ). In order to
carry out this program, one should proceed as
follows:

(1) Solve the Navier-Stokes equations with the

II. THE LANDAU MODEL '

The first detailed model describing the evolution
of the initial blob of compressed hadronic matter
was proposed by Landau in 1953. After a long
period of stagnation, the model has been resur-
rected and is recently the focus of a great deal of
attention, particularly in view of the possibility
of violation of scaling, a property that is some-
times considered to be an intrinsic feature of the
model. This is indeed not the case, as we shall
see in the next sections, where it will be shown
that the Landau hydrodynamic model has a great
degree of flexibility, depending upon the value of
the speed of sound and the energy dependence of
the hadronic viscosity.

During the expansion of the hadronic matter, the
run of the thermodynamic and hydrodynamic vari-
ables as temperature and fluid velocity vs space
and time must be derived after solving the rela-
tivistic Navier-Stokes equation (Greek indices
run from 1 to 4)

&PV, Ij
= O

y

where the energy-momentum tensor T„, is written
as

P
(dyne s/cm' j

Q
37

)p36

)p35

)Q34

]Q33
)Q14

I

) p15

P=c 6

I

) p16

I I

) ()17

p{g/cm')

T~, P&~, +(P+=e) MI u, + r„,
(o)
gV PP

In order for T„, to be used in Eq. (3), an equa-
tion of state P =P(e) is needed. In principle, such

FIG. 1. Curves of pressure p vs density p(=&/c2) for
pure neutron matter. The two lines represent c, =c and
c, =(1/~3) c, as labeled. The solid curve represents an
average of the many-body calculations so far performed,
as described. in Ref. 4. The dashed lines show how the
curve could behave at high densities.
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N-S =s V- —V

where s is the specific entropy. From the first
law of thermodynamics e-T "" " (e=E/V)
and we have

@1/(1+CS ) VCS /(1+ CS (5)

a formula of general validity. The problem will
come when we have to specify the volume V.

The evaluation of the average transverse mo-
mentum is done using the solution of Eq. (8). The
result of a rather long exercise of algebra is'

(P ) ——E I2Cs 1 cS ) /2CS1 2 4

N

x Chexp ' (I."' —X')'~')1 —c
2c 7

S

To the leading power in F we have

( P ) @1-CS

a result again of general validity, since it still
depends on N, Eq. (5), which in turn depends upon
V, the critical volume starting at which the isen-
tropic flow is ensured.

inclusion of the dissipation tensor v&, .
(2) Evaluate the hydrodynamic and thermody-

namic quantities like v and T vs x and t.
(8) Once that is done the entropy can be eval-

uated vs x and t. One can then check at which
point during the expansion, if ever, the entropy
levels off and becomes constant.

Such a program cannot be implemented because
we do not know the full solution of Eq. (8}with

r~, CO. We do not even know the viscosity q = q(T}
to any degree of satisfactory completeness. What
we do know from the Landau work is the exact
solution of the one-dimensional version of (8} in

the case of zero viscosity, g = 0.
In order to make use of such a solution, we shall

therefore postulate that there is indeed a point
after which the viscosity g becomes negligible,
the dissipation is small, and the entropy is con-
served. The definition of such a point is one of
the crucial parameters of the model and we shall
discuss several possibilities.

From the moment the flow becomes inviscid,
the entropy is conserved and the multiplicity can
be simply computed by saying that N-S, where S
is the total entropy. We have

III. THE ONE-DIMENSIONAL MODEL: p-p COLLISION

A. Fully inviscid flow, q=0

B. Fully viscous flow, q@O

If we make the more reasonable hypothesis that
q:is actually different from zero and if we know
the functional dependence of )I on e (or T) then,
even without possessing the full solution of Eq.
(8), we can still analyze the problem and decide
the critical length or volume after which the flow
is actually behaving as inviscid and the Landau
solution is applicable. In order to do this, we
have to know the law )I =q(T). This touches upon
a severely ill-known quantity so far.

