
PHYSICAL RE VIE% D VOLUME 11, NUMBER 8 15 APRIL 1975

Calculation of asymptotic behavior of form factors in non-Abelian gauge theories~

James J. Carazzone, Enrico C. Poggio, and Helen R. Quinn'
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 18 December 1974; revised manuscript received 6 February 1975)

%'e calculate the leading contributions to the fermion-fermion —vector-meson form factor with

non-Abelian gluons exchanged between the fermions in the region —q
'

& p ', p'-' ) m ', q
'-spacelike,

to sixth order in perturbation theory. For either incoming photon or gluon we obtain a result which

shows that these contributions do not add to give a simple form. This paper presents the calculation in

detail.

I. INTRODUCTION

We have studied the vector-meson-fermion-
fermion vertex for non-Abelian gauge theories
in the limit

q2 ))p2 p
I2 ) ~)2 ) 0

shall refer to it as the photon, or a member of
the nontrivial gauge multiplet 8, in which case
we call it a gluon. The fermions are gauge group
nonsinglet (colored) elementary particles. De-
fining the Casimir operators of the gauge group
by

where q, P, and P' are as defined in Fig. 1 and
m is the fermion mass. We have calculated the
leading contributions in this limit through sixth
order in perturbation theory. We find that these
give a form factor

and

C„=T,T,

A c fabc a b~

we find for an incoming photon

{1.73

(1.8)

where

K=C~, K'=C~'C

while for a gluon

(1.9)

g
.2 2 2 -K xI 3

x=,ln, ln „and
(1.3)

The purpose of this paper is to discuss the de-
tails of the calculation. '

The constants K and K' in (1.2) depend on the
nature of the incoming particle. More explicitly,
our model includes any nontrivial group of mass-
less vector fields interacting with themselves in
the usual Yang-Mills fashion and coupled minimal-
ly to some multiplet of fermions via the matrix
T„ the generator of the gauge group in the fer-
mion representation:

K=Cz —Cw, K =CA (Cz —Cw). (1.10)

Equation (1.2) can be restated as the observa-
tion that the leading contributions to the form fac-
tor in the region (1.1) to all orders in perturbation
theory can be written as

E(q', P', P") =e *+&,

where the leading contribution to & is &,.
The simple relationship between the photon and

gluon results, C„-(C„-C„),depends on the fact
that only a certain class of diagrams contribute
leading terms and on some subtle cancellations,

where

and

q,
——~qA, —c), Aq,

[T„T,j = if.„T,. (1.6)

The incoming vector meson in Fig. 1 may be
either a gauge group singlet A, in which case we

FIG. 1. The vertex function showing momentum label-
ing used throughout our discussion. The incoming vector
meson is either a photon or a g1uon.
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in the gluon case, between contributions that de-
pend on higher-order Casimir operators.

Before embarking on a discussion of the details
of our calculation we would like to make some
general comments about the motivation for per-
forming it and the meaning of our result. We are
interested in the general question of dynamics in
a quark-gluon theory of strong interactions. As
we shall show later the logarithms appearing in
each order of perturbation theory in (1.2) are in-
frared or large-distance effects. If they do not
sum to some simple damped contribution they will
be a dominant feature of any calculation based on
the notion of multiquark bound states. ' For ex-
ample, they could dominate over short-distance
effects and hence, could possibly destroy naive
scaling behavior for composite-particle scatter-
ing at wide angles and for composite-particle
form factors. '

The implication of our result for these calcula-
tions requires further study. It is not clear
whether the contribution of ~ or that of terms of
lower order ing' which are nonleading logarithms
will be more important in these calculations. We
have not made any attempt to calculate nonleading
logar ithmic contributions.

As is the case for the Abelian theory the leading
contributions to the vertex function in the limit
(1.1) come from the low-momentum end of loop
integrations. Ultraviolet singularities generate,
at most, one power of a logarithm for each loop
integration. These can be handled with some off-
mass-shell renormalization procedure. The de-
tails of this procedure are of no concern to us be-
cause the leading terms as q'-~ are ultraviolet
finite and thus not affected by the subtractions.
As p', p", and m'-0 the vertex function becomes
infrared singular in such a way that one obtains
two powers of lnq' for each loop integration from
certain diagrams. In the Abelian theory these
diagrams are just ladders and crossed ladders.
We shall show that through sixth order in per-
turbation theory in the non-Abelian case one ob-
tains such contributions from all possible dia-
grams in which a complex of gluons is exchanged
between the two fermion lines and these gluons
interact among themselves only through t:rigluon
coup)ings. We speculate that this result will con-
tinue to apply in higher orders. It is sufficient to
keep P and P

' finite and set m' = 0 to obtain an in-
frared-finite result. We make all our calculations
in this limit. Introducing a nonzero fermion mass
will only alter nonleading terms.

