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Spinor-spinor Bethe-Salpeter equations with vector anti axial-vector gluons
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Wick-rotated spinor-spinor Bethe-Salpeter equations are investigated for systems bound to zero total

mass by the exchange of vector and axial-vector gluons. At small relative coordinates, the interaction is

assumed to be dominated by vector propagators which are chosen in a form suggested by theories of
spontaneously broken gauge symmetries. Short-distance expansions are studied for the solutions

belonging to representations (-N, 2Ã) of O{4). Particular attention is paid to the boundary

conditions in order to formulate a we11-defined eigenvalue problem. All solutions of the indicial

equations are explicitly given for arbitrary values of N; the indices involve the coupling parameters

characterizing the short-distance behavior of the interaction.

I. INTRODUCTION

During the past few years, considerable efforts
have been devoted to understand the properties of
the Bethe-Salpeter (BS) equation' for systems of
spin-& fermions; an extensive list of references is
available in review articles by Nakanishi' and
Bohm, Joos, and Krammer. ' We need not enu-
merate all the reasons for investigating this prob-
lem. In the bound-state region, for example,
these equations offer a covariant treatment of
quark-parton models along the lines suggested in

Refs. 4-8. On the other hand, scattering BS equa-
tions are known to be connected to the multiperiph-
eral model of multiple productions at high energy. e

In particular, spinor-spinor BS equations may
lead to a reasonable nonperturbative descr iption
of the e'e annihilation into hadrons. As a further
aspect, we mention that BS amplitudes involve
particular matrix elements of the bilocal general-
ization of vector and axial-vector currents. '
Therefore, the short-distance properties of the
BS amplitudes are of particular interest; impor-
tant consequences of a possible noncanonical
short-distance behavior have been discussed by

Goldberg er."
Near the light cone, the behavior of the BS am-

plitudes may depend sensitively on the leading
terms of the interaction kernel. In the present
paper we consider Abelian interactions generated
by the exchange of neutral vector and axial-vector
gluons. According to ladder-type approximations,
we shall assume that the light-cone behavior of
the interaction is dominated by the propagators of
the exchanged particles. The free vector and
axial-vector gluon propagators D'„~,"' and D'„," will
be chosen in a form suggested by theories of
spontaneously broken gauge symmetries:

D, ( ), „1
Y A ~ 2 2 jg ~)"~ 2 jgF, A +tf

~(V, A) (, , ),

where P' ' and P'"' denote the gauge parameters.
Recently, Jackiw and Johnson" have proposed

dynamical models of spontaneously broken gauge
symmetries which may lead to an attractive frame-
work for BS calculations. (For related works, see
Ref. 13.) In these theories the masses of fermions
and gluons arise spontaneously, without the pres-
ence of Higgs scalars. '4 This can happen if there
is a massless, bound excitation corresponding to
a particular solution of the fermion-antifermion
BS equation. Other zero-mass solutions may also
yield valuable information since the dominant
light-cone properties of the BS amplitudes are
expected to be independent of the center-of-mass
(c.m. ) energy.

In the present paper we restrict ourselves to
vanishing c.m. energy and investigate Wick-rotated
BS equations of the type

= ~'„".'(x)r „0'"(x)r„+~'„".'(x)r,r„0'"(x)r r. ,

(1.2)

with A =+I. Here the functions |)I~ "(x) and ()
' (x)

are the%ick-rotated relative BSamplitudes of fer-
mion-antifermion and fermion-fermion sys tems,
respectively, and x denotes the Euclidean relative
coordinates. (Since we are mainly interested in

the asymptotic properties of the amplitudes, the
calculations will be performed in the coordinate,
rather than momentum, space. ) The short-dis-
tance behavior of the interaction will be fixed as

+( V, A;0) Z( V, A;i)
( V, A)V„",' (x)=, 6„„+, x„x,+

for A —0, (1.3)

where x„=x„/A, A = (x„x„)'~2. In conventional
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ladder approximations, the constants Z' '""' in-
volve the gauge parameters P

'" of the propa-
gators (1.1) in a simple form.

The Bethe-Salpeter equation (1.2), (1.3) is in-
variant under transformations of the group O(4)
and offers an aesthetical and attractive possibility
for a description of the short-distance dynamics
of fermion systems. The purpose of this paper is
to investigate the solutions that belong to represen-
tations (&P, &N) of O(4). These solutions dominate
the short-distance behavior of the BS amplitudes;
on the other hand, they are less known for mar-
ginally singular interactions of the type (1.3).
Particular attention will be paid to the vector and
axial-vector amplitudes V„(x) and V„"'{x)which
are involved in the expansions

{.x) =iypqV„(x)+y~Vq" {x)+~ ~ ~ .