As discussed in the Appendix one can have

or a more general formula (Appendix)
2

(10)

We shall write g -T" and specify the exponent k
only at the end. Since we do not know the function
T = T(x, t) with q included in Eq. (8), the analysis
of Eqs. (9) and (10) does not reveal much. We can,
however, look at the Reynolds number (-2I ') and
decide whether it is ~1. We follow and generalize
a method due to Feinberg. "

The Reynolds number is defined as the ratio of
any of the components of T&t',), Eq. (4}, to any of
the components of the viscous stress tensor

~u~ euv' Buv ~uU
pv

——0 + +upus +uv ua~ X Xtf ~XB X8

Since e -P, u —c one obtains

In the original Landau model it was supposed
that the viscosity is negligible throughout the en-
tire flow, starting from the very beginning, when
the two colliding protons came in contact. Landau
based his hypothesis on a rather dubious evalua-
tion of the Reynolds number. In our opinion, it is
more satisfactory to consider the fully inviscid
model as a first approximation needed for future
comparison with a more realistic model.

If we accept that q =0 always, then the entropy
is always constant and we can compute the volume
V at any instant, in particular at the initial mo-
ment when V is given by Eq. (1). In that case, it
follows from Eqs. (5) and (6) that

g (1-CS2) /(1+CS ) (7)

(P ) ECS (1 cS )/(1+CS (8)

The fully inviscid flow, Eqs. (7} and (8), has been
recently discussed by Suhonen et al."and by
Chaichian et al. ,' respectively.
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cLRe�-
'=g

where L is a typical length of the system. Using
1+c 2 /c@=E/V, q-T, and e=T~'+ s ] s we obtain

I 1+(1-k)cs2~ /(1+cs
Re =L—

V
(12)

This expression is still general. Since we are in
the one-dimensional case, the volume V, which
is Lorentz-contracted, can be written as

V=—L,'L . (13)

This does not mean that we take L -E ', as im-
plied by applying Eq. (1), which we do not use. I.,
is just a constant that represents the uncontracted
size of the pionic cloud, L, -m„'. Equation (12)
can then be rewritten for the one-dimensional case
as

the multiplicity formula and the energy per par-
ticle.

A. Fully inviscid flow, q = 0

If the entropy is constant throughout the entire
flow, then we can compute it at the initial moment,
i.e., we can take Eq. (5) with V = V, = const, so that

@1/(1+cs ) (20)

B. Fully viscous flow, q 4 0

In the three-dimensional case we shall call L =A,
following the notation used by Feinberg. ' Equation
(12) is general and it can be used with V =ff ', since
Eq. (13) is not valid. We then obtain

(p/If )[(3k-2)cs -&]/(&+cs (21)

with

(L/L )kcs /(1+Cs ]

+-[1+(1-n) cs ~ /pcs 2

~1

Since the exponent entering in Re is positive, it
follows that Re is large, i.e., g is small (Re -q ')
only for L &L1 L1 defining the minimum distance
at which we can start applying the concept of con-
stant entropy.

If we now substitute L, so defined into (5) and (6)
we obtain [after using (13)]

In this case

l. q=T (Feinberg )

@-(1-2cs ) /(Vcs

Re =(Z/Z, )'"
For c '&-'

—~-[1+(1-k)cs ] /I(30-2)cs -2]
211 (22)

(23)

(24)

+(a-1) /u

(p ) E(1-kcs ]/k
(15)

Re»1 for A&A, ,

Re«1 for A&A, ;

The two laws of viscosity (9) and (10) give respec-
tively

(p )~El& scs ]/3

(16)

(I't)

1-c
kC 2 = 1 N g1-cs (18)

(19)

IV. THREE-DIMENSIONAL CASE: e'e ANNIHILATION

In Table I we summarize the results for N and

(Pr) for the viscid and inviscid one-dimensional
case. We list first the distance at which the sys-
tem becomes inviscid, then the corresponding
multiplicity, and finally the average transverse
momentum. In the first case L-E ', since that is
the dependence of V-L,'L from Eq. (1).

TABLE I. Multiplicity and average transverse mo-
mentum for the viscid and inviscid one-dimensional
case.