The organization of this paper is as follows:
In Sec. II we show that the graphs which may

contribute leading logarithmic terms are the same
for an incoming gluon as for an incoming photon,

and in Sec. III we discuss the group-theoretic
weights in the two cases. Section IV gives details
of the fourth-order calculation, Sec. IV 8 being
devoted to the new features of the non-Abelian
case. In Sec. V we discuss the sixth-order cal-
culation and Sec. VI makes some concluding com-
ments. There are two appendixes. Appendix A
presents an alternate discussion to that of Sec.
IV 8, which gives a concise evaluation of certain
graphs. Appendix B contains a detailed calcula-
tion of the sixth-order graph given in Fig. 12(a),
thus presenting an explicit application of the meth-
ods discussed in Sec. V.

II. COMPARISON OF INCOMING GLUON AND PHOTON

If the incoming meson is a gauge group singlet
(such as the photon in a color gauge theory), it
does not interact with the non-Abelian gluons.
Thus, the vertex-function diagrams in this case
all have the incoming hard vector meson attached
directly to the fermion line. However, if the in-
coming particle is itself a gluon (one of the vector
mesons transforming according to the adjoint re-
presentation of the gauge group), it can couple to
the fermion line directly, but it can also be at-
tached to other vector lines or ghost loops via its
non-Abelian interactions, as in the diagrams of
Fig. 2. We find that all such diagrams are infrared
finite for P and P"-0 and hence, do not generate
any leading contributions in the region of interest
(1.1). This is important for the simplicity of our
result, as it means that the diagrams which do
give leading contributions are the same for incom-
ing photons and for gluons.

(b)

FIG. 2. Diagrams particular to the case when the
incoming vector meson is a gluon. They are infrared
infinite and thus do not contribute leading logs.
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Let us first examine the diagram of Fig. 2(a).
One can readily convince oneself that, for any
choice of momentum routing, this diagram be-
haves at worst like Jd'k/jp for k-0, and p' =p"
= 0. Simple power-counting arguments show that
one cannot make a diagram which is infrared di-
vergent in every subintegration by adding lines
to this diagram. This argument includes addi-
tions which convert the three-point coupling into
a four-point coupling [such as Fig. 2(b) and 2(c)],
as the infrared finiteness of Fig. 2(a) is not de-
pendent on the numerator factors in the Yang-
Mills three-point coupling.

This leaves only dia. grams such as Fig. 2(d)
where the incoming gluon attaches to a ghost loop.
Figure 2(d) itself is also clearly infrared finite
because of the numerator factor of loop momen-
turn in the ghost loop. Thus, any higher-order
diagram where the incoming g)uon is attached to
a ghost loop is also infrared finite.

This being so, the only difference between the
calculation for an incoming photon and that for
an incoming gluon is that the gluon connects to
the fermion with a group matrix T„whereas for
the photon the corresponding factor is 1. This
means that each diagram contributes with a dif-
ferent group-theoretic weight in the two cases.
We will next determine the relationship between
these weight factors for all the graphs which give
leading logarithmic corrections. Because of some
subtle cancellations the total weights (sum of all
the weights} through sixth order are simply re-
lated.

III. GROUP- THEORETIC WEIGHTS

The group-theoretic weight of each diagram can
be written in terms of the Casimir operators of
the group. At each gluon-fermion vertex there is
a group matrix T, and at each Yang-Mills vertex
a structure function f,b, . We define the quantities
C„, C„, and H by

calculation through sixth order in perturbation
theory. The weight for any 2nth-order photon
graph can thus be written as a sum of terms of
the form C„" P where

(3 4)

For an incoming gluon the 1 in (3.4} is replaced
by T~, where 8 is the group index carried by the
hard gluon. This replaces each factor C„by a
factor C„—C„. In addition, some graphs have
contributions which vanish for an incoming pho-
ton but which involve the higher-order Casimir
operator H for an incoming gluon. ' We wi11 de-
note such contributions by F, where F=O for an
incoming photon and F= H —C„' for an incoming
gluon. In our subsequent discussion we will give
all weights for the case of an incoming photon,
though keeping track of the possible F contribu-
tions. The gluon result is then obtained by mak-
ing the substitution C„-C„—C„and E= H —C„'
in the given expressions.

IV. FOURTH-ORDER CALCULATION OF THE VERTEX

A. Ladder and crossed -ladder graphs

The lowest-order contribution to the photon-
fermion-fermion vertex is identical to the lowest-
order QED diagram multiplied by an overall factor
of C„. In QED the evaluation of the leading con-
tributions to the vertex function in the limit (1.1)
was performed to all orders in perturbation theory
by Sudakov, ' who used a convenient momentum-
space method. It was found that the leading con-
tributions in each order of perturbation theory
were given by the sum of ladder and crossed-lad-
der diagrams. The leading contribution from each
of these diagrams was shown to arise from the
low-momentum portion of the loop integrations,
using the routing shown in Fig. 3, and was com-

T, T, =Cg,

'f,b, Ta Tb —C~ Tc ~

if~„if», if«~ if d ~„T,Tb T, = H Tg .

