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Crossing multiparticle amplitudes: Pole singularities
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Canonical variables suitable for crossing multiparticle amplitudes are discussed and then used to show

that crossing a multiparticle amplitude involves analytic continuation in only one variable. A

representation for analytically continuing multiparticle amplitudes in this variable is then developed for

simple types of singularities.

I. INTRODUCTION

One of the major difficulties confronting an S-
matrix theory of the strongly interacting parti-
cles involves the analysis of multiparticle reac-
tions. Such reactions are tied to elastic reac-
tions by the unitarity eQuations, but much less
is known about the structure of multiparticle
reactions as compared with 2-2 reactions. This
is not only because of the larger number of vari-
ables needed in the amplitudes that describe multi-
particle reactions (along with the concomitant in-
crease in difficulty in analyzing multiparticle re-
actions), but also because most multiparticle re-
actions cannot even be probed experimentally in
the laboratory. This means that models of multi-
particle amplitudes can only be tested by relating
them to experimentally accessible reactions.

Here it is necessary to distinguish between
2-N reactions and lV'- N reactions (N, N'& 2).
One is able to learn something about 2-X reac-
tions from high-energy accelerators and cosmic-
ray data, but there is no way at present of direct-
ly probing the X'-N (N', N&2) reactions. Since
the amplitude for any N'-N reaction is connected
via crossing with the amplitude for a 2-¹+X—2

reaction, it seems natural to probe into the struc-
ture of an N'-N reaction by crossing from the
experimentally accessible 2-N'+N —2 reaction
and checking the resulting amplitude through the
unitarity equations. But the problem is with the
analytic continuation involved in such multipar-
ticle amplitudes. There are many different sets
of variables that can be used, and for a given set
the singularity structure is not known; in parti-
cular this means that when an awkward set of
variables is chosen, a