Inviscid flow

(A) g =0 (Landau, Ref. 7)

L E
N-S-E( 2 2

(p ) Ecs (&-cs )/(&+cs )
2

T

Viscous flow

(B) g -T~ (Feinberg, Refs. 6 and 8)

E (1-2 s )/3cs 2

Re=

(p &
E«-~cs )

i c 2
(C) g -T' s (present work)

As explained before, in the case of e'e anni-
hilation into hadrons, we cannot use Eq. (13) since
there is no contraction. Besides, there is no
transverse momentum and we shall therefore use

1 /(1+c )
Re=

L(

2L -E s

N-E cs 2
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for c, &-,

In this case

y I/c, (pqeqe~g ~0I.k)

(g/g )(1-2c~ ) /(1+cs

—g-c 2 /(1 -2c 2)
1 (26)

For c,'& —,', the exponent in Re is positive and

Be &1 for R &Ay A computation analogous to the
one that led us to Eq. (25) yields

E(& 3cs ) /(&-2cs )
S

For c,'& —,', the exponent in Be is negative and

Re & 1 (q large) for 8 & 8„ i.e., the entropy in-
creases in the final stage and the multiplicity can-
not be computed as before. However, the effective
viscosity will most certainly cease when the mean

Be»1 for A&A, ,

Be« 1 for Fi!& A, .

In the first case, the multiplicity formula, Eq. (5),
can be applied only for A&A, (Re»1, q small)
and not for A&A, . It clearly does not do any good
to have a formula that can be applied only in the
first part of the expansion and not in the final stage
where we actually measure it. For c,'&7/ the
situation is reversed and we can apply Eq. (5)
starting at Fi'=A, . We obtain

2 & 2 ~ g(6cs -2) /(7cs -2) (25)s 7p

Since cs'&+ is of no interest, we disregard this
case.

separation among the particles is of the order of
their brompton wavelengths. If this is the case,
we can then compute the multiplicity following the
Pomeranchuk model' which gives

The results of the three-dimensional case are
summarized in Table II.

(27)

l
V. e 2: IS IT-, OR 1?

We present in Table III the results of Tables I
and II for two typical values of cs', one corre-
sponding to a free system and the other to a sys-
tem of nucleons strongly interacting via vector
me sons.

In the P-P collision process, it is a well-estab-
lished fact that the average transverse momentum

(Pr) is constant (or perhaps increases logarith-
mically) with energy over a wide range of energies,
say from 10 up to 10' GeV. This constancy ex-
cludes the third combination

Cs = 1, 'g T

The first choice

(28)

TABLE III. The results of Tables I and II for two

typical values of c, . '

0~ cs

yields Pz -Ez' ". Such behavior does not contra-
dict the cosmic-ray data. ~In fact, the high-energy

TABLE II. Multiplicity for the viscid and inviscid
three-dimensional case.

2c

p-p collision

Inviscid fluid

(A) g =0 (Landau, Ref. 7)

V =const

N =S'/('+cs )

T3 @2/3

const

@2/3

const

const

const

E-2/3

const

Viscous fluid

(B) g-T3 (Feinberg, Refs. 6 and 8)

= gdi-2cs )/(7c -2)

c2 & 2 . N @(6cs -2)/(7cs -2)2

7

c &-: S entropy not constant
7

2c

e'e annihilation

const

Ei /2

gg =E/N

+1/4

E1/2

'1 c(C) &
Ti/cs (present work)

cs /(' 2cs )2 2

1

s )/(1 s
2

s 2'

c 2&i: N-E
2

'

~4/5

const

Note: Since the formulas given above are modulus
lnE (Ref. 11), whenever we write const we should under-
stand lnE.
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data quoted in Ref. 9 should refer to E~ and not to E.
[The author is grateful to Professor E. L. Feinberg
for pointing this out. See Fig. 16of E.L. Feinberg,
Phys. Hep. 5C, 237 (1972).] The presentexperi-
mental data on cosmic rays do not rule out any of the
above-mentioned combinations, except the third
one. The same conclusion holds true when we
analyze the particle multiplicities. A possibility
of discriminating among the remaining choices
comes from comparing the previous results with
the ones of the multiperipheral model, i.e., a lnE
behavior instead of a power 1am. Such a behavior
can be easily achieved within the hydrodynamic
model if we limit ourselves to the combinations

c =1, g=0 T. (29)

If we are ready to believe in this chain of argu-
ments, the analysis has led us to a unique candi-
date for c,'. The fact that one obtains the same
result with or without viscosity is because the
length L -E '~ [Table I, case (C)] coincides with
the inviscid case for precisely c, =1, i.e., vis-
cosity becomes negligible from the very beginning.