These defintions also imply that

~f~31 ~f b3fc ~f~~ = Cg ~f ab&

and

T, Ts T, =(Cz —Cx)Ta

(3.1a)

(3.1b)

(3.1c)

(3.2)

(3.3)
(b) (c)

The weight of each graph can then be obtained by
commuting the T matrices of the fermion numer-
ator and applying (3.1) and (3.2}. The higher-or-
der Casimir operator H does not enter the photon

FIG. 3. (a) Second-order diagram showing choice of
internal momentum routing and group-theoretic labeling.
0 can either be 1 or Tb. (b) Fourth-order ladder graph.
(c) Fourth-order crossed-ladder graph.
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puted to be
p2 p&2

(n!)3 8x' —q' —q'ln ln (4 I)

Obviously, if for some choice k, 4;~=~»=0 this
integral is doubly logarithmically divergent. Thus,
if for any choice p;, p&, p, are such that

for each of the (n!} contributing diagrams in 2nth-
order perturbation theory. The sum of the lead-
ing contributions in each order therefore takes
on decaying exponential form,

I'(p, p') —e-",
with

(4.2)

x = —,ln ln
q2

The contribution of order g
' is given by Fig.

3(a) for both the Abelian and non-Abelian theor-
ies. The only difference is that in the non-Abel-
ian case it enters with a group-theoretic weight
factor coming from the gluon-fermion vertices.
For an incoming photon the contribution is

A.2 ——C,„x . (4 4)

In fourth order in the Abelian case the diagrams
of Fig. 3(b) and 3(c) each contribute (I/2!)3x3. In
the non-Abelian theory they enter with different
group-theoretic weight factors. For Fig. 3(b) the

weight is T, T, T, T, = C„' and for Fig. 3(c) the
corresponding factor is T, T, T, T, =C„(C» —C„}.
Thus, the sum of these two contributions gives

2C~' —C„C„
A (ladder+ crossed ladder) = " " " x'.

(2 ()3

(4.5)

This is clearly not the next term in an expansion
of an exponential (or any other simple function) that
begins with (I —C„x).

(4.8)

then in this region

(4.9)

The double logarithm arises from the region of
momentum space k+P~-0 and corresponds to the
infrared singularity of the integral when &;, = &»
=0. In general, there are three possible contri-
butions of the form of (4.9) corresponding to dif-
ferent regions of the momenta external to this
loop. When the integration is internal to some
other loop integrations we need only keep those
contributions which allow the remaining integra-
tions to become singular, Any terms for which
there are conflicts between the constraint (4.9)
for successive integrations mill not contribute
leading logarithms. It is also useful to note that
the constraint (4.9) is not satisfied for any choice
i, j, k for a loop with a repeated denominator.

We can now examine the contribution of Fig.
4(a). We route the momenta as shown in the dia-
gram. The leading logarithmic contribution then

B. Non -Abelian contribution

The non-Abelian aspects of our model theory
provide us mith diagrams not found in @ED, and
we shall see that the extra leading terms gener-
ated by these diagrams just cancel the term of
Eq. (4.5) due to the non-Abelian algebra. We find
that Fig. 4(a) contains a leading contribution. To
discuss this it is convenient to first summarize
some of the features of the three-propagator
Feynman integral

(b) ~ CN CA (-2q )

I3 (4.6)

This integral has been analyzed in detail by Suda-
kov. ' Using the usual Feynman parametrization,
and defining &;,. = (P; —p,.)' we find

Z

I3 =
(4 )3 dn, do, 3

dn,
5(1 —Q —G —(~, )1 2

+1+3 12+ +1+3 13+ +2+3 43

(4.7)

( c ) ~ C~CA (-2q ),p In, ~ In
P

(k+p) (k+p) (k+p)
P

FIG. 4. (a) Fourth-order diagram with characteristic
non-Abelian coupling. The dot at the three-gluon vertex
represents a factor ig, ~. (b) Reduction of diagram (a)
to a P diagram. The x on a propagator denotes that
propagator has been canceled by numerator factors. (c)
Leading contribution from diagram (a) after integration
of the Yang-Mills insertion.
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comes from k „-0 and r „-0 so we can drop these
terms relative to the external momenta p and p'
in fermion numerators. %'e also drop any numer-
ator terms proportional to p2 or p" as they will

yield contributions suppressed by p'/q' in the re-
gion (1.1). We retain denominator factors of p'
and P" as these provide the infrared cutoff. The
contribution of Fig. 4(a) is then

dk dr gN~
(2x}' (2w)' (p+k)'(p'+k)'k'r'(r+p')'(p+r)' '

where

fq =[(if,&, T, T& T, )(y&P~y„P~y P'y„)][(2r —k) "g~ —(r+0)"g "~+(2k —r) g""] .

