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A Reggeon field theory which describes the interaction of a Pomeron with a pair of fermions of
opposite parity is studied using the renormalization group and the a expansion. In the infrared limit a
solution is found with a number of physically attractive features. The renormalized fermion trajectories
are nearly proportional to u for small u even though the bare trajectories were proportional (for
small u) to Vu. Furthermore, both renormalized parity poles are on the physical j-plane sheet for

u & 0, but one of them moves under a cut for u & 0 and does not appear as a physical particle —all

this despite the fact that the bare theory has physical fermions of both parities. Phenomenological

implications for backward m-N scattering, and implications for the general structure of Reggeon field

theories are also discussed.

l. INTRQDUCTION

It is now generally known that for a Regge de-
scription of high-energy processes, the exchange
of a simple pole must a priori be corrected by
additional Pomeron exchange. If the Pomeron has
intercept 1, this leads to branch cuts in the angu-
lar momentum plane, which at t=0 accumulate at
the intercept of the pole. When summing up all
these corrections, the resulting j-plane singularity
may be very different from the simple pole. A

technique for the examination of such Reggeon-
Pomeron interaction is Gribov's Reggeon calculus. '

In this scheme one constructs a field theory in two

space dimensions (transverse momentum} and one
time dimension {angular momentum}. The solution
of this field theory should describe the j-plane
structure of the complete Reggeon-Pomeron inter-
action. Such field theories were studied several
years ago by Gribov and others. ' Their approach
was primarily perturbative, although they did de-
duce some properties of the exact solution.

Recently, substantial progress has been made in

applying renorm3lization-group techniques to these
theories. A number of models for the interaction
of the Pomeron with itself' have been studied in

this way, as well as a theory in which a boson
trajectory interacts with a Pomeron. ' The results
of these studies strongly indicate that the renor-
malized Pomeron or boson singularity which con-
tains the complete interaction with the Pomeron is
considerably different from what it was without
the interaction.

In the present paper we shall use the renormali-
zation group to examine a Reggeon field theory
with a fermion and a Pomeron. A theory similar
to ours was studied some time ago by Gribov,
Levin, and Migdal, ' but the recent results on the
Pomeron renormalization indicate a necessity to

reconsider the fermion problem. Indeed, our re-
sults differ substantially from those of Ref. 5.

A careful study of the fermion trajectory is of
particular interest not only because of its role in
high-energy physics, but also because the Reggei-
zation of fermions has for many years been plagued
with apparent inconsistencies. In backward m-N

scattering, the assumption of Mandelstam analyti-
city for the A and 8 amplitudes implies a symme-
try, the MacDowell symmetry, between the u-
channel partial-wave amplitudes. ' If backward
7T-N scattering is dominated by the exchange of
fermion Regge poles, this symmetry requires the
existence of two poles of opposite parity whose
trajectories are related by

n, (vw ) = e (-vu).
This suggests that the natural variable for the tra-
jectories to depend on is Wi~ rather than u. Ex-
perimentally, however, it seems that the nucleon
trajectory is almost linear in u, and thus it is
rather puzzling that the negative-parity nucleons,
which should be almost degenerate with the well-
known ones of positive parity, have not been seen.
To date, no satisfactory dynamical mechanism
has been proposed to explain the absence of these
parity doublets.

In comparison with boson Reggeization, the prob-
lem of fermion Reggeization seems to be in a state
of rather deep confusion. It would certainly be de-
sirable to construct a theory which would help us
see the order underlying this chaos, and it is to
the description of such a theory that we now turn.

The concept of a Reggeon field theory that we use
in this paper will be the same as in the earlier
studies of the pure Pomeron and the boson-Pomer-
on interactions. In defining our theory, we have
a p~io~i, considerable freedom since we are free
to choose the energy-momentum relations of the
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field, as well as their interactions. The theory
we consider contains a Pomeron and a pair of
fermions. Both the Pomeron and the fermion are
allowed to emit and absorb Pomerons, so that our
chosen Lagrangian contains two kinds of cubic
couplings. Consistent mith the usual ideas about
absorption and Gribov's analysis of signature, the
coupling constants are taken to be purely imagin-
ary.

Because it is in some sense (not, as it turns out
calculationally) the simplest choice, we assume
for the bare Pomeron a linear pole,

ep(u) = 1+ np u (1.2)

G(p')= + B (P'-m) -(14)

This gives us an idea how our exact fermion prop-
agator might be different from what is expected in
perturbation theory: In perturbation theory, low-
est-order corrections to the bare electron propa-
gator lead to a mass shift, but A, B are still of the
form (P' —m')', whereas the full renormalized
propagator behaves like (1.4), with /+0. Our

case, however, is somewhat more complicated
than QED. We have no gauge invariance and our
"photon" has a self -interaction.

Using renormalization-group techniques and the
e expansion, we find several fixed points mhich
could govern the infrared behavior of our theory.
Only tmo of these turn out to give physically ac-
ceptable solutions, but these solutions, in fact,
possess a number of rather attractive properties.
First, the trajectory of the renormalized fermion
is almost linear in u, even though the bare, input
trajectory was proportional to v u. Although,
strictly speaking, we can only draw this conclu-
sion near u =0, this form is in much better agree-
ment with the experimental situation than is the
bare trajectory. Second, in addition to these mov-

and for the bare positive- and negative-parity fer-
mions

eggy' (u ):Hpy' (0) k Pp I/ u + Dpy' u

Notice that these poles satisfy the condition (1.1)
and thus are consistent with the MacDomell sym-
metry.

In the Reggeon field theory the energy is 1-
(angular momentum), and we see that the Pomeron
(1.2) plays the role of a nonrelativistic massless
particle, while the fermion whose intercept is less
than 1 behaves like a particle with nonzero mass.
Interaction of a massless particle with a massive
one is strongly reminiscent of QED. There it is
known' that the electron propagator in the infrared
limit behaves like

ing singularities, we find, treating the Pomeron-
fermion interaction nonperturbatively, that an
additional cut is generated in the fermion propaga-
tor in the j plane. For u&0, both parity poles a,re
on the physical j-p'ane sheet, but for u &0, one of
them moves onto an unphysical sheet and thus does
not show up as a physical particle. Hence, even
though the bare theory has physical particles of
both parities, the renormalized theory does not. '
This dynamical mechanism for removing the nega-
tive-parity state depends primarily on a certain
anomalous dimension being nonintegral. The exact
value of this dimension is not important for the
argument, and so the mechanism should be valid
in most Reggeon field theories, with the possible
exception of certain infrared-free theories.