From the e'e data, we should perhaps only
make use of the fact that the energy per particle
ze is nearly constant. The combination c,' = —,',
g =0 and c,' =1 and q = T' should be disregarded
because of the previous analysis. Concerning the
remaining three possibilities we can say the fol-
low lng.

Feinberg' favored the combination

which, however, yields too high an energy per
particle. For this reason he discussed the forma-
tion of y rays along with hadronic matter, carry-
ing away some of the initial energy, thus weaken-
ing the behavior of zo vs E. Presumably, if one
accepts this way out, the other case c,' = 1 and

q = 0 could also be fixed up.
However, without introducing an extra hypoth-

esis, the hydrodynamic model can be made con-
sistent with the data if we choose the combination

c =1 'g T

consistent with Eq. (29).
In conclusion, from Eqs. (29) and (30) we pro-

pose the combination

c =1, g-T

It is clear that if we do not consider c,' as a
parameter, but we choose from the very beginning
a fixed value, in particular c,'= —,', then the multi-
plicity will grow like a power law and the result
mill be in obvious disagreement mith the peripheral
model. Such a problem has been recently dis-
cussed by Thomas, "who has shown hom one can

modify the Landau model in order to bring a power-
law agreement with a lnE behavior.

In the present treatment, we do not need to em-
ploy such a procedure since the Landau model
itself can give a lnE behavior, if the velocity of
sound and the viscosity are treated in their gen-
eral form.

Finally, we would like to comment on the fact
that recent many-body treatments of a system of
strongly interacting baryons (via a vector meson)
yield c,' =1 both classically and quantum mechan-

icallyy.

&=&(4"~ 4t )~ (31)

and on the corresponding energy-momentum tensor

=PA„, —2
n

Since we want to study the average, hydrodynamic
behavior of 2, we must compare Eq. (32) with Eq.
(4), with r~, =0.

If we define

u = 1
( y 2)1/2

VI. THE HYDRODYNAMIC TREATMENT

OF THE PION-PION LAGRANGIAN

We shall employ here a method originally de-
veloped by Milekhin, " in which quantum effects
are averaged over, on account of the large num-
ber of particles present and the fact that we are
dealing with large quantum numbers. This is far
from saying that only statistical weight factors
dominate, as has been done in some recent work. "

The emphasis of this paper )s on the interaction.
We shall keep the number of species to the mini-
mum, just pions, but we shall study the conse-
quences of the interaction. It could be argued that
if indeed a system of pions is a good representation
of the P-P collision process, it is less so for the
neutron-star case. If it is certainly true that a
complicated mixture of n, A, Z, etc. is likely to
be present in the interiors of neutron stars, it is
also true that the studies of such a mixture" have
indicated that the changes in the equation of state
are rather small and most certainly the slope of
P(e) vs e is almost unaltered. Since the behavior
of c,' is the main objective of this work, one can
consider the system of pions as an excellent rep-
resentation of the actual, more complicated situa-
tion.

The method employed is based on the study of a
Lagrangian of the )eneral form
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the identification follows:

Bg
P=L, @=2,$s' —2. (34)

the the four-vector u~ defined in Eq. (33) has the
property that in a coordinate system where its
spatial components vanish (i.e., $, =0) the mo-
mentum density also vanishes. Furthermore,
u„' = —1, so that the def inition of u„coincides
with the usual definition of velocity in relativistic
hydrodynamics.

A. Uniform system

We note that P and e are Lorentz-invariant quan-
tities since they are defined to be the proper pres-
sure and energy density, respectively, of the
fluid element. Since the kth component of the "mo-
mentum density" is

BZ
pa = ~4~ = - 4a

where L is a characteristic distance over which
the properties of the system change considerably.
This is equivalent to requiring that the Strouhal
number St =us/L be small. As before, depending
on whether the fluid is treated as viscous or other-
wise, the length L will vary and we have already
defined the corresponding formulas

(@=0) Li-& ',

(q ~0) I., [Eq. (14}] .

Given a specific Lagrangian, the formula for v{e)
will be computed and the corresponding uniformity
condition checked (see Table IV).