(4.10)

(4.11)

Using the fact that this numerator stands between projection operators for the external (virtual) particles
we can simplify it by commuting factors of P' to the left and P to the right, keeping only the terms which
would survive for p' and p"-0. We also simplify the group operators using (3.3). This gives

&.=CNCA(ly. )(4P P')2P'(k-2r)+o(P', P") (4.12)

The term proportional to r in this numerator can also be dropped as it will give an infrared-finite contri-
bution. Thus, finally we have

4

(2v)' k'(p+ k)' (p'+ k}'(p+ k)' r'(r —k)'(r +p')' {4.13)

This is represented diagrammatically in Fig. 4(b), where a x on a propagator indicates that the propagator
has been canceled by a numerator term. We now perform the ~ integration using the method discussed
above to identify leading logarithms. The term corresponding to &„=(p'+k)' in (4.9) is the only one which
is consistent with the fact that the k-loop integration must give us two powers of logarithms in the region
(1.1). This piece only contributes for the first term of the square bracket in (4.13):

(2 ) k (p+k) (p'+k) (p'+k) (p'+k)

=C„C„g(ly,)(-2q )I, {4~ 14)

subject to the constraint

—(p'+k)»k, p'

To complete the evaluation of D4&, &
we introduce Feynman parameters Ng Q2 and n3 and define k'„by

k'„= (k„—a, p „—a, p'„)

to obtain

(4.15)

d4k' 6(1-ai - a4- as) —&,(k') —&,(k')I (2 ) da da a
(2 ) (k }

ln ln (4.16)

where

&,(k') =fk" +a, (1 —a, )q'+2k' [pa, -p'(1 —a, )]-a,a, p'+(1- a, )a,p"),

&~(k') = k" —a~a~q'+ 2k' (a, p+ a, p') + a, 'p'+ a,'p" .

The logarithms are slowly varying functions of k'„, and to extract the leading logarithms we can make an
approximation for the k'„ integral of the form

dx, f(x) = dx, f(a),1 1
(4.18)

provided f(x) is sufficiently well behaved over the domain of integration. Thus,

g 1 —S,(s) —n, (s)
2 ,ln, ', ln

7T p Hf +1+2 +P +j.+3 +P +2+3) P &2jk, j
(4.19)
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where s „obeys
—S = q AgCL2 +P A~(13 +P2= 2 2 /2

We are interested in evaluating I in the limit
p'/(- q')-0 and p "/(-q')-0. The leading con-
tribution comes from the region where the denom-
inator (a) (b)

D = (q Q~o2+p Q~o3+p Q2(V3) (4.20)

is near zero. This means that s' is near zero,
and that n, and n2 are small compared to one.
We take n, as nearly one. Over the domain

/2

(( 1
q2

p2
(4.21)

we approximate D by (q'n, o., ) and 6, and &, by

(4.22)

The integral now becomes
1 ]~q2I (i/4w)' dn, dn» ln „' ln

~/ ~ q Q~A2 P Q2

(4.23)
1 1 2 2

(«)' (2')' q'

(An alternate derivation of this result is given in

Appendix B.) Thus, the contribution of Fig. 4(a.)
1s

1 CNC„x'
(4a) 2 (P)2

(4.24)

when y is defined in (4.3). The left-right reflected
diagram yields an equal leading contribution.

Figure 5 shows all the remaining new diagrams
in fourth order for the non-Abelian theory com-
pared with the Abelian case. They all involve
self-energy insertions and hence do not give lead-
ing logarithms. Thus, the total contribution in
fourth order is

(e)

FIG. 5. New graphs in fourth-order non-Abelian
theory which do not give leading logarithmic contribu-
tions.

case we know that such terms are present for all
ladder and crossed-ladder graphs. Straightfor-
ward iteration of the technique discussed in Sec.
IV B will clearly yield such terms also for a gen-
eralized ladder or crossed-ladder graph in which
any "rung" decomposes via trigluon couplings into
a shower of gluons which join the fermion lines
without further crossings.

Generalizing this technique, as we will describe,
we find that the only leading contributions through
sixth order are of the type shown in Fig. 6, where

2",t(2c„' —c„c„)+(-,'c,,c„)21

CN X'
2t

(4.25)

and the sum of all leading logarithms up to fourth
order yields

CN x'
1 —~NX+ 2t (4 ~ 26)

V. SIXTH-ORDER CALCULATION

A. General method of calculation

We wish to isolate graphs which yield a factor
(lnq')' for each loop integration. From the Abelian

FIG. 6. Schematic representation of the class of dia-
grams which generate leading contributions. The blob
represents all possible graphs where the gluons interact
through trigluon couplings, including disconnected graphs.
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the fermion lines exchange a set of gluons which
interact among themselves through trigluon cou-
plings only. This feature is essential for the sim-
plicity of our result, and we believe that it will
persist in higher orders. We will return to dis-
cuss this point further after a presentation of our
calculational technique.