In order to exclude solutions with unreasonable
short-distance behavior, we shall impose a strin-
gent subsidiary condition for the space components
(g =j =1, 2, 3) of the leading vector and axial-vector
amplitudes. This condition can be written as

1'I"'"'(x)l y=g&~ '"'y(z-,
, gr-, ,~&, @)+' ''

for R —0 . {1.4)
Here J is the total angular momentum assignment,
and the functions Y denote the components of the
four-dimensional three-vector spherical harn onics
introduced by Gourdin. " IFor definition, see Eq.
(4.15) of this paper. ]

Condition (1.4) is obviously satisfied for regular-
ized interactions (Z "'""'=0), and in this case
the leading index p{J) takes the canonical value
J —1. On the other hand, the marginally singular
interactions (1.3) result in noncanonical values of
the indices p{J) if no cancellations occur. Apart
from this, the short-distance behavior (1.4) may
be modified by "spurious" contributions involving
terms of the type

Y(J x, &,~ =s, .~)f{

We shall exclude these terms by imposing the sub-
sidiary condition (1.4), which leads to a restric-
tion on the possible choice of the coupling para-
meters Z( ' "'~ and Z' "' ' . If this restriction
is satisfied, then we obtain a simple factorized
form of the indicial equations which ean be ex-

plicitly solved for arbitrary values of N.
The organization of this paper is as follows.

Some general properties of the BS equation are
presented in Sec. II. In Sec. III, we derive the
radial BS equations by using the standard O(4)
expansion of the amplitudes. ~ *"'" The boundary
conditions, and the short-distance behavior of the
solutions, are considered in Sec. IV. A discussion
of some consistency problems is left to See. V.

i("'(x„x,) =(0lT@,(x,)+,(x,)I4' "), (2 1)

where the spinor field operators 4', and 4', gen-
erate spin-& fermions of masses e, and ~„re-
spectively. We consider also the BS amplitudes

T""(x„x,) = &0 l Tc,(x,)4,(x, ) l
4 '"),

where 4 " is a fermion-fermion state. It will be
convenient to introduce the notations

(2 2)

(2.3)

where C is the charge-conjugation matrix. If the
fermion self-energy contributions are neglected,
the homogeneous BS equation has the form

-sy -q- + K, T {x„x,)~X

(2.4)

We next consider interactions I suggested by
the following terms of the interaction Lagrangian
density:

f., = P (G':4'„r"4'. q „:G'+:4'.r,v "4'.4 „":),
n=g

(2 .5)

where the quantum fields y'„' and p„'"' generate,
respectively, neutral vector and axial-vector me-
sons whose exchange provides the forces between
the fermions. According to ladder-type approxi-
mat ions, the spin st ruc ture of th e in ter ac t ion w ill
be approximated in the following form:

II. STRUCTURE OF THE BS EQUATION

The fermion-antifermion BS amplitudes, corre-
sponding to Heisenberg states 4 ', are defined as

{p- g, )
' (g ~, = ~ '„, (x, —x, )y "v '(x„x,)~ —G„'D'„, (x, —x,)yp" (x„x,)yg (2.6)

In considering the light-cone behavior of the inter-
action terms D'„,'"', we shall restrict ourselves
to a slight modification of the conventional ladder
approximation. To obtain a fairly flexible frame-
work for practical calculations, it will be conven-
ient to apply superpositions of the gluon propaga-

I

tors (1.1) as given by"

D""' ~—D„, (z) = dm'~" "'(m &)

xJ d'qe'"D'„'„" "'(q m') (2.7)
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where f dm'p("' "'(m'} is finite. We shall regard
the form (2.6), (2.7) as a simple parametrization
which might be reasonable if the fermion self-
energy corrections are absent. We note here
that, in general, our interaction terms D(„"„'" (z)
are not identical with the complete gluon Green's
functions which, when calculated in ordinary per-
turbation theory, involve nonnormalizable Kalldn-
Lehmann spectral functions. A more general
treatment of the interaction kernel should be de-
veloped along the lines suggested by Domokos and

Suranyi. "
Let us consider BS amplitudes 7( ' with total

four-momentum P, . Translational invariance
implies

v("'(x„x,) = (p("'(z) exp[-fP, (p, ,'x', + (A,'x,'}],

ponents x„are real. After Wick rotation the free
scalar propagator takes the form

1 4 e
2.

rotated

= V(R; m')

= (4m/A)K, (m R),

(2.10)

V(R m') = —+2m'lnR+ for R-O.

We shall use the conventions

y, = (y' (j = 1, 2, 3),

(2.11)

where A = (x„x„)"', and K, is the first-order mod-
ified Bessel function. One has

Y4 V ) {2.12)

where z = x, —x„and the choice of the constants
]L(,,' and p,

' is restricted by y,'+ p.,'=1.
We next restrict ourselves to situations where

the Wick rotation can be performed. The Wick-
rotated BS amplitude g'" is defined as

q")(z)i,„,.„„,=(((")(x)=((("( fx„x„x„x,},
(2 9)

where x,, =z~ (j =1, 2, 3), xA =iz', and all the com-

Y5 1]VQYSV4 f

thus, the commutation relations are y„y, +y,y„
26[1v ~

In the c.m. coordinate frame the BS equation
of the amplitude ())' (z) can be derived by sub-
stituting Eq. (2.8) into (2.4) and by setting P0=E,
P) =0 (j = 1, 2, 3), where E is the total c.m. energy
of the system. The Wick-rotated form of this
equation is