VII. APPLICATION OF THE PREVIOUS METHOD

TO SPECIFIC LAGRANGIANS

The technique previously developed will now be
applied to a system of strongly interacting pions.
Among the many Lagrangians that have been pro-
posed, we shall study the following four:

If the system is sufficiently uniform such that
/~ =0, then, as we have seen above, this condition
implies that the momentum density is zero, cor-
responding to the proper frame. In this case the
energy density in Eq. (34) becomes

(35)

I: 2=20 —XQ ",
11: 2 = 2, —~y'" - vy„'

g =I [1 I (y pg y2)]

(39)

(40)

(41)

and we can therefore solve for g in terms of P
and e, i.e.,

If we now limit ourselves to fields that are peri-
odic, then the period T is, by definition,

dQ
( )

y(y )
(36)

where the integral is over one cycle. Averaging
the pressure over one cycle, we get

P(c) = g2dt

f~d

1

~(e) &(P, ~)
(37)

L&c,T, (38)

which gives the equation of state P =P(e).
The use of the time-averaged quantities is valid

only if the state of the system at a given point
changes little over the period v.. For this to hap-
pen, the system must be sufficiently uniform, i.e.,
we must require

2 (1+I' 'p')' 1+E 'p' (42)

2, is the free pionic Lagrangian density, n and I
are integers, while A., v, l and F are parameters.
Lagrangian III was originally proposed by Born
and Infeld" for electrodynamics and studied by
Heisenberg" in connection with high-energy phys-
ics. Lagrangian IV, based on chiral symmetry,
has been recently proposed by Weinberg. "

In Table IV we present, in the first line, the
value of c, for a uniform system, i.e., postulating
that condition (38) is satisfied. In the second line
we give the value of ge), the period of the field.
In the third line we present the conditions to be
satisfied if (38}has to be satisfied.

VIII. THE Q4 INTERACTION: NONUNIFORM SYSTEMS

One of the most popular types of Lagrangians
is the one given in Column 1 with n =2. With this
type of interaction the uniformity condition is not
satisfied in the inviscid case, since we must have
n-~. In the case of a viscous fluid, the condition
ls

kc 'o1
For n=2, c,' = —,

' and the condition is barely satis-
fied.
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IX; IS THE LANDAU MODEL ACTUALLY APPLICABLE?

We have repeatedly stressed that the lack of a
solution of the relativistic Navier-Stokes equations
including viscosity forces us to apply the Landau
solutions only when g has actually become small.

This demarcation point has been investigated by
analyzing the Reynolds number and by working in
those regions for which Re is much larger than
unity.

As a remedy to an otherwise intractable prob-
lem, this method looks at first glance very satis-
factory indeed. However, by trying to avoid vis-
cosity in this way, one can run into more serious
troubles. In fact, if it is true that a moderately
large Re implies small viscosity and nothing else,
it is also undeniable that an extremely large Re
can signify the onset of turbulence, a much more
complex phenomenon.

Should that be the case, the whole treatment of
Navier-Stokes equations as describing a laminar
flow, regardless of what one does with viscosity,
would clearly be a useless exercise in that only a
stochastic treatment would be meaningful.

A. Initial stage

The condition for the absence of turbulence, i.e.,
el.

Re = —&1,
'gC

can be expressed as

I & Ef(A-1)cs 1 /(1+cs (43)

T "" 's and the general power
law g-T'. Since in the initial stage I.-E ', we
must have

1+c, '&2kc,

For the two viscosity laws considered earlier we
have

'g-T, 5 &Cs

g-T, c,')1 .
(44)

Since c,') 1 is never satisfied (unless one violates
causality) the previous condition is only sufficient
and not necessary.

That the initial stage of the expansion should not
be turbulent is perhaps to be expected, since L is
too small, a result reflected in the mild require-
ment of Eq. (44).

When the system expands hydrodynamically, its
dimension increases and it is quite conceivable
that the fluid becomes turbulent, a most natural
result if one thinks of a highly compressed gas
left to expand. Smoke from a chimney or gas from
a jet are but two possible analogies.