We can make an analysis similar to that of Sec.
IV B for loops involving four propagators. If there
is a numerator factor involving one or two powers
of loop momentum we rewrite it as a sum of
squares. The integrals with numerators which
cancel one of the denominator terms are then
evaluated in the usual way. The remaining terms
are evaluated by selecting all possible sets of the
denominators and Feynman parametrizing these.
The remaining denominator in each term is then
set equal to the value it has when the cubic de-
nominator vanishes and the integration is per-
formed. That is, we use the approximation (4.18)
to evaluate each term. Since the terms corre-
spond to different regions in momentum space
one can obtain a leading contribution from one
or more of them after subsequent integrations.
Once again it is very important to check for the
consistency of the imposed momentum constraints,
in a sequence of integrations, to correctly isolate
leading logarithms. The numerator factors of
fermion propagators also restrict the possible
choices of vanishing z parameters. We have
checked that this method gives the correct result
for a number of diagrams which we can also eval-
uate using only three-propagator loop integrations.
It is very simple to use and quite unambiguous,
provided the momentum constraints are correctly
treated. In Appendix B we will carry out in de-
tailed form the calculation of graph 12(a), where
the above technique must be applied.

With these tools in hand we can now analyze a
general diagram. We notice that the infrared sin-
gularities of a general vertex graph in the region
—q' »p', p" & 0 arise when the momentum q does
not flow through any line of the graph. By the
arguments of Sec ~ II we are interested only in
graphs where the incoming hard vector meson is
attached to the fermion lines. In this way the in-
frared singularities are manifest, corresponding
to internal momenta k- 0. The internal gluon
lines are all soft compared to fermion lines in
the region of interest, and gluon momenta can
be neglected in all. fermion numerators. We ar-
range our numerator factors to cancel denomina-
tors whenever possible. We then integrate loop
by loop. We always begin with the loop contain-
ing the smallest number of denominators, and
use the approximation of (4.18) to simplify the
arguments of the logarithms arising from previous

loop integrations. The momentum constraints
(4.8) from previous integrations are important.
Whenever the constraints from two successive
inte grations are incompatible, the contr ibut ion
from that term is nonleading. This technique
allows us to evaluate all sixth-order diagrams.
In higher orders one must eventually arrive at
skeleton graphs where the simplest loop contains
five or more propagators with numerator factors.
Our method can probably be generalized to treat
such cases.

B. Graph -by-graph comments

The sixth-order graphs involving only trigluon
couplings among exchanged gluons are shown in
Figs. 7-12. We will now comment briefly on the
calculation of each of these. We express our re-
sults for each graph as weights which are the co-
efficients of -[1j(8!)'jx'.

The ladder and crossed-ladder graphs of Fig. 7
are evaluated as for the Abelian theory. Using
the group-theoretic properties and the definitions
given in Sec. Ilt we find the weights shown in Fig.
7 for each diagram. The sum of the ladder and
crossed-ladder weights gives

6Cg —9Cg C„+4C~C~ +3F. (5.1)

3
C

(a)
C„(Cf„-CA )

(b)

2C„(C„-c,)
(c)

GN(C N-CA) + F CN«N C~) 'F CN(CN- C~)(CN-2CA)+ F

FIG. 7. Ladder and crossed-ladder contributions in
sixth order. The weights shown are the coefficients of
-x'/(3 t)2.

The graphs of Fig. 8 yield the contributions
shown. The analysis of Fig. 8(a) is given in detail
in Fig. 9. Numerator factors of the loop momen-
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(a)

(b)

(c)

2 2 i 2
W CAC~

(-pq ) —cA c„2 2 2

(-Pq ) ~ CAC&(C&-CA)

(-2q ) ~ y CAC&(CN-CA)

turn l can be dropped, as can any loop momenta
in the numerators of fermion propagators. The
resulting expression yields the contribution shown
in Fig. 9(b). [For comparison note that each lad-
der graph can similarly be rewritten as (- 2q')'
times the corresponding ladder graph in a scalar
P' theory. ] The Yang-Mills insertion is next in-
tegrated. It contributes leading logarithms in
three regions of momentum space, as listed in
Fig. 9(c). The only leading logarithms arise
where the factor 1//l' from the integration of the
insertion cancels the term A' in the numerator
of Fig. 9(b). All other terms either have repeated
denominators or are restricted to a region of mo-
mentum space for which the two-loop ladder graph
does not yield leading logarithms. The procedure
for the remaining graphs of Fig. 8 is identical.
The significant terms are shown schematically in
the figure, where && on a propagator means that
the propagator has been canceled by a numerator
term. The left-right reversed graphs yield iden-
tical leading logarithmic contributions. The
graphs of Fig. 10 are similarly evaluated; again
the contributions of left-right reversed graphs

FIG. S. Single-vertex insertion graphs in order and the
corresponding dominant term after reduction to &3 form.