(y„a„p,'y,E+ «,)g'"(x)( y,&„—p,'y,E+ «, ) = —)(G v'V'„"„'{x)y0(})' '(x)y„+GA'V'„", '(x)y, y„(()'"'(x)y,y„, (2.13)

with G» „=G» A/4z and S„=&/Sx„. According to Eqs. (2.6), (2.7), and (2.10), we have

V(vA)( ) V(vA0)(R)6 s s V(»A;1)(A)

with

(2.14)

V( V, A;0) (R) dvv'p( "'{m')V(R m') (2.15)

V( v, A '1)
(A)

(V, A)fdm', ' [V(A; m') —V(R; 0) ] —Pm'
8

dm'p "'" (m'), V(R; m')i

(2.16)

The interaction terms V„",' "'(x}can also be written
as

As R- 0, the behavior of the interaction is given
by

V'" A'(x) = U"":"(R)6 + U"":"(R)xx

where x„=x„/R, and

1 d V('A:&' RU( V. A;0)(R) V( V. A:0) (R)
( )

R dR

(2.17)

(2.18)

Z(v, A;t)
U'" "'"(R)= + (l=0 1)R

where

g( V, A ~ 0) [1 16( V A) ]Z( V A)
)

Z( v, A 'g) Q( V, A)Z( v, A )

(2.20)

(2.21)

U(», A, ,)(R)
d'V'"'"'"(R)

dR2

Z(VAj 4 dm'p' ' "'(m')

1 dV«A:&)(R)
R dA

(2.19)
(V A) 1 P(v A) (2.22)

In a previous paper" the kinematical analysis
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of BS equations of the type (2.13), (2.17) has been
carried out by using basis functions proposed by
Gourdin. " [Notice that Eq. (2.10) and the defini-
tion of the coupling constants G~ „ involve nor-
malization factors (4v)' and 1/4w, respectively,
which are omitted in Ref. 19.]

The present paper is devoted to a study of the
equal-mass BS equation at vanishing e.m. energy,
thus

1E-O, ~, =w =~ p. —p., —,. (2.23)

In this case the BS equation (2.13), (2.14) is form
invariant under transformations of the group O(4)
extended by three-space reflections Il and charge
conjugation C. Standard O(4) expansions of the
amplitudes lead to a set of radial BS equations;
the results are summarized in the next section.

III. RADIAL BS EQUATIONS

The Wick-rotated BS amplitude g can be ex-
panded as

)(x) = iy, S(x) +P(x) + iy,y„V„(x)

+y„A„(x)+ m2„„T„',(x), (3.1)

(f„.= —.{y„y.—y,y„),2z

T„', (x) = T,'2(x), -
(3 2)

[ I, (R) —((']P(x}—=0, (3.3)

where S, P, V„, A„, and &„'„are the scalar,
pseudoscalar, vector, axial-vector, and tensor
amplitudes, respectively. [Notice that our def-
inition (2.3) of the amplitude 7'" involves the ma-
trix y, . J Substituting expansion (3.1) into the BS
equation (2.13), (2.17), (2.23), we obtain a single
equation for P(x), and two systems of partial dif-
ferential equations for the other amplitudes.

The differential equation of the pseudoscalar
amplitude P(x) can be written in the form

where

I (R}= )(G 'U " (R) + G 'U "'"(R)

(3.10)

(3.11)

Let us turn to the separation of the angular vari-
ables which are defined by

x, = & sin3 sin(p, x, = & sin3 cosy,

x, = & cosy, x4 =A cos8,
with r =(x,'+x,'+x,')'". The calculations will be
restricted to BS amplitudes belonging to represen-
tations ( ,II, 2I)()-of O(4). These amplitudes can be
decomposed in four disconnected sectors"''";
we next employ the classification of Refs. 7, 8.
Sector I involves scalar and vector amplitudes that
may be written as

S(~) = S, (A) Y„,„{n), (3.12)

V„(x) = V„' (R)Y(„'2„)„(Q)+ V)("(R)Y[A,'~„)„(Q},

{3.13)
where J is the total angular momentum of the sys-
tem. The functions Y2(2+(Q) and Y(„'2„&„(Q)are,
respectively, four-dimensional scalar and vector
spherical harmonies' which are defined in terms
of Gegenbauer polynomials22 C„'(cos6) as follows:

Yp(s)2(Q) = Yx z2((6, 8, (())

=G~ (e}Y (3, p), (3.14)

Finally, we obtain the system of partial differen-
tial equations for the amplitudes T„',(x) and A„(x):

[-CJ+Ir(R}+((2]T„',{x)—[2&q() 2
—2lr(R)x„xp JT,'P (x)

+ [28,8 2- 2lr(R}x, x& JT'„z {x)

+ 2 ((i [s „A,(x) —&,A „(x)J = 0,
(3.9)

-2K2&,T„'„(x}+[-Cl I+'„"(R)—I'"(R) —((2]A„(x)

+ [2&„e„—2I r" (R) x„x„]A.„(x)=0,

where

I (R) =AG„2[4U' '"(R)+U' '"{R)]

~G 2[4U(A:o)(R)+ U(A;&)(R)] (3.4)

(~) 2' ''{X+1)(N-4)!
(((I)i+J + 1)!

&JtCg J{cose)sin 6, (3.15)

The amplitudes S{x)and V„{x)satisfy the following
system of partial differential equations:

[- +I2 (R) —((2]S(x)+2((B'AV„(x) = 0, (3.5)

—2((S„S{x)+[- +I'„'(R) —I'r2 (R}+((']V„(x)

+[2s„s„2I(„)(R)x„x„]V„(x)=0.
(3.6}

The interaction terms I'„' and I „"are given by

I'"(A}= ~G,'U"'"{A} G ~U'":"(A) {3.V)

I (R) = -2)(G 'U '2 (R)+2G 'U "' (R) . (3.8}

~()V J)f)2 { } x2 Y((2 (Q)rs

~(N Z)I)2 {Q} R
2 Y)(r)((Q) '

(3.16)

In definition (3.14}, the functions Y~„denote the
usual three-dimensional scalar spherical har-
monies.

The amplitudes of sector IV are the following:

T„',(x) =T~("(R)Y(„2)~„)„,(Q), (3.17)

A„(x) =A~" (R) Y(k'~~), (Q)+Ax" (R}Y(~~~),(Q}

(3.18)
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where

d(MIN) „„(0)= (&„8,—x, & „)Y„J1((Q} . (3.19)
d(2;N, A) =, + + 2 . (3.29)

d' 2N+3 d N(N+2)

We now turn to the radial BS equations of the
amplitudes belonging to sectors I and IV. Let us
introduce the notations

We end this section with a short summary of
sectors II and III. The ariplitudes are, respective-
ly,

and

f ' '(R}=S„l,R},
f(1)l(R) Y(1) 'R}

f(1)l(R) [N(N+ 2)]1/2y(2)(R)

(3.2oa)

(3.20b)
and

T„' „(x)= T„(R)0('„~)()„„(Q),
(2) y( X)

~(HJ N)pv(~) ~(tt t)pa~ (N JN) pa() ~

P(x) = P„(R)V„,„(n),

(3.30)

(3.31}

(3.32)

f,~ '(A) = i[N(N+ 2)]"2ry' (R),
f(4) l(A) Q(1)(R)

f )'(A) = [N(N+ 2)]"2A(2)(R)

(3.2X.a)

(3.2lb)

f'"(R) = g W „f'„'(R) {m =1,2, 3; o =1, 4),
n= g

(3.22}

where

N ' N+2
2(N+ 1) 2(N+ 1)

-
N+2

0
2(N+ 1} 2{N+ 1)

(3.23)

Starting with Eqs. {3.5), (3.6) and (3.9), (3.10), we
arrive at two uncoupled systems of ordinary dif-
ferential equations (radial BS equations) for the
amplitudes f„')(R) and f("(R). The final result
can be written in the form

3

Q B~'„f„(R)=0 (m = 1, 2, 3; v =1, 4) . (3.24)
8= j,

The matrix elements B '„' and S"„'are explicitly
given in Tables I and II, respectively. These
formulas involve the following operators:

d' 2N+ 1 d N(N+ 2}
dR' R dA R'

(3.25)

According to the method of B6hm, Joos, and
Krammer, "'we shall apply the radial amplitudes
f„' (R) and f„)(R) (n= 1, 2, 3) as defined by the
linear transformation

The pseudoscalar amplitude I'„(R) satisfies the
well-known equation

[d (0; N, R ) —12 (R) —((2 JP„(R)= 0 . (3.33}

In sector II a similar single radial equation can
be derived for the amplitude T„"(R).

fz r(R)= ', + for R-0,Z, r()() (4.1)

Z( 1,0) (g)I'„'' (R)=, + ~ ~ ~ for R-0
R (4.2)

TABLE I. List of the matrix elements B~„.

Biii ) = -d(0; N, R ) +I@(R) —&,
1/2

~(i) 2(N +2)
i3

g N
Kd(1+3 + 1,R),

i/2
B 2i &d(1;N, R),N+1

B22 td(0 N —1 R) -Iv (R)] —I v (R) +&,

tN (N +2}]'»

IV. SHORT-DISTANCE BEHAVIOR OF THE SOLUTIONS

A. Indicial equations

We focus our attention on sectors I and IV. The
BS problem (3.24) is a system of second-order
ordinary differential equations involving the inter-
actions (3.4), (3.7), (3.8), and (3.11). These inter-
action terms are marginally singular at R-O, if
no cancellations occur. According to Eqs. (2.20)-
(2.22), we obtain

d(-1;N, A) = ———,6

d' 3 d N{Z+2)
dR2 A dR R

d(1;N, R) = —+
d N+2

(3.26}

(3.27)

(3.28)