TABI E IV. The average, hydrodynamic behavior of four specific I agrangians.

gp —A@
" gp —A|In)

" —+~2 [] g (ft),
2 m @ )] /

2

m.2@2 4'1

y +y -2y2 (y +y -2y2)2

2c
Uniform
system

n —1
n +j.

n —m
2nm+m -n

Period of
field
~ (e) ~ (1-n)/2n

E
(m-n )/2mn -1/2

Uniformity
condition

- Eq. (38)
g =p

&(kcs )/(1+cs )

~b (~+i)-~]/2~ (i
qymtl +(m-it)(i+k)j/2mn ( y

Yes

E (2-0)/2 ) E 1/2

Constancy
of

&P z)

Yes if
n»1

Yes if
n —m —nm Yes

Turbulence
in initial
stage of

expans ion No No No No
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B. Final stage

A different situation arises, if we consider the
final stage of expansion, defined as the moment
when the temperature has dropped to a value
kT-m„c'. If we use

E E
V X~L,

the Reynolds number becomes

E 1Be=
X~ 'gc

(45)

(46)

In order to obtain the Reynolds number as a func-
tion of the expansion time, a specific model with
a definite equation of state must be solved to yield
the temperature T as a function of time t, from
the initial state to the moment of breakup. The
Landau model, for example, provides a relation
for T(t), which strongly depends on the assumed
equation of state. However, it is definitely true
that in any realistic model, AT will approach
m, c' at the breakup point. It is therefore possible
to obtain a model-independent estimate of the
Reynolds number at the initial and breakup mo-
ments and hence to obtain a qualitative behavior of
Re as a function of time. At AT -m, c', we obtain

We have explained in the Appendix how incomplete
is our present knowledge about the function q =q(T).
For a pionic Lagrangian with dimensionless cou-
pling constant the relation (Al) holds true and we
have

Re Re vs. time

4000—

in (Fig. 2).
Unfortunately, little is known about turbulence

and even fewer quantitative statements can be
made about the relativistic analog. However, if
we limit ourselves to familiar three-dimensional
turbulence under laboratory conditions we can
make the following observations. The point at
which a given type of fluid, in a given geometrical
configuration, becomes turbulent depends sensi-
tively on the geometrical boundaries and the way

the fluid is injected. These factors can make the

Reynolds number increase up to 10000 or so, be-
fore some form of turbulence sets in."

In the case of P-P scattering, no room exists for
playing with the way the system is initially put in

fluid laminar motion. In fact, since the initial
act of putting the fluid in motion is rather violent,
one would expect that turbulence should set in at
a relatively small Reynolds number.

Even so, the type of motion one has to deal with

is probably not fully developed turbulence char-
acterized by a whole spectrum of eddy sizes. For
a turbulent medium to reach such a stage, the

Reynolds number must be exceedingly large. We

can only expect the system to develop large, en-
ergy-containing eddies, whose nature and behavior
are determined by the geometry of the system.

5~' ERe=
2 m~c 2 (47)

Before putting numbers into Eq. (47), we would

like to note that such a relation has a general va-
lidity and it does not depend upon the particular
Lagrangian used, so long as the coupling constant
is dimensionless. In fact, independently of the
exponent k in the g - T" law, when k T = m c' (and
only then) q can depend solely upon a combination
of A, c, and m„and the only way they can enter
is in the combination

/
///

/////
//

/
/

/
/'

//
/

m~ c
q - '

(g jcm sec),

which, substituted into Eq. (45), readily gives
Eq. (47).

Since E'=2MC'El, we have that

E -10 GeV, Re=&000,

10

INITIALSTAGE F INALSTAGE

time ~
(arbitrary units)

a value virtually sufficient for turbulence to set
FIG. 2. The expected behavior of the Reynolds number

during the expansion of the pionic fluid for EI -10 GeV.
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X. PREDICTIONS OF THE TURBULENT MODEL

FOR p-p SCATTERING

A possible experimental consequence of the tur-
bulentgature of the expanding pionic fluid is the
formation of clusters of pions, here identified
with those eddies that detach themselves from
the fluid in the final stage. If we assume that the
critical Reynolds number Re„above which turb-
ulence sets in, is a universal number, then Eq.
(47) implies that the higher the incident energy
the earlier the onset of turbulence (Fig. 3). We
could therefore expect that the higher the energy,
the greater is the number of eddies. However,
this does not imply that all the eddies should be-
come clusters of pions. This will be achieved
only by those eddies that have acquired enough
angular momentum to counterbalance the attractive
pion-pion force that would otherwise lead to forma-
tion of bound states or resonances like ~ and p.