A = (p+ r+k)

B = (p+k)
(a)

(-2q )
I

2
CA CN

+k

P (b) ~ (-2q ) (k+ p')
2~ y CA

= (-2q ) {A-B-C)2 2

I in(A/B) in(A/C)
A

Q« —(n(B/kiln (B/C)

—tn (C/B)ln (C/A)(c

A««B, C

B««A, C

C ««A, B

(c) 2~&CA C

2

A ««B,C

(-2q )
2

8 CACN

FIG. 9. Detailed analysis of Fig. 8(a).
FIG. 10. Remaining generalized ladder graphs in sixth

order.
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are identical for leading logarithms.
We apply the same procedure for Fig. 11. Here

there is no insertion but there is in each case at
least one three-denominator loop after the cancel-
lation of numerator terms. We perform such a
loop integration first, which yields then a familiar
two-loop form multiplied by two powers of log-
arithms. The remaining steps are as usual.

Figure 12 shows the graphs for which we are
forced to evaluate four-propagator loops to obtain
a result. These graphs also contain a new dynami-
cal feature, for they involve 2-gluon-2-gluon scat-
tering. Routing momenta as shown and neglecting
the gluon momenta in fermion propagator numer-
ators as usual, we find that the numerator of the
integral to be evaluated for these graphs is

4q4[k'+s'+ (k -r)'+ (s —r)' —(s —k)' —2r']

—8q'[3k p'r p+3r p's p —Gk p'k p -6s p's p]

+ terms proportional to fermion masses.

(5.2)

{a)

FIG. 12. The "B"graph and the "crossed H" graph
showing a convenient momentum routing.

terms k.P'r P and r P's. p. These give equal
contributions of —,'(C„C„'+F). The remaining two
terms do not give leading logarithms. To evaluate
the contribution of Fig. 12(b) it is convenient to
rearrange the p' term of (5.3) somewhat by adding
and subtracting terms; for example,

We find that the leading logarithmic contributions
from the q' term cancel for both graphs of Fig.
12. The leading terms for Fig. 12(a) are the

+6k P'(r —k) P .

The second term on the right is nonleading and the
first gives ——,

' F. Similarly,

3r P's P = —3(y —s) Pr P'+3r Pr P',

(-2q )

where the first term on the right gives --,' F and
the second gives +-,' F. This gives the weights
shown in Fig. 12. The evaluation of these graphs
is given in detail in Appendix B. The graphs of
Fig. 13 vanish identically. This follows from the
group algebra [Eqs. (3.3) and (3.4)]. Finally, add-
ing together all the sixth-order contributions, we
find a cumulative weight

yCN CA (CH-Cfi)-PF
-C 'x' 1 2X'

3t 12
——CC'— (5.3)

The complete set of our results is summarized in
Fig. 14.

(b) -2q2 )

FIG. 11. Remaining nonplanar graphs with a single
Yang-Mills vertex which contribute leading logarithms in
sixth order.

FIG. 13. Example of graph which is identically zero by
group theory.
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CNx
2 2

CN x

(2!)'
CN(CN-Ca) x

2

(2!)'

2
Ca CNx

(2!)

3 3
N

(3!)

-2CN (CN-Ca)x -2CN(C„-Ca) x-2Fx

(3!) (3!)

-C„(C -C )(C„-2C ) -Fx

(3'. )

2 3-2CN Ca x

(3.' )

2 3—CN Cax

(3!)

3
2CNCa(CN- Ca) x -CNCa(CN-Ca) x

(3!) (3!')

+2Fx -2CNCa(CN Ca) x Fx -CNCa(CN-Ca ) x
3 3 3

(3!) (3!)

2 3
Ca x

(3!)

2 3- ~/~ CNCa x

(3!)

2 3
-CNCA x

(3!)'
-gCNCa x -yFx2 3 3 3

(3!')2 +) Fx

(3'. )

FIG. 14. Summary of the leading logarithmic contributions to the photon-fermion form factor through sixth order in
perturbation theory. The quantity

(-q')&
(

—q'

Graphs with identical contributions are added together. For the gluon case C~- (CN —CQ and F —(H -C„).
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C. Nonleading contribu tions

We claim that the set of graphs which we have
just discussed is all those which give leading con-
tributions to this order. The remaining graphs
can be subdivided into the following: (i) self-en-
ergy corrections on any line and/or graphs which
appear in the Abelian theory and are known to be
nonleading there, and (ii) new features in non-
Abelian theory. Clearly we need not discuss the
first case further, since they do not give leading
logarithms. The new sixth-order graphs of class
(ii) are shown in Fig. 15. Examination of Figs.
15(a) and 15(b) proceeds following our usus. l meth-
od, performing the insertion integration first. In
each case there is at least one integration of the
form of Fig. 16, when r and k are soft (in some
cases r =-0). This does not meet the requirement
of Eq. (4.6) for the production of a, double loga-
rithm; it gives only a single logarithm. Hence,
these graphs are nonleading.

The graphs of Figs. 15(c) and 15(d) which con-
tain four-gluon couplings can be similarly eval-
uated. Integrating first loop A. and then loop 8
we obtain four powers of logarithms. The final
integration is a two-propagator loop in the case
of Fig. 15(c) and a four-propagator loop with at
least one repeated denominator for 15(d). Neither
of these gives two powers of loga, rithms, so these
graphs are nonleading.