In the course of deriving this result, we first
review the Reggeon calculus for fermions and
formulate our field theory. Section III describes
our renormalization procedure and the renormali-
zation-group equation. In Sec. IV we search for
solutions and finally in Sec. V we discuss their
physical content.

II. REGGEON FIELD THEORY FOR FERMIONS

o.,(au ) = n ( vi~). - (2.1)

Now, we can separate the backward m-N scatter-
ing amplitude (Fig. 1) into two pieces with definite
u -channel parity:

T(s, u)=up, (M'A'+M A )y,u. (2.2)

A' =-,'(1+q, /~q) is the projection operator onto
states with definite parity, q, = —y, q„and q is
the (transverse momentum) vector perpendicular
to the large momenta of the scattering process in
the usual Sudakov analysis. q = -q~ = u, so for
u&0, vq is purely imaginary.

If M ' are dominated by the exchange of fermion
Regge poles,

In this section we shall formulate the Reggeon
field theory for fermions. To this end, we first
summarize the Reggeon calculus as discussed by
Gribov, Levin, and Migdal in Ref. 5. In particular,
me want to repeat their derivation of the fermion
propagator.

As is mell known, the requirement of Mandel-
stam analyticity for the A and B amplitudes in m-N

scattering leads to a relation between the positive-
and negative-parity states in the u channel. For
an amplitude described by the exchange of fermion
poles, this relation, the MacDowell symmetry,
means that the existence of a. positive-pa. rity fer-
mion trajectory, a„ implies the existence of a
negative-parity fermion trajectory, n, such that
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Q-q2

FIG. 1. Backward ~N scattering with fermion exchange.

FIG. 2. A Reggeon diagram contributing to Fig. 1. The
vertical straight line denotes a Reggeized fermion, the
wavy line a Pomeron.

(2.3)

q is the signature factor and the residues r ' are
related by

r'(su) =r (-vu ).
We can also write T(s, u) in terms of a Mellin
transform:

(2.4)

1
T(s, u) =ray, . d j q(j )&'j, (u)y, u.'2m' (2.5)

(2.6)

For real r' and for a trajectory of the form

n, (v u ) = 1 —a ~ p' V u+ n ' +r~ u~,

(2.6) can be written as

(2.7)

(2.8)

where

Then the u-channel partial wave f, (u) is given by

r'(Wu), r (vu)
j — n(Wu) j —n (Wu)

could, of course, choose more complicated forms
for the fermion propagator, and these will lead to
different theories, but (2.10), derived by using a
Taylor expansion in su, is the simplest and is the
one with which we shall be concerned. Before con-
tinuing, there is one additional simplification in
(2. 10}we want to make, What we want to study by
means of the Reggeon field theory is the behavior
of the Green's functions for small u. Unless
Po'=0, one would expect that the terms of higher
order in Wu would have little influence on the
small-u behavior of the theory. For the pure
Pomeron field theory it has been shown' that
higher-order terms in the bare propagator do not
affect the infrared behavior, and this encourages
us to expect a similar situation in our theory.
Hence, for calculational simplicity, we set noF'=0
in what follows. It is, however, important to re-
member that the complete bare fermion propagator
is of the form (2.10) with no~' c0. This is neces-
sary if the bare theory is to possess particle poles
of negative as well as positive parity and if the
bare trajectory is to behave proportional to u for
larger w.

The field theory we want to construct will couple
a bare Pomeron with a linear trajectory

(2.9) 2
o'os = 1+ &o & (2.11a)

To calculate Regge cuts in the Reggeon calculus
arising from the interaction of fermion Regge
poles with the Pomeron (an example of which is
shown in Fig. 2), one proceeds in much the same
way as for boson Regge poles, ' but in this case,
the fermion propagator is

(2. 10)

The reader will notice the lovely property that
if nr'= 0, (2.10) looks just like a nonrelativistic
fermion propagator in ordinary field theory. One

~os = 1 &or +~o&- (2.11b)

~o~ determines the intercept of the bare trajec-
tory and can be adjusted to give the observed in-
tercept of the renormalized trajectory. In the
Reggeon field theory, 1-(angular momentum)
plays the role of energy, so from (2.11) we have
the energy-momentum relations satisfied by the
bare particles: For the Pomeron

to a bare fermion whose trajectory can be symboli-
cally written as
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I q2 (2.12a)

and for the fermion

I 0~ OF' (2.12b)

Z =&OZ+ZOF +&I

with

(2.13)

Cop' =
2 Q 8 p4

—oo' VQ VQ —Aopg @, (2 14)

Let us now write down the Lagrangian density
which governs our field theory. We will then dis-
cuss the terms appearing in it,

each order of perturbation theory to give the re-
normalized trajectory its observed intercept.

The reader will have noticed that our interac-
tion Lagrangian does not allow for the creation or
annihilation of fermion pairs. Because boF is
strictly positive, closed fermion loops will be un-
important for the small-q' (more generally, in-
frared} behavior of the theory, and so we neglect
such terms. {Or, rather, we define our theory
without them, since crossing symmetry is not a
sacred principle in the Reggeon field theory. )
Without these terms, fermion number is conserved
through each graph. Hence, we can use the method
of Ref. 4 and make a phase change of the fermion
field:

&.~=2 0 &,0 P.'[-0 (&0)+(K& )Ci

p(x, t)-e"~Fo 'g(x, f). (2. 17)
(2.15)

~i=- 2'(0 4'+4 '0)+, '{44 4+4 0 0)

+ 5qQ +5F) g . (2. 16)

The field 4p (4p) creates (annihilates) a Pomeron,
and P (P) creates (annihilates) a fermion. go~
(go+) is the free Lagrangian density for the Pomer-
on (fermion), and it is not difficult to see that in
momentum space these reproduce the correct en-
ergy-momentum relations (2.12). Zz is the inter-
action Lagrangian and consists of two kinds of
terms: three-point functions where a Pomeron
may be absorbed or emitted from a Pomeron or
fermion line, and mass insertions for both the
Pomeron and the fermion. These are adjusted at

A= d~xdtg x, t (2.19)

We will want to study the Green's functions with
k fermions entering and leaving the graph, n Pom-
erons entering, and m Pomerons leaving. These
functions, G"'"' ', are defined by (Fig. 2)

This formally eliminates hoF from our calcula-
tions and lets us define a shifted energy

(2. 18)

which is conserved in graphs with a fermion.
We will want to formulate our field theory in D

space and one time dimensions. Physics takes
place in the Reggeon field theory at D = 2, but more
generally we can define the action as

n m m

G :"p"'(E, q, ; s, , p, ) ,EpR, z p, Lz —z p, p ',Ep, . rp, . zil,' —Ep,'. )
n m k n

II d .i, dt; II d~x;'dt, 'gd y, dt, d y,'dt,'exp~i g(x; q; E;t;)+g(y-, p, —b„t, )

m

—Q (x', q', E,'t", ) —Q(y,' p-,
' —b,'t,')

(
~{01T[4'{x„t)~ ~ 4'(x„, t„)@(x'„t',) 4(x', t')P (y„t,) ~ ~ ~ g"(y„, t,)y{y'„t',) ~ y(y,', t„')]10).