Even though it is difficult at the present moment
to give a numerical estimate for this limiting value
of the angular momentum, the following picture
can, however, be put forward. As the system ex-
pands with time, the eddies will correspondingly
increase in size and only after a certain time t, ,
Fig. 3, will they be large enough so that the cen-
trifugal force will be able to counterbalance the
pion-pion attractive force. We shall therefore
identify these eddies with the observed clusters.
Similarly, the resonances should be viewed as
those eddies with insufficient angular momentum
to prevent the collapse.

If the process described above does indeed take
place, then the number and sizes of the pionic
clusters will depend only on t, and not too sensi-
tively on the previous history of the collision,
specifically, the collision energy. In this way we
produce a more or less constant number of clus-
ters, but do get a larger amount of resonances
the higher the collision energy. This result is
consistent with the present data. "

An analogous situation exists in the problem of
formation of galaxies, "which are thought to be the
remnant eddies of an early turbulent universe.
Contrary to the P-P case, the present value of
the angular momentum for a few galaxies is known,
and one can consequently put limits on when the
density of the universe was low enough and the
radius of a cluster of -10"Mo large enough to con-
tain that given amount of angular momentum.

havior of high-density matter and in particular
the equation of state P= c,'e. The analysis is,
however, hampered by a lack of a satisfactory
knowledge of the viscosity of hadronic matter.
A dimensional analysis of the exact relation for
the viscosity yields a generalization of Feinberg's

/ 2T' relation of the form T' '&, provided the cou-
pling constant is dimensionless. By the use of
such a relation, evidence is presented that favors
the value c,' - 1 over other competing values.

However, the application of the Landau model
would be altogether meaningless should the ha-
dronic matter develop any turbulence. It is in fact
shown that in spite of our incomplete knowledge
of the q(T) relation, the system acquires a Reyn-
olds number Re -4000 in the final stage of evolu-
tion. Although no definite criteria exist, such a
large Re is usually sufficient for laminar flow to
break down. This offers the possibility of iden-
tifying the observed tendency of the pion gas to
cluster with the eddies that characterize any tur-
bulent flow. This will be true only when the angu-
lar momentum of each cluster is large enough to
prevent the collapse into resonances of the ~ and

p types.
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APPENDIX: THE VISCOSITY OF A HIGH-TEMPERATURE

PION GAS

As we have seen from Eq. (11), a value for the
viscosity @ =7'(T) is needed to evaluate the Reynolds
number. It must be said at the outset that pres-
ently no satisfactory general relation of such a
type is available. Iso et al."using a specific La-
grangian and employing a perturbative approach to
the Kubo formulas for the transport coefficients,
obtained the following result:

1

3VT

where V is the folume, T the temperature, and

J;„is defined as

;,(r, t) d'r,

Since (8 = c = 1}the time t has the dimension of E ',
we have that dimensionally (A2) is given by

g2 g2V2 y4P4V

VTE VTE TE

where P is the single-particle momentum. In order
to compute g, we now need P. The dimensionsof P
)re (E/g)' ' and if the coupling constant entering in
the Lagrangian is dimensionless, then the only
combination of E, V, A, c available is

-g ~/2V-~/2'r (EV)1 /2 t

r) = 5, h 'c '(kT)' .
2

(Al) so that

Feinberg' then showed that the T' dependence fol-
lows more generally from dimensional arguments
if the coupling constant entering in the given La-
grangian is dimensionless and, moreover, if the
temperature is high enough for the particle masses
not to enter. It is clear that the previous argu-
ments are not enough and something better should .

be done. The role of viscosity has been stressed
again recently by Feinberg' in his study of the
e'e annihilation into hadrons. He has made the
point that if (Al) is justified for a value of c,' = —'„
it is not clear that it should be so for any other
value of c,'. Motivated by his remark, we have
investigated the problem a little further.

The general formula for q is given by" (8'= c = 1)

p4

VTE

By definition the pressure is proportional to

P=——

2
T 1 jc (AS)

upon using P=c, 'e, E/V= e, and e-T"' '& .
Equation (AS} is the generalization of the Feinberg
T' law for any Lagrangian with dimensionless
coupling constant.

where n=N/V is the number density and P'/E =Pv
is the contribution to P of each particle. %e there-
fore conclude that
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