The graph of Fig. 15(e) is infrared finite be-
cause of numerator factors in the ghost loop.

This completes our examination of all sixth-or-
der contributions.

(b)

Vl. COMMENTS AND CONCLUSIONS

Our principal result, Eq. (1.2), is gauge inva. ri-
ant and thus, unique. It shouldbe further stressed
that not only is the sum of leading logarithms
gauge invariant, but also the leading logarithmic
contribution of each graph is gauge independent.

We have carried out our calculations in the
Feynman gauge, so that the vector-meson propa-
gator is

Dab(k) f 5ab 4 0&

t' (6.1)

By adding to the propagator (6.1) a gauge piece
Ak„k„/k' we find that contributions proportional to
powers of A. are all nonleading. This can readily
be seen by remembering that three- or four-propa-
gator loop integrations with repeated denomina-
tors do not give leading logarithms. Replacing
g „,/k' by k„k, /k' for any vector line leads to
contributions with a, repeated denominator and
numerators which cancel some other denomina-
tor(s).

The remarkable feature of the fourth-order cal-
culation is that all dependence on the Casimir op-
erator CA cancels away in the photon case. If the
exponential sequence were to continue in sixth or-
der this feature would have to be maintained.
Tha. t this does not occur seems to be the conse-
quence of the new dynamical fea, ture appearing in
sixth order, namely the appearance of the gluon-
gluon scattering contributions of Fig. 12. Similar-
ly, the cancellation of the higher-order Casimir
operator H in the sixth-order gluon calculation is
probably also a specia, l case. In view of our re-
sult regarding C„, we have no reason to believe
that the cancellation will survive in higher orders.
Eventually, even higher-order operators will
start appearing.

Our result is true for a, ll p', p" »n . We have
already seen that in this off-mass-shell case we
can take m'-0 without any singularities. Singu-
larities do arise if we try to put the external fer-
mions on the mass shell. ' Arbitarily introducing
a gluon mass p, to cut off this singularity, we
again obtain, through fourth order, the form of

p+ r+k

(c)
p+k

(e

Ji P+ f'

FIG. 15. Sixth-order graphs which do not generate
leading logarithms.

FIG. 16. Dressing of a single fermion line showing
momentum routing.
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(4.26) with now

g 2 Q2
X=+ 2 ln —

216m '
p.
' (6.2}

we find that

l d k k' d&, d(y2d~3
k (k+P, ) (k+P )' k,' D

We note that the gluon mass can be produced by
the usual spontaneously broken symmetry method.
The additional graphs involving scalar fields give
contributions suppressed by powers of q'.

The result of (1.2) cannot be checked or gen-
eralized by the renormalization-group approach. '
The logarithms in (1.2) are of infrared origin and
are independent of any choice of renormalization
point or scale parameter. One cannot use scale-
invariance arguments to obtain information about
quantities which are functions of scale-invariant
ratios such as q'/p'.

We conclude by remarking that the intermeshing
of group-theoretic and dynamical features seen in
this calculation will be a feature of any calculation
in non-Abelian gauge theories.

Note added in Proof. We have extended the cal-
culation of the on-mass-shel/ ferrnion form factor
to sixth order. We find that exponentiation fails by
terms proportional to C„'C„and C„C„'.
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APPENDIX A: EVALUATION OF CERTAIN
FEYNMAN INTEGRALS

Here, we will analyze a certain class of Feyn-
man integrals which occur in the evaluation of
generalized ladder diagrams.

We are interested in calculating

x ln A4)

where

D = u, n, (P, P, )'-+ o, o.j',' + n, nQ, ' .

A simple induction argument shows that

(A5)

k (k+P ) (k+P )

dQ~d&2d&3 ~ D
(A6)

In particular, in the region -{P,-P, )»Py P2'
we have

1 ,v q

where

P 2

(P, P, )' '-
{A7}

Similarly, it can be shown that

d4k „(k+P;)'
k {k+P,}' k+P2)' ka

dQjd&2dQ3 g D
{AB)

with the same D as in (A5), and o. ; = n, or n, de-
pending on whether P; =Py or P2 In the region
-(P, —P, )' »P,', P,' we then have

1 d~
(P P, )' „u, - N

(A9)

Furthermore, integrals of the form I„, as in (Al),
will be

Qg tlat (x3
1 g( )

Let us recall that

P;=P, P, .

k'(k+P, )'(k+P, )' (k+P;)'
(A1) From (A8} and (A10) one can further obtain for-

mulas for integrals of the type

d k g k, ln ~

k'(k+P, )'(k+P, )' {k+P,)'

xln 2
k

Using the following simple spectral form for the
logarithm

(1 +1 CL Q3) ln"j (n;)
d&~dQ2d&3

1 1
M2 +k2 (A3)

2

X ln 2
2 Ck~t12
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As an example, we use these formulas to cal-
culate diagram D„. From Sec. IV, we reca11 that
the relevant integral is

d'k (k+P')' (k+P')'
k'(k+P )'(k+P ')' k'

Using (Bll) we obtain

(A12)

APPENDIX B: EVALUATION OF DIAGRAM 12(a)

In order to amplify our discussion in Sec. V of
the evaluation of four-propagator loop integrals,
we will present here a fairly detailed computation
of the diagram in Fig. 12(a). This diagram and

that in Fig. 12(b) are the only ones that cannot be

" ' ln ' 2 ln

(A13)

which is exactly the integral of (4.23) obtained by
our general approximation method.

completely reduced down to the three-propagator
loop integrals, or generalized ladders.