2(N +2) i/2
B3i

= )cd(-1;N, R),

(i) [N(N +2)] ~2 (i)
N+1 fd(—2;N -1,R) —I v (R)],

B33)=, [d(p;N +1 R) —I v (R)i I v (R) +f('
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TABLE II. List of the matrix elements B~„.
A
B (i =d(0; N, R) -Ig(R) + &,

2(N +2) ]./2

N+1 Kd(-1 N -1 R)

~ (4) 2NB i ~
4——— Kd (1;N + 1,R ),

B24 = Kd(1 N R),

B
&2

——— [d(0;N -1,R) -I ~ (R)) -I
& (R) —K,

[N (N +2)] '/'

2N i/2

Bsg = Kd(- 1;N, R),

dicate independent solutions. For the coefficients
a„.'o, the radial BS equations (3.24) lead to the
following system of homogeneous linear equations:

3

P B{'„)(N, p(o; k; N))a„.'o" = 0 for m = 1, 2, 3 .

(4.9)

The formulas of the matrix elements 8'' are
listed in Table III. Since we search for nontrivial
solutions of Eqs. (4.9), the indices p(o; k; N) must
satisfy the indicial equation

Determinant i
B' '„(N, p(o; k; N))] =0. (4.10)

Let us summarize some results for regularized
interactions which are characterized by

Z (A.}=0, Z '
(A. ) =0 . (4.11)

B3g: [d(0jN+ 1 R) I y (R)l Iy' (R)33 N+1

In this case the indicial equations (4.10) can be
easily solved by using the formulas of Table III.
One obtains the following six solutions tcanonical
indices):

p(o; 1 N} =N+1

where

Z~(1.) =(4 —b "))l( vo'+(4 —b{" )G„,', (4.3)

Z~(X) = b A.Gy0'+ b" G„O', (4.4)

(4.5}

Z(0)(l) (2 b( v))) G o + (2 b(A)g (4 5)

p(o; 2; N)

p(0', 3; N}

p(o;4; N)

p(o; 5; N)

p(cr; 6; N)

N —1,
-N —1,
-N-2,
-N —3.

(4.12a)

(4.12b)

with

2 G 2Z G 2 G 2Z (4.7)

Standard theory of differential equations tells us
that there exist solutions with powerlike short-
distance behavior:

f "' (ff) =a( ' )If~ "o'")+ ~ for R-0 . (4 ())

Here the assignments & = 1, 2, . . . are used to in- a( a:3) pli0 a( 3) wp a"') =p2;0 3;0 (4.13}

Consequently, if N)0, the radial BS equations
(3.24) have three regular solutions and three sin-
gular ones as R -0. Notice that, for N )0, the
third index p(o; 3; N) =N —1 governs the short-
distance behavior of the leading regular solution',
the corresponding solutions of Eqs. (4.9) [together
with (4.11)]are

TABLE III. The matrix elements B „.
Bil) (N, p) = —(p -[ {N + 1) +Zoll)]uo+ 1}(p+[(N + 1)o+Zg (X)] io ~ 1},

Bi i (N, p ) = (p —[ (N + 1) +Zr!1 )1 + 1}(p + [ (N + 1) +Zr (X )]
i + 1}

Boo (N yp) = — (p —[N +Z y' (X) —(N + 1)Z (A)]
' + 1}(+p[ 'N~ yZ' (A) —(N + 1)Zv (l)] ' + 1}N+1

I/& (N, p)= — (p+N+2-[1+Zyi (&)] }{p+N~2~[1+Zv (A)]"'},[N(N +2
23 & N ~ 1

[N (N +2)]"'
(N, p) = — (p N- [1+Z(„')(l)]"}(p—N+ [1+Z{v') (A)] "'}, —

(III.2)

(III.4)

BP~ (()PN)= (P —[(N+2)'+Z i)(A)+(N+1)Z{vo) {&)]uo 1}(P«[(N ~2)o+Z(i){A) (N +1)Z{o)(A)]1I2~1} (III.6)

Ba& (N&P) =BE ( ~) =0 for a =2, 3. (III.7)
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Now we can return to marginally singular inter-
actions. In this case, the indices p((7; k; N)
(k = 1, 2, . . . , 6) will be ordered by requiring that
they must go smoothly into the values (4.12a),
(4.12b) if ZR r()()- 0, Z„' ()()- 0.

B. The subsidiary condition

We next restrict ourselves to nonvanishing values
of N and investigate some general short-distance
properties of the vector and axial-vector ampli-
tudes V'„"(x) and A(RR)(x) that correspond to the
leading solutions f„"'"(R}and f(4'R)(R), respective-
ly. Let us introduce the notations

V((;3)(x) V(3)(x) V(4i3)(x) A(3)(x)

According to Eqs. (3.13), (3.18}, and (4.8), the
asymptotic solutions can be written as

Y(»77, »)7(Q) =G» (f-'))Y(77»)7(,6~ (p)
{1.) (4.15)

with Eq. (3.15). Here Y(77, „)7(S,(p) denotes the
jth component-of the usual three-dimensional vec-
tor spherical harmonics. " According to Ref. 19,
we obtain

"[Y(»'7»)p(Q)+q»" Y(" )„(Q)]+

for R - 0, (4.14)

where the coefficients c„'' and qN' are fixed by
the solutions a„'.',:"()R=2, 3) of Eqs. (4.9). For
p, =j = 1, 2, 3, the form (4.14) involves expressions
i,Y„~„and && Y„», which can be evaluated in
terms of four-dimensional three-vector spherical
harmonics Y(»«„),(Q) defined by"

V; ' (x) =c„Rp' ' '"'[(I)(l, 1; N, J)Y(„,, 7 7 ( „)7(Q)[I Nq(')]

+ (I) (-I, 1;N, J ) Y(„,7 7, , „),. (Q )[I + (N + 2 )q
( ') ]

+9(I, -I;N, J)Y(». , 7,7-, ,»), (Q) [I Nq'»']-
+(I)(-1, I;N, J—)Y«( 77 ( „)7(Q)[1+(N+2)q»(')]]+ for R-O.

The coefficients Q are given by

(4.16)

1 (J+1)(N+J+2)(N+J+3)
2 . (2J +1)(N+1)(N+2)

I

involve terms of the type

p{ a;3;J )R ' ' Y(7+(.7.7~(.»)7(Q}. (4.22)

1 (J+1)(N-J)(N- J —1)
2 (2J + 1)N(N+ 1)

1 J(N -J + 1)(N -J + 2}
2 (2J + 1)(N+ 1)(N+ 2)

(4.17)

(4.18)

(4.19)

As a crucial step in this paper, we shall exclude
the terms (4.22) by imposing the requirements

q„''=1/X, c„''~0 for N&0, (4.23)

which yield a, .'0'" 0 and &', .'0" =0 according to
definitions (3.20)-(3.23). These requirements
are obviously equivalent to the subsidiary condition

V') '"(x)~(»=7&p=a"'"R" "'"Y(7 i,77-i,»)7(Q)+

1 J(N+ J)(N+ J+ 1)
2 (2J + 1)N(N+ 1)

(4.20)

For regularized interactions, the short-distance
behavior of the amplitudes VI

"R (x) is particularly
simple at N=J&0. Solutions (4.13) lead to q„'
=I/N and c„' o0; thus we have

Vi (x)I»=7&p=a "' R 'Y(7 ( 7 7 (»)7(Q)

+ ~ ~ ~ for R —0 . {4.21)

In the particular case N= J =1, the leading term
of (4.21) is independent of the angular variables
e, 3, y, and, in addition, it is finite at R=0.

By considering marginally singular interactions,
we observe that, at N= J &0, expansion (4.16) may

BRR (N, p((7 3' N)) =0,

BRR')(N, p((7; 3; N)) =0 .
(4.25)

Straightforward calculation shows that Eqs. (4.25)
are simultaneously satisfied for any value of & if

z'„"()()= z',"(z)+-.'[z'„"()(j]'. (4.26)

Thus, in this way, the choice of the marginally
singular interactions is restricted by the sub-
sidiary condition (4.24}.

for R -0. (4.24)

We next investigate some consequences of the
subsidiary condition (4.24). The requirements
aR".p'" 4 0 and a, .","=0, together with Eq. (4.9)
and Eqs. (III.3)-(III.7}of Table III, imply
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C. Indices and short-distance expansions

Substituting the restriction (4.26) into the formu-
las (III.3)-(III.6) of the matrix elements B ' {see
Table III), we obtain

Bk(,
') (N, p) = — (p —[N —I —&Z „(X)}

dices are nonintegers. (Otherwise, expansions of
the solutions may involve logarithmic factors. )

The expansion coefficients are fixed by standard
recursion formulas. " The leading terms of the
solutions can be written in the form

g( a;h) (g) g«:& & g p( o;h;Z & X(&,ni

x[P [ N I+-,'Zv (X)}, (4.27}
where

for B-0, (4.37)

N(N+2) '"

x]p [ iv 3 ——,'z',"(x)]},

N(N+2) '"

x [p [N I —,'Z'„"(x)]},

(4.28)

(4.29)

x(1, 1) = I, )((I, 2) =0, x(1, 3}=0,

x(2, 1) =0, )((2, 2) =I, x(2, 3) =I,
x(3, 1) =I, x(3, 2) =0, x(3, 3) =2,

x(4, 1)=1, x(4, 2)=o, x(4, 3)=o,

x(5, 1) =0, x(5, 2) =I, x(5, 3) =I,
X(6, 1) =1, X(6, 2) = 2, X(6, 3) = o .

(4.38}

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

B„(N,p) = [p —[N+ 1+ —,'Z(vo)(X)]}

x [p [ N 3 —~~Z( (x)i} (4.30)

p(o; 1; N) = N + 1+ —,'Z'~" (X),

p(1 2 Ã) =[(N+1)'+Z (x)'" 1

P(4; 2; N) = [(N+ I)'+Zr(X)]'" —I,
p(e; 3; N) = N —1 — Z '„~) (X),
p(v; 4; N) = —N I+ —,'Z(„')(x), -
p(1; 5; Ã) = - [(N I)'+Z +(X) aP" 1,

p(4; 5; Ã) = —[(N+ I)'+Zr{x)]'" 1,
p((); 6; N) = —N 3 —~kZ ~

) (x) . —

(4.31)

(4.32a)

(4.32b)

(4.33}

(4.34)

(4.35a)

(4.35b)

(4.36)

We proceed to investigate the short-distance
expansion of the solutions f„" (B). Our aim is
to calculate a few dominant terms; therefore,
as a first step, it will be convenient to approxi-
mate the interactions Is ~(A) and I'~""(A) by the
leading terms that are explicitly contained in Eqs.
(4.1) and (4.2). In this ease the solutions can be
expanded as

f( a;k) (B) BP( a:k;N ) ~ n( o;k)lf k
n n;h

if the differences p(e; k; N) —p(o; k', N) of the in-

By comparing Eqs. (4.27)-(4.30) with the corre-
sponding formulas of Table III, we observe that
the structure of the matrix B ' (N, p) is radically
simplified because of the fulfilment of the restric-
tion (4.26). In addition, the matrix elements
(III.1) and (III.2) (Table III), (4.27)-(4.30), and
(III.7) lead to a factorized form of the indicial
equation (4.10) which, in this way, involves the
roots p((T; k; N) (k = I, 2, . . . 6) explicitly. These
solutions are the following:

D. Boundary conditions

First, we prepare the discussion of the boundary
conditions at R =0 by introducing some conven-
tions. We shall call "good" or "bad" indices which
take positive (including zero) or negative values,
respectively, by setting Zz r(X) =0 and Z(„")(X)=0.
In addition, the asymptotic solutions (4.37) in-
volving good or bad indices will be referred to as
good or bad solutions, respectively. Thus, if
X&0, the six independent asymptotic solutions of
sector I (or sector IV} consist of three good solu-
tions and three bad ones, which are given by Eq.
(4.37) with Eqs. (4.38)-(4.40) and Eq. (4.37) with
Eqs. (4.41)-(4.43}, respectively. Reference 22
includes a discussion of the solutions at K=O.

We now impose the following boundary condition
at the origin of the four-dimensional Euclidean
space: As R-O, an acceptable solution must be a
linea. r combination of the good solutions (4.37)-
(4.40); thus the bad solutions are to be discarded.
Our selection of the good solutions may become
meaningless for large values of the coupling pa-
rameters. [For example, p(o; 3; I) & p(o; 4; 1) at
Z'„' (x) &2. J Therefore, in the following, we re-
strict the choice of the parameters Zs ~(~) and
Z'„" (X) by requiring that, as B-0, the good solu-
tions must be less singular than the bad ones ~

Some other restrictions are also necessary in
order to guarantee a reasonable set of solutions;
related problems will be discussed in Sec. V.

The asymptotic solutions at infinity {R-~) can
be calculated in a straightforward way. " For
N&0 one obtains three regular (exponentially de-
creasing) solutions and three irregular (exponen-
tially increasing) ones in both sectors I and IV.
According to the usual boundary conditions, the
irregular solutions must be absent in order for
vanishing bound-state amplitudes at infinity to be
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for A-0; k=1, 2. (4.44}

The solutions of the indicial equation are

p(3; I;N) =p(1;2;N),

p(3;2;N} =p(1; 5;N)
(4.45)

guaranteed.
We argue that the previous boundary conditions

may lead to a reasonable bound-state problem.
Starting with a linear combination of the three
good solutions given by Eq. (4.37) with (4.38}-
(4.40) near A =0, one of the coefficients can be
absorbed in the normalization factor of the ampli-
tude f„"(R). Thus, there are two free coefficients
as we integrate out to infinity. In addition to these
coefficients one needs a third parameter in order
to eliminate the three irregula, r solutions at infin-

ity. In this way, the boundary conditions may be
satisfied only at particular values (eigenvalues) of
some parameter in the BS equation.

Finally, we summarize the short-distance prop-
erties in sector III. The radial equation (3.33) be-
comes identical to the well-known Goldstein equa-
tion" in the limit ~-0. The asymptotic solutions
have the powerlike behavior

~(x) t~q &(3;a)~p(3;a;m ) +.. .

In addition, one obtains

Z(,»( ) =~2[2() G„,' G„,')P&'.

Ladder-type approximations suggest real values
for the coupl. ing strengths G&o and G„,. Thus, for
fermion-antifermion 88 amplitudes ()(=-I), Eq.
(5.2) results in a complex parameter I)(-I). More-
over, the parameter Z„)(-1)becomes purely im-
aginary in this case. For fermion-fermion am-
plitudes, on the other hand, both f)(1) and Z„"(1}
are real if GI.o +Gpo In the particular situation

G„o =G„o', )(=1, the parameters Z»')(I) and
Z'»' (1) vanish by cancellation and, in this way, the

requirement (4.26) is satisfied for arbitrary val-
ues of f)(1).

We next return to fermion-antifermioa systems.
The BS amplitudes have some remarkable proper-
ties if the short-distance behavior of the interac-
tion is prescribed by Eqs. (4.1), (4.2) and (5.1)-
(5.3). For example, let us consider the radial
amplitudes f 2'"(A), which are the dominant com-
ponents of the leading solutions of sectors I and

IV for nonvanishing values of ¹ Equations (4.37)
and (4.40), together with (4.33) and (5.3), imply an

oscillating short-distance behavior:

g( o,3) (gy g( 0;3)gw -~ -2aao~oa
~ ~ ~

with Eqs. (4.32a) and (4.35a). Here, according to

our previous prescriptions, we shall choose
P~' {8)a,s the good solution of the problem, and

the bad solution P„"'(&)will be discarded.

with

G() = 2(G»o +Gwo } ~

for A-O, )(= —I (5.4)

(5.5)

5( v) 5(w) 5() ) (5.1)

According to the subsidiary condition (4.24), we

imposed requirement (4.26) for the parameters
Z'„' and Z»' ()(). If the choice of these parameters
is restricted by Eqs. (4.5)-(4.7} and (5.1), then

the requirement (4.26} yields a quadratic equation

for b(A). The solutions can be writ:ten as

Z(„') (~) = b(Z)() G „,' -G„,')

=2(OG„,' G„,')+ [2(~G„.' G„,')]' ').
(5.2)

V. CONSISTENCY PROBLEMS

The previous investigations involve the following

dynamical restrictions: (i) the short-distance be-
havior of the interaction as given by Eqs. (2.17)
and (2.20); (ii) the subsidiary condition (4.24);
(iii) selection of the good solutions. The field-
theoretical basis of the BS equation may lead to

other important restrictions; a, prominent example

is offered by the well-known normalization condi-
tion of the amplitudes. '4

For further insight, we next consider vector and

axial-vector interactions subject to the condition

Notice that ~ f,"'
(0)~ is finite at N = l.

In the case N =0, the scalar and pseudoscalar
amplitudes play an important role at short dis-
tances. We now suggest the following conditions'.

0&~Tr7'" (x„x,)~ &~ for N=O,

0& ~Tr7 "' (x„x,)y, ~

&~ for N=0.
(5.6)

(5.7)

The explicit form of the index (4.32a) implies that

conditions (5.6} and (5.7) can be satisfied only if
Z~(-I) =0. This requirement, together with Eqs.
(4.3), (5.1), and (5.2), yields

G vo'= G~o' = Go'

b(-1) = 2 (I + iGo ') .

(5.8)

(5.9)

Inspection of the indices p((»; h; N) shows that, for
marginally singular interactions satisfying re-
strictions (5.1), (5.8), and (5.9), the good solu-
tions are less singular than the bad ones. In this

way, our selection of the good solutions leads to
well-defined eigenvalue problems along the lines
discussed in See. IV. Let us notice that real BS
eigenvalues of physical quantities are not excluded
in spite of the complex value of b(-1). For ex-
ample, one may obtain the real ground-state c.m.
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energy, but, in general, this implies a further
restriction on the space-time dependence of the
integration.

Finally, we include some remarks on the fer-
mion-fermion BS equation involving interactions
restricted by Eqs. (5.1) and (5.8). If b(1) 44, for
example, then only the indices p(o; 2;N) and

p(v; 5; N) have noncanonical vaLues in both sectors
I and IV. In addition, we observe that all the in-
dices of sectors I and III are canonical by setting
b(1) =4.

Motivated by the results of this paper, we sug-
gest further study of the spinor-spinor BS equation
that involves vector and axial-vector interactions
satisfying the restrictions suggested in Secs. IV
and V. We mention here that it is difficult to
find other interactions of the type (2.17)-(2.20)
without producing solutions with unpleasant short-
distance properties.

VI. COMMENTS

We have discussed that spinor-spinor BS equa-
tions with marginally singular interactions may
lead to standard eigenvalue problems; however,

boundary conditions and other consistency require-
ments impose severe restrictions on the possible
choice of the interactions. The framework of the
present paper should be extended to include power-
ful expansion methods which bypass ordinary per-
turbation theory. For example, we have neglected
the fermion self-energy contributions which are
connected with the solutions of spinor-vector BS
equations. The ladder-type Green's functions of
spinor-spinor and spinor-vector systems can be
constructed from the solutions of the corresponding
homogeneous BS equations which include marginal-
ly singular interaction kernels. We suggest ex-
pansion methods involving ladder-type Green's
functions instead of the free propagators of the
standard perturbation theory. These Green's
functions depend, of course, on the explicit form
of the interaction kernels, which are to be fixed
by requiring optimal convergence of the higher
approximations. It is an interesting possibility
that, in the region R-O, boundary conditions
prescribe the leading terms of a realistic mar-
ginally singular interact. ion which governs the
dominant short-distance properties of the BS
amplitudes.
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