(2.20)

For convenience we record here the Feynman
rules for construction of the theory in D space
dimensions and one time dimension. (From now

on, we write always q instead of q~; so q'= —u. )
1. Draw all topologically distinct diagrams with

arrows indicating the direction of propagation of
the fermion and the Pomeron.

2. Integrate around each loop J d k dE
3. For each triple-Regge vertex, put in a factor

Ao/(2v} " ', and, for each Pomeron-Pomeron-

E, q(

Enq.

FIG. 3. Definition of G k'"

/

Emam
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fermion coupling, a factor ro/(2m)'
4. For each Pomeron (fermion) mass renormali-

zation counterterm put in a factor i5(i 5~).
5. For each Pomeron line put in a bare propaga-

tor

Go' ' "(E,q') = S(E —e, ' q'+ se) '.
6. For each fermion line put in a bare propaga-

tor

G(,"' "(S,q) = i (8+p,'q+ ie) ' '

means dimension of)

we have

(2.2I)

(2.22)

(2.23)

(2.24)

7. Put in a factor —,
' for each two-Pomeron loop

with both momenta in the same direction.
8. Energy and momentum are conserved at all

vertices.
Finally, we conclude this section with a dimen-

sional analysis of the quantities which appear in
the Lagrangian. Using the condition that ( [ ]

Ill. THE RENORMALIZATION -GROUP EQUATIONS

We now want to apply renorma, lization-group
arguments to the connected parts of the Green's
functions defined in (2.20). Actually, it is more
convenient to work with the amputated connected
Green's functions defined as

(~ q'~ p) ~ (3.I)

Obviously, I "'' is just the inverse fermion
propagator whose zeros correspond to the j-plane
singularities of the fermion propagator. To dis-
cuss the backward m -Ã scattering amplitude, we

will also need to consider the Green's functions,
I' "" ', which contribute fermion plus Pomeron
exchange to the scattering amplitude.

As we mentioned before, the number of fermions
is conserved everywhere in each diagram. This
leads to the pleasant consequence that Green's
functions with no incoming or outgoing fermions
are completely independent of the fermions.
Hence, the renormalization of the Pomeron prop-
agator and three-point function decouples from the
rest of the problem and can be considered sepa-
rately. This has already been done by Abarbanel
and Bronzan, ' and so we can use their results for
this part of our calculation.

Before constructing the renormalization-group
equations for I""'" we must define our renormal-
ized quantities. For the renormalized Pomeron
slope, e', and the triple-Pomeron coupling, A. ,
we use the definitions of Ref. 3:

(0;I, a)
R ( 1& ls ' ' t 3& 3) l B&=28&"2E3= Ez;T& -=O

~(E,)
(2 )(D+ &)/a (3 5)

For the other renormalization conditions we ob-
serve that I'R ' ' " has the matrix structure

r(,'' "(S,k) = y, (S,k')+k((, (S,k').
In analogy to (3.3), we can require that

(" o a)(g k)R =1
8=-Eg k=0

(3.7)

(3.8)

and we can define the renormalized slope, p'(E„),
by

(3.9)

where the normalization point is defined at some
negative energy, -E~, with all external momenta
set equal to zero. As for the fermion propagator,
we require the renormalized trajectory to have its
observed intercept bF. In terms of our Green s
function, this means

(3.6)

&s ""(E,k') ls =, , ), &=, = O, (3.2)

(3.3)
where

(5= -Eg., k =0

Tr
Bk O' Bk

(3 ~ 10)

(3.4)
Finally, x(EN), the renormalized fermion-fermion-
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Pomeron coupling constant, is given by

(Spiked! t22ik2iE3\k3)1$ =28 =2E = E»-. j&. =3N; ki

r(E„)
(2 (D )/

77 )

Now, the Green's functions are multiplicatively
renormalized; that is,

I (k; n, m) Z (n+ m) /2Zk I (k; n, m)
R P F Q (3.12)

Thus, (3.3) and (3.8) serve to define the Pomeron
and fermion wave-function renormalization con-
stants Z~ and ZF.

All the renormalized Green's functions, I"R, are
functions of the renormalized parameters, c2'(EN),

p'(EN), )((EN), and r(EN), as well as the renormal-
ization energy, E„, and their kinema, tical argu-
ments, E;,k, . For our purposes, it is convenient
to trade in some of these parameters for dimen-
sionless parameters of mhich the IR may be con-
sidered functions. We, therefore, replace ~, ~,
and P' with the following dimensionless quantities:

Now we are ready to write down the renormali-
zation-group equations for the Green's functions.
Since the unrenormalized Green's functions are
independent of where we have chosen to define the
renormalized quantities, they cannot depend on

E„, that is,

E ' r":"' =0
N ~ u

op ~ 8p, Xp, t'p fixed

Using (3.12), the chain rule of differentiation, and

remembering that I'R a.re functions of the renor-
malized parameters, this becomes

9 n 9 a
EN +OF(y) +—PF(y, h, p) +—e(y h, p)—"aE„~ ay F ' ' ah ' ' ap

m+n
+i(y, o'), , hrF-(y, h, p) —

2
rF(y)

x I E:~ ' (E, , k,. ; p, o(', h, y, EN) = 0,
(3.17)

E (D-~)«
y( N)

[ i(E )]
D/4 N

h E (EN) E (D- )/

[ '(E )]
D«

(3'(E»)
o('(E)E„'

(3.13)

(3.14)

(3.15)

where

yPF(y)=E» EN

PF(y, h, p)=E» E
eh

N

(3.18)

(3.19)

Before discussing the renormalization-group
equation, we mention a result which will be use-
ful later. Using the dimensional analysis at the
end of the last section, and considering I'R as a
function of p, h, and y, we can scale all E's by a,
and all k's by b to obtain

I'E'"" (E;,q;; S, , k, ; p, n, h, y, EN)

i.( 2-2k -n-m) /2=Qb

)I(k nm) ~ iE. q,. 8 k n' b'

a 'b 'a 'b ' ' a ' ' 'a
(3.16)

8(y, h, p) =E» Bp

N

&(y, ~')=EN E

9 lnZF
rF(y, h, p) =E»

and

~ lnZp
rp(y) =E»

N

(3.20)

(3.21)

(3.22)

(3.23)

A brief glance at our dimensional analysis teaches us that, except for g, all of these functions are dimen-

sionless, and therefore, can depend only on the dimensionless quantities y, h, and p, but not on n'. More-
over, since the Green's functions with k = 0 decouple from the fermion interaction, the renormalized Pom-
eron quantities do not depend on the fermion parameters. Hence, P&, y~, and P!n' are only functions of y.
Notice also that when k = 0 (3.17) reduces to the renormalization-group equation for the Pomeron Green's
functions found in Ref. 3, as it should.

We want to examine the 'nfrared behavior of I' '"', in particular I' ""' ', when E;, 8-0. We can do

this by scaling all energy factors by E and considering the limit $-0. Using (3.16), it is easy to derive
our equation for EN(S)BEN)I'E in terms of a derivative with respec. to $. Eliminating EN(S/BEN) in (3.17) we

find for k = 1

9 8 8 I a Pl + PPl ( I.n—(—+$2—+ pF—+0—+ (& —o.") +1 —rF — rF I'E"" (t'E, , k,. ; p, u', h, &,E„)=0.
a( 'ey Fah ep ae' F 2

(3.24)
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The parameters u', y, h, and p are now to be considered as functions of t=—ln(. If we introduce the
auxiliary functions

y(t ): —= Pp(y—(t )), y(0) = y
Bp
BI;

(3.25)

~ Qn'(t ): = n'(t ) —C(n '(t ) y(t )), n'(0} = n' (3.26)

h(t):,—t
= &F(y-(t), h(t), P(t)), h(o) =h (3.27)

p(t ):
8 t

— e( y(t ), h(t ), P(t )), p(0) = p (3.28)

Then the well-known solution to (3.24) can be written as

re'" '((E, , k,. ; p, n', h, y, E„)=I'„':" '(E, , k, ; p(- t), n'(- t), h(-t), y(-t), E„)

xexp dt ' I -y (y(t '},h(t '), P(t')) —n
y (y(t ')) (3.29)

IV. SOLUTIONS OF THE RENORMALIZATION-
GROUP EQUATIONS

Without knowing the auxiliary functions, (3.25) to
(3.28), it is not possible to determine the behavior
of (3.29) as a function of $ (or t). In particular,
the infrared limit $-0 (t- —~) may be governed
by zeros (Gell-Mann-Low eigenvalues) of the func-
tions P&, P~, and 0. The only technique presently
known to learn about such zeros is perturbation
theory. A priori, it is not obvious that such a
perturbation expansion is justified, but if it turns
out that a zero of the functions Pp, P~, and 8
exists for small values of the coupling constants
then the perturbation expansion in the neighborhood
of this point will be justified a paste~iori. The
analysis in Ref. 3 of the pure Pomeron case, as
well as that of Ref. 4 for the p-Pomeron field the-
ory, indicates the existence of such zeros for
values of the coupling constants of the order of
(4 —D))'" = v~~ . The parameter which seems to
determine the accuracy of the approximation,
therefore, appears to be ~. We proceed with the
hope that the infrared behavior in our case will
also be governed by coupling constants which are
small, in some sense. "

To examine this possibility, we need to calculate
all the functions appearing in (3.24) to lowest non-
trivial order in renormalized perturbation theory,
and look for the zeros of P&, P~, and e. For-
tunately, we already know the properties of n'(t)
and y(t ) from Ref. 3:

~g(y) = —~x',
g/e' = —2Ky',

Pp(y) = - y(-'& -6&y'),

where

w
"I (3 —,' D)—

2 4(27I)

The zero of tip(y) occurs at
2 p

(4 j)
(4.2)

(4.3)

(4 4)

(4.5a)

(4.5b)

In this one-dimensional parameter subspace,
(4.5b) is an infrared-stable fixed point because

sp (y) &p. (4.6)

From Ref. 3 we also learn that in the infrared
limit (t- —~) n'(t ) behaves as

r( t )
r (-(1+4/24) (4.7)

To compute the remaining functions ter(y, h, p)
a.nd e{y,h, p}, we have to calculate the graphs of
Fig. 4 and use the renormalization conditions
(3.7)-(3.11). Because of the spin structure of the
fermion the calculations are considerably more in-
volved than in the boson-Pomeron or pure Pomeron
case. Nevertheless, after persisting through many
hours of tedious calculation we arrive at our re-
sults:

y.{y"p}=(2.). "' '('- ) 2-2p' 8(, /4, P)"-8(p/4. P} '"l.—.„(p/4. P)- "(')
(Dt'2) + I

e(y, h, p) = —p 1 —y
— I'(3 —'D) + 4vh f2'v(I 2D—)Q,(p)— (4 9)
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3p'(1+ p} 1+—,'p —(p'/4+ p)'" e 3p'(2 —p)
32 (p'/4+p)'" 1+-,'p+(p'/4+p)'" 32 (p'/4+p)'"

(D/2)+ S

(} (y(p},= ——h ——hv'(— I'(3 — D)——2}(h'7( "1'(1—'D)Q—,(p) —2}(h yv ' 1 (1 ——D)Q, (p}, (4. 10)

p (5+4p 2p +Rp+3 1 +p —(p +2p}
2 2 (p'+2p}'" (p'+2p) ~' 1+p+(p +2p)"'

p~ 3p'+ 21p+ 30 p p'+ 5p'+ 15p+ 9 1+ pp —(p'/4+ p)'"
(p'/4+P)'" (P'/4+p)'" 1+ op+(p'/4+P)'

2
P 3 5 2 37 +635

(g )2 ( 2/4 )2/2 ( P 2P 2 P 2

2(p- —.')' (P'/4+P)'" 1+ p+(p /4'»"

When we search for a zero of 6 and pF we must
fix y' at the value given in (4.5b). The reason is
that a fixed point in our three-dimensional param-
eter space (y, h, p) is given by simultaneous
zeros of pp, pF, and 0, and the zeros of p& occur
at the values of y' given in (4.5). A glance at (4.9)
and (4.10) shows that for this value of y', given by
(14.5b), there is a simultaneous zero of 8 and tiz
when

(4.11)

To see whether the zero is infrared stable, we
need to study the matrix

It can, however, also happen that one or both of
the conditions (4.13}are not satisfied. A case of
particular interest to our problem is X, &0 and
A.,&0, with A, , real. If in the p-h plane e, and e,
are the eigenvectors of (4. 12) belonging to A„A„
respectively, then for h and p close enough to
(4.11) Eels. (3.25) and (3.26) can be written as

((I}-h, ) (
p(~) —p,

(4. 15}

~IF ~PF

aa aO
(4.12)

A necessary and sufficient condition for infrared
stability is that the real parts of both eigenvalues
of the ma, trix (4.12) be positive definite:

Re~„ReA., & 0. (4.13)

If the renormalized coupling constants lie in a
neighborhood of the fixed point, the positivity of
the eigenvalues is, in general, required to ensure
that

y(- t)-y„p(-t}-p„h( t)-h, as t---~,
(4. 14)

so that the fixed point dominates the infrared limit.
FIG. 4. Lowest-order graphs for (a) I ' and (b)

Pi; O,i)
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and the vectors (~II), ("') decomposed: I'~'"''"'((E;, k;, 0, a', h, y. E„)

=a«}e + b{'}e.h(t)

( p(t) )

= ~l e1+~ I e2

)P1

(4. sea)

(4.16b) where

t I yap(yl p ~ Q)[(n+m)/2 tyP(p)~ 1 I ~ P

XI (1;n. m)(E k .0 O, t(-(I+&!24) h, E )

(4.21)

Inserting this into (4.15), we obtain

—[a(t) -a, ] e, + —[b(t) b,-] e,d

= —A, [ a(l ) —a,] e, —X,[b(t) —b,] e, . (4.17)

Since e, and e, are linearly independent,

d—[a(t) -a,] = —Z, [a(t) -a,],
(4.18)—[b(t) -b,] = -~,[b(t) -b,],

we have the solutions

a{t)=a,+c,e "&', b(t)=b, +d, d (4. 19)

For t —~, a(- t ) —a„b(—t ) —~, while for
t —~, a(-t)-~, b(-t)-b, . So unless b, =0,
that is, unless h/p lies along the eigenvector e„
the infrared behavior is undetermined. Out of
the p-h plane we see that the condition 5, =0 cor-
responds to a plane in the three-dimensional pa-
rameter space. Of course, if the renormalized
dimensionless parameters choose to lie exactly at
the fixed point, the infrared behavior of the theory
will be governed by that fixed point regardless of
its stability properties. Finally, we mention that
if neither condition (4.13) is satisfied, the fixed
point can be approached in the infrared limit only
along a line in the parameter space perpendicular
to the p-h plane.

Let us now leave the general discussion and re-
turn to the fixed point (4.11). At this fixed point
the matrix (4.12}is

(4.20}

whose eigenvalues are e/4 and —1+e/24. Hence
this is an unstable fixed point. The eigenvector
belonging to the positive eigenvalue lies along the
h axis. Thus, if the physical values of p, h, and y
are not too far from the fixed point, and moreover,
if p = 0, so that we start on the plane of infrared
stability in the three-dimensional parameter space,
the Green's functions [using (3.29)] will behave in
the infrared limit as

ye(r„h„0) = ——,
E

y~(y, ) = —
12

In the next section we will discuss the physical
consequences of the solutions, but first we want to
see if there are any other fixed points in our space.
Unfortunately, coupled Eqs. (4.9) and (4.10) have a
rather complicated dependence on p. To discover
whether there were any other simultaneous zeros
of P~ and 0, we set 0 =0, solved for h in terms of

p, plugged that value of h into P~, and used a corn-
puter to calculate ISF as a function of p. Confining
ourselves to real values of h and LB', we found two
more fixed points:

(h2, p2) = (16.1454 && —,'e, 0.904 39), (4.22)

(h„p, ) = (- 14.2071&& —,'e, 1.6048) . {4.23)

where

y~(1, .k„p, ) = —0.649 188 x-,

yF(y„h„p, ) = —0.208 34 &—.
(4.25)

The perverse instability described above which

Kith sufficient patience one can numerically
analyze these fixed points for their stability prop-
erties. %e have done this, and we find that both
fixed points have one negative and one positive
eigenvalue. Thus, we have a similar situation as
for the fixed point (4. 11) and in order to make any
statement about the infrared behavior, we must
require that our initial values (p, h) lie on a certain
line in the p-h plane (Fig. 5). Viewed in the three-
dimensional space (p, h, f), this again corre-
sponds to a plane. If the values of the renormal-
ized parameters are such that we approach one of
the fixed points (4.22) or (4.23) as t- —~, then the
infrared behavior of the Green's function will be

r,":"'(~Z, , k, ;p, ~, h, v, .h„)

yF(yl' h J, P i ) -[("+m)/2 tyP(y1)
f ~p

I'(t;n, m)(E k .~ &t~-(1+6/24

( j =2, 3), (4.24)
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evidently afflicts all the fixed points in our param-
eter space has its origin in the fact that the Pom-
eron and fermion slopes have different dimensions.
In the definition of p, there is a factor of &~ '.
Differentiating this factor gives a term —p in the
expression for 6 [Eq. (4.9)]. By examining the
matrix A [Eq. {4.12)] it is straightforward to see
that this term is responsible for the negative sign
of one of the eigenvalues and hence for the in-
stability. Indeed, Fig. 5 shows that the planes of
stability are nearly perpendicular to the p axis
[this is a numerical result for the fixed points
(4.22) and (4.23)—in fact, they may be exactly
perpendicular. The plane of stability for the fixed
point at the origin is exactly perpendicular to the

p axis. ], showing that it is variations in this pa-
rameter that give rise to the instability. A dif-
ferent choice for the Pomeron does give rise to
stable fixed points in a Pomeron-fermion field
theory. This will be discussed elsewhere. " Let
us now turn to a description of the physical im-
plications of our theory.

l'
X
]s

)f
X

FIG. 5. Fixed points in the h-p plane and their infra-
red-stable eigenveetors.

V. DISCUSSION AND PHYSICAL CONSEQUENCES
OF THE SOLUTIONS

i($+P,'q —u-'q') ' (5.1)

rather than i (h + poq) '. A. priori, we do not know

Let us now examine in more detail the physical
implications of our solutions. We consider first
the fixed point (4.11) at which the Green's function
is given by (4.21). At this fixed point, p=0. More-
over, as we have shown, the only way to a.pproach
this fixed point is to start with p=0. From Ref. 3
we know that the renormalized Pomeron slope, a',
is not infinite, so p = 0 ~ P' = 0. Now, it is easy to
show that to any order in perturbation theory,
I'z' ' depends on k only in the combination p" k,
so for p=0 I'~"'" has no k dependence at all to
ea.ch order in perturbation theory. This indicates
that it is likely that the exact renormalized in-
verse fermion propagator I.~ ' will have no k-
dependent zeros in the 8 plane. Hence, the fer-
mion propagator will have no moving j-plane singu-
larities. Since we are looking for a reasonable
trajectory with physical fermions, this solution is
not very attractive.

Before discussing the other fixed points, we want
to mention a, very interesting connection between
our p = 0 fixed point and one of the fixed points
studied in the p-Pomeron field theory of Ref. 4.
In a more ambitious study of the fermion-Pomeron
problem, we could have included another term in
the bare fermion trajectory. In particular, we
could have used (2.9) instead of (2.11), and the
bare propagator would have been

whether we would obtain the same fixed points with
(5.1) as we did in the present study. On t'he other
hand, if in (5.1) P,'is set equal to zero, then (5.1)
takes the form of a boson trajectory, and we re-
gain the p-Pomeron theory studied in Ref. 4.
Hence, the field theory of Ref. 4 and the one treat-
ed here are special cases of the more general the-
ory obtained using (5.1). There is, however, a
qualitative difference in the amount of information
lost in the two limits of (5.1) P,'=0 and uaz'=0.

To demonstrate this, we first remark that al-
though in our bare fermion trajectory, eo„' =0,
we can still define a renormalized uF' using

&iI (1; o. o)

9q 2 (5.2)
8=-E~, c =o~ 2

In general this will be nonzero. On the other hand,
if Po'= 0 as in the p-Pomeron theory, the renormal-
ized P' will be identically zero as one can see from
its definition (3.10), since the trace of an odd num-
ber of y matrices is zero. Defining A = u''/u', we
can consider this situation in the three-dimension-
al parameter space (h, p, 8) shown in Fig. 6.
(There is, of course, a fourth renormalized di-
mensionless parameter, y, but since the Pomeron
renormalization decouples from the secondary
trajectory, we need not consider it for the mo-
ment. ) Since Po'=0 implies P'=0, if we start with
a boson trajectory we will always be restricted to
the A-h plane in the space of renormalized param-
eters, whereas, since u,z'=0+ u~'=0, starting
with the fermion trajectory we have used will put
us someplace in the entire h, p, A space. If in
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the second case we compute, according to (5.2),
the value of cjoy'(E»), R(E„), and E»BR(E»)/BE» at
our p =0 fixed point, we find that R =E„BR/BE„=O.
Hence in the p-A-h space, this fixed point is on
the h axis, and is also a fixed point with respect
to variations along the new dimension, A. Fur-
thermore, this fixed point is infrared stable for
p=0, that is, it is stable against variations in the
h-A plane, but it is unstable against variations in

p (out of the h-8 plane).
Starting with Po 0 the authors of Ref. 4 found a

fixed point at a»' =0 and k = y, /4, which was in-
frared stable in their parameter space, i.e. , in
the h-A plane. This is the same fixed point as
(4. 11) in the present study, but since we must
consider variations with respect to p, the fixed
point is unstable in our (larger) three-dimensional
parameter space. Notice also that the other fixed
points of Ref. 4 do not appear as fixed points in
our problem. Consequently, enlarging the space
from that considered in the p-Pomeron problem to
include variations in p qualitatively modifies the
solutions. On the other hand, since in our fermion
problem o.0»' —-0 p a»'=0, adding a term propor-
tional to k2 in (2.11}with p0550 does not change the
dimensionality of the renormalized parameter
space, and so should not qualitatively affect the
solutions of the renormalization group equations.
These observations further justify our neglect of

h

3(h,

a

FIG. 6. Three-dimensional space of the renormalized
parameters R, p, and h. The fixed point at h= Q is
infrared stable in the h-R plane but unstable with re-
spect to variations in p.

the term proportional to u in the bare fermion
propagator.

We continue now and examine the other two fixed
points of physical interest, (4.22) and (4.23). Ap-
plying the dimensional analysis of Sec. II and
(3.15) and writing $ = — /(E2(»4. 24) becomes

g 1-)'jr(25, )3 j, Pj) ( k ~+I $ (1/2) ((45/24 -)

r,''"(4,2;3, u, 5, 3,2,) -2„,—— ' ' r. '"~ 1,~;,3„(,5, , „, ).N
N N

(5.3)

Using (3.7}we have

1-y
(5.3)=Z (2 4, (z) + Wz 4,(z}

k

where

k2 I b2 -(1+& /24)

z =

(5.4)

(5.5)

The factor (8/ E»)( "& evidently g-ives rise to a
fixed branch point in the 8 plane at 8=0. Other
singularities are due to the zeros of 4j[},+u z g2.
Although we do not know the exact form of y, „
we do know what the motion of these zeros is for
small h. Since p, 2 depend on 8 and k' only
through z, we know that the trajectory moves like

and we have suppressed the other arguments y, p,
and h of @, and Q2 since they are just constants.
One of the most interesting questions concerns
that of the 8-plane singularities of the fermion
propagator. Using (5.4), we may write the fer-
mi on propagator

G(l; 0, 0)(g k) A+
E»( &/E»)' "&[4-,(a)+~~(j)2(a)]

1

E»( &/E»}' "'[4-,(a}-~a 42(&)l

(5.6)

I &/V Ek', v =�1-
+Ez ' 24

(5.7)

where z, is the value of z for which one of the de-
nominators in (5.6) vanishes. Notice that this is
the same as the behavior of the Pomeron trajec-
tory. ' This is a very interesting result from two
points of view. First, the renormalized fermion
trajectory is almost linear in u which is consis-
tent with its behavior for large u, where it is ob-
served to be approximately proportional to u.
Second, the trajectory (5.7) is exactly the same
as for the renormalized Pomeron, suggesting
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ta, = (C u)"", C) 0. (5.9)

Next, we assume (we shall justify this below) that

Q j and Q, have analytic behavior in z such that

(5.10)

Then we see that for z = z, e '"' we have a zero of
the second denominator of (5.6) since

tj), (eae '")—(e '"ea)'" @,(zae '")
= @,(eo)+)/e, t}),(e,)

= 0, (5.11)

and we have a negative-parity pole with the trajec-
tory

)a =(Ce '"u}"" (5.12)

[In fact, we not only have one positive- and nega-
tive-parity pole, but an infinite number at
g = (Cuea~'" )"/" ta —(Cue ~'+4)t'"})/"

Input

since v is close to 1 (v = 1+e/24), all these poles
are far away from each other on different sheets
in the 8 plane. We shall see that only (5.9) and

(5.12) are interesting. ]

that the Pomeron has a very strong character
since in its presence the fermion loses track of
what it is, and mimics the behavior of the Pom-
eron.

Apart from the almost linear u behavior of the
trajectory, there is another feature which makes
this solution very attractive. We mentioned in
Sec. II that the requirements of Mandelstam analy-
ticity forced us to start with a pair of bare fer-
mion trajectories with opposite parities, instead
of a single trajectory as in the boson case. How-
ever, the particles which should lie on the second
(parity doublet) trajectory have not been observed,
and no dynamical mechanism has been proposed
which successfully explains their absence. We
shall now show that the form (5.6) of the propagator
quite naturally leads to the disappearance of the
parity-doublet state as a physical particle.

Suppose the denominator proportional to A' in
(5.6) vanishes for some eo:

(5 8)

In this case we have a trajectory of the form (5.7),
and for a real trajectory at positive u (now k' & 0)
the constant has to be positive and real:

Now let us consider the location of S, and 8
in the 8 plane as a function of u (Fig. 7). For
u) 0, 8, is real and positive, and describes a.

trajectory with physical particles. At the same
time, S is on another S sheet (remember the
fixed 8 cut of the propagator), and does not appear
as a trajectory with physical particles for positive
n. We now continue to negative n by letting
u- ue'". Then the positions of the singularities,
8„, move to

$, (ue") = (Cu)""e'"",

g (ue I)/) (C ))/ae-I t//a
(5.13)

Since v) 1, 8 has passed through the cut and
is now on the physical sheet. Hence, for u&0
there are two complex conjugate trajectories of
opposite parity on the physical angular momentum
sheet, but when u) 0, one of them moves through
the cut onto an unphysical sheet.

The analyticity properties of our fermion propa-
gator are similar to the analyticity properties
found by Carlitz and Kislinger" in their scheme
of fermion Reggeization. In both their approach
and ours, a cut appears in the j plane to hide the
negative-parity state. The natures of the. cuts are,
however, quite different. More importantly, in
the approach of Carlitz and Kislinger one assumes
ab initio the absence of negative-parity particles,
while in the present approach we make no such as-
sumptions, but find that they are forced to disap-
pear by the dynamical mechanism of renormaliza-
tion (interaction with the Pomeron) even though
the bare theory possesses such particles.

We now want to justify the assumption we made,
(5.10), about the analyticity of Q, , We shall do
this by examining in detail the first- and second-
order terms in an e expansion of these scaling
functions. It will become clear that such an ex-
pansion is probably valid in the region where we
require it. To do this, we first note that at our
fixed points, the renormalized coupling constants,
y and h, are proportional to e'". Thus, in a low-
est-nonzero-order e exPansion of fjI), , one need
only consider graphs of order h' and h'. Now if
we evaluate I' "'" exactly at the fixed point, the
solution (5.3) holds for all values of S. Assuming
we can make an e expansion of the function Q, ,
we have



2312 ROBERT SA VIT AND JOC HEN BARTE LS

On the other hand, the left-hand side can be evaluated in second-order renormalized perturbation theo-
ry to give

u'' h 2 ~ 1/2 b
(5.15)

where we have dropped the dependence on

h, (e), y, (e}. We will not write down the explicit
functional form of (5.&5) but note only this: If
G, (G,) has singularities in z =k'n'/8, then
these have to be singularities in 8 as well. But
from Ref. 5 we know that the graph of Fig. 4(b)
has a 8 cut at n'k' and behaves there like
(8 —o.'k') ln(h —o.'0'). Therefore, considered
as a function of 2, G, (G, ) have singularities at
z =1 and behave there like (~ —a~in

~
-Z~). Now

for h- E», z--z. Comparing (5.14) and (5.15)
we obtain

P,(z) = —1+KG,(-z, . . . ),
y, (z) =v p, + a G,(-z, . . . ).

(5.16)

(5.17)

which, as long as the const is not too negative, is
far away from z = —1, where @,(z) and Q, (z) have
their singularities. As long as we consider a z,
which avoids these singularities, we can be rea-
sonably confident in the reliability of the ~ expan-

Seeking the zeros of (5.8), we find to first order e

1
z, =

/
—+e const,

'Y
P~

sion of Q, , Furthermore, since the branch points
of Q, , in z are not near the origin (see Fig. 8), we
can rotate zo by 2mi about the origin, avoiding
these singularities. Hence (5. 10}will be valid,
and this is all we need for the validity of our argu-
ment about the disappearance of the parity dou-
blets. It is important to notice that the graphs
which contribute to higher orders in the e expan-
sion of &p» only have z-plane singularities further
from the origin, and so will not vitiate our argu-
ments. In addition, we stress that we do not re-
quire either the e expansion of @» or analyticity
of f 1 2 for all values of z. Our actual require-
ments are much less stringent.

We now want to discuss the implications of our
results for the backward ~-N scattering amplitude.
In general, there will be contributions to this ain-
plitude from the Green's function G""' ' for all n

and m (Fig. 9). Assuming, as usual, that for small
u the couplings of the Reggeons to the external
particles are constants, and using arguments
similar to those of Ref. 3, we have, for the con-
tribution in the 8 plane of G ""' ' to the backward
m -N amplitude,

n m

I, ,tb, j)=N NJd K, . d K„. „dbdg, dZ, dE„.„5 EE ~ 8, —g 5 EE, g, —g)

n+1 m+]

&&5 ZK, -q 5 E K;-j) G"'" '(h b & K) (5.18)

I
A A

V V V V /&
2

Zo

(o) (b)

FIG. 7. Location of 8+, b as a function of u. The
wavy line in the 8 plane denotes the cut in S.

FIG. 8. (a) Analytic structure of Q&(&). (b) Analytic
structure of ~~$2(&). Following the paths indicated takes
@f(2p) @f(&p) and ~&pII 2(&p) ~&OQ2(~p).
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which for 8- 0 becomes

($ q ) g —&+yF g(n+m)[ye/2+ D v)4] ~ ( ggu&2)

(5.19)

Using the values for y~, ~ at c =2

E
y 1+

24
(5.20)

- s' +(lns) &F. (5.21)

For u & 0, we have both a branch point at 8 = 0 and
the two complex conjugate moving poles. The
fixed-cut contribution behaves like

s" &(lns)» ""f(u), (5.22)

we learn from the Sommerfeld-Watson transform
of (5.19) that the leading term is given by n =m=0,
i.e. , renormalized fermion exchange without
Pomerons. Other terms are down roughly by
factors of (lns) ("' )", so the asymptotic back-
ward m-N amplitude is governed by the renormal-
ized fermion propagator G "' ". This is the same
situation encountered in Ref. 3 for forward elastic
scattering where the renormalized Pomeron propa-
gator was found to dominate the elastic amplitude.
At u =0, our fermion propagator has a cut start-
ing at 8 = 0, which gives a contribution to the scat-
tering amplitude of the form

FIG. 9. Scattering amplitude with the exchange of 1
fermion (straight line) and an arbitrary number of
Pomerons (wavy lines).

tween the Pomeron and the fermion, the exact
renormalized fermion trajectory has to be of the
form 8~&i~.

In contrast to this, our theory contains a non-
zero Pomeron self-coupling. We know from Ref.
3 that after Pomeron renormalization, the effec-
tive triple-Pomeron vertex does not vanish linear-
ly in E but rather like a fractional power of E, and
the difference of our result from that of Qribov
et al. confirms that the Pomeron self-coupling
really plays an important role in the renormaliza-
tion of the fermion trajectory. As to the question
whether "weak" or "strong" coupling holds, it is
obvious that the renormalized fermion propagator
is qualitatively very different from the bare prop-
agator, 3nd so we find no support for the "weak"

coupling.

while the two poles contribute terms

s' ~+ """" r)(a)f(u)A'+compl. conj. &&A

(5.23)

This gives rise to oscillatory behavior proportion-
al to cos[c' lns1m(u"")]. However, since v is
close to 1, Im(u"") is small and the oscillations
have a rather long wavelength.

Finally, it is interesting to compare our results
with the results obtained by Gribov, Levin, and

Migdal, ' who studied a theory quite similar to the
one considered here. These authors assumed a
weak-coupling solution for the Pomeron-Pomeron
interactions, in which the effective triple-Pomeron
coupling vanishes like E when E goes to zero. As
a consequence of their belief that such a coupling
would be relatively unimportant, they neglected
the coupling of the Pomeron to itself and consid-
ered a theory in which the Pomeron couples only
to the fermion. In such a theory, a Ward identity
holds, which relates the fermion Green's function
to the fermion-fermion-Pomeron vertex functions.
Using this Ward identity, Gribov, Levin, and Mig-
dal were able to predict in their theory the form
of the fully renormalized fermion trajectory.
They concluded that regardless of whether the
solution was for "weak" or "strong" coupling be-

Vl. CONCLUS1ONS

In our study of a Reggeon field theory with fer-
mions, we have encountered several very inter-
esting proper ties whi ch we would like to review.

One of the most interesting aspects of this the-
ory is that its behavior at some of the fixed points
provides a natural dynamical mechanism to ex-
plain the absence of the fermion parity doublets.
Even if one chooses, as we have done, a bare fer-
mion propagator with poles on the physical j-plane
sheet of both parities, after interaction with the
Pomeron, a j-plane cut develops in the renormal-
ized fermion Green's function, and the parity part-
ner moves off the physical sheet for positive if.
The major ingredient necessary for this result is
the generation of the required j-plane cut. Such a
cut is a quite general property of the renormaliza-
tion procedure, and c~n be expected to occur in
most theories. A possible exception to this is
theories in which the fermion is infrared free. In
that case, the anomalous dimension at the fixed
point is zero, and one must look for weaker branch
cuts to hide the fermion parity partner. Depending
on the theory, these may or may not be present.

The strong influence of the Pomeron on the fer-
mion trajectory is shown very clearly by another
aspect of our theory. Although our bare fermion
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trajectory was proportional to v u, after interacting
with the Pomeron it became roughly proportional
to u. This qualitatively different behavior is indeed
striking, especially when contrasted with the re-
sults of Ref. 5, 3nd shows that, as in many other
reactions, any attempt to understand backward
m-N scattering must include in a serious way the
effects of the Pomeron.

In view of the recent interesting theoretical de-
velopments in this area, we would like to modest-
ly suggest that a phenomenology for Reggeon field
theories be developed. The reason such a pro-
gram may hold some promise is that there are
many relations implied by these field theories
among different renormalized Green's functions.
For example, in the theory we have described,
the renormalized Pomeron and fermion trajec-
tories have the same behavior near I, (or u) =0.
Since the two point renormalized Green's func-
tions are asymptotically the most importa. nt,
there should be striking similarities in the be-
havior of near forward elastic scattering and near
backward m-N scattering. For example, in our
theory, one expects to see oscillations of the form
(5.23) in both elastic scattering near f= 0 and
m-N scattering near u =0. Other field theories
will undoubtedly imply similar kinds of rela-
tions, some of which may be amenable to experi-
mental verification.

The Reggeon field theory we have studied has
produced a number of very interesting physical
and mathematical results. The mechanism for
ridding the world of fermion parity doublets, the
evidence for the strong influence of the Pomeron,
and the fact that there are intriguing implications
for high-energy phenomenology are all properties
of our theory which are expected to be features
of most Reggeon field theories. On the other
hand, one cannot overlook the fact that none of
the fixed points of our theory is infrared stable.
Since this instability is most likely due to the dif-
ferent dimensions of the slope parameters of the

theory, one may have considerable optimism that
this is not a general property of all fermion-
Pomeron theories. Indeed, this unwanted char-
acteristic should only induce us to study this rich
new approach even further.
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APPENDIX

In the appendix we give a short description how

to arrive at (4.8)-(4.10). For the calculation of
Z~ and P(E,„)we compute the graph of Fig. 4(a):

iI'U" '"(8,q) = 5+p,'q

0
}{D l)&2

l kdE 2

—F. +Pt(q-k) E —o., 'k'

(Al)

With the renormalization conditions (3.9) and (3.10}
we have

and

2I (l; 0, 0)(g q)
ZF

~ir'
(g )

9 2 E R

2-8=-EN; q =0
(A2)

(A3)

Within the calculation of the integral of (Al) and
the derivatives for (A2) and (A3} the choice of the
renormalization point q2 = 0 simplifies the work
considerably. Moreover, the variable pp = pp''!
a.p'FN turns out to be a natural variable.

For ~ we have to calculate the graphs of Fig.
4(b):

2
(l 0 l) 22 " ' ' (8 q, 8" " "q' (2 } '" (2 ),, „d kdE 8,+p'(q-k) & — 'k'& -& — '(k-q )2

2 2 2

(2m)'t "'" S F. +P,'(q —k) 8 —o—ok' F., F —o, '(k —q—,).'+ie

(A4)

From this we obtain x by (3.11):

(~ ~(D+ l) 2 +P ~j'~U ( ~N» 2 ~N~ ~ 2 V~ 0~ '
2'7 )

(A5)

All other quantities are built up by direct use of their definitions.
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