Using the momentum routing shown in Fig. 12,
we find that the relevant numerator is

8 =2'(p p')'[(k+s) ~ (k+s —2r)]

+2'(p p')[3(r ~ p)(k p')+3(s p}(+ r p')

—6(k P)(k P') —6(s P)(s P')].
(Bl)

Let us first concentrate on the term proportional
to (p p')'. It can be rewritten as

k'+ s'+ (k —s)'+ [(k r)'-r']+-[(s -r)' r']—.

The first three pieces cancel equal factors in the
denominator and the three-propagator integrals
thus produced yield nonleading logs. By the sym-
metry properties of the graph (k —- s, r ——r,
P' —-P) the two brackets will give identical con-
tributions. We now examine the first of these.

The term (k r)' cane—els a term in the denom-
inator and the resulting integral corresponds to
the one of Fig. 8(b).

f d

Added's

2

k'(k —s)'(k+P)'(r —s)2(r +P}'(r +P ')' s'(s +P
')' (3!)'

(B2}

where go=-p'/q' andre'=p "/q2. The term r' does not cancel any denominator and thus the relevant inte-

gral contains at least four denominators (in every integration loop). The relevant integral is

d'r d4y d4s r'J=
(r +p )'(r + p ')'(r —k)'(k +p)'(k —s)'(s') (s +p '}'(s —r )'

We perform the s integration first. Define

(Ba)

d s
s'(s —r)'(s —k)'(s +p ')' ' (B4}

We observe that if we are to obtain a leading contribution, then J„must integrate to give denominators

of the form 1/r'(k+ p')'. Any other behavior will result in doubling existing denominators, and thus, yield

nonleading contributions. With this in mind, we reduce (B4) into a three-denominators integral by using

(4.18). In order to obtain all possible regions in r and k space which could give leading behavior, (4.18)
must be applied by letting the function f(s) be each of the four denominators in turn. Let us analyze each
case separately:

(a) /(s) =1/s
Integral (B4) becomes

dx, dx, dx, 5(1 -x, —x, —x, )

[(k+p')'x, x, +(r+p')'x, x, +(r —k)'x, x,][rx, +kx, —p'x, ]' '

To get the desired behavior, we must haves,
and x, approaching zero and x, approaching one.
This corresponds to the region s-r. The integral
in (B5}becomes

d(, ) 1
I

(r+p')' (r —kP
r'(k+ p')' (k+p')' (k+p')' '

subject to the constraints (p+p')'(k r}'&r'(k+—p'}',
(r+ )'P( &k'+PP, (r —k}2&(k+P'}'. The first of
these comes from the second denominator in (B5),
the others from the first denominator in the usual
way. The integral in (B3) is now of the three-de-
nominators-per-1oop form and one can proceed to
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see whether a leading contribution can be obtained.
Doing the r integration first, we obtain for it

1 dx, dx2 q'x, q x,x,
q' . x. .. x, (k+p')' (k+p')' '

where

x-k —x, P -x

(k+p')' (k+P)'
O2=

q

We thus observe that the constraint (r+P')2
& (k+p')' is inconsistent with the constraint on

x, . Attempting to perform the k integration first
gives similar results. We conclude that the region
region s-r does not give leading logs.

(b) f (s) =1/(s —r)'.
We proceed as before. The region we are ex-

ploring now is s -0. The s integral becomes

k2 gl2ln, lnr'(k+p')' (k+p')2 (+p')' '

subject to the constraints k' & (k+p')', p" & (k+p')',
k2(r —k)~ & r'(k+p')', and p' (r +p')' &rm(k+p')'.
The remaining integral is now of the form cor-
responding to Fig. 8(b). All the constraints can
be satisfied in obtaining the resulting leading con-
tribution. This is exactly equal to that from the
(k —r)' term given in (B2). Examining similarly
the terms with f (s) = 1/(s —k)2 and f (s) = 1/(s+p ')'
we find these give no leading logarithmic contri-
butions. We thus conclude that the term propor-
tional to (P P')' is nonleading.

The part proportional to (P P') in (Bl) can be
easily evaluated by the three-denominator method
to give the result of Fig. 14.

A similar analysis is carried out for Fig. 12(b).
There the term proportional to (p p')' is analog-
ously seen to give no leading log as in the previous
discussion. The discussion of the term proportion-
al to (p p') is different since it involves, again,
four-denominator integrals. We find the evalua-
tion proceeds most simply by performing the r
integration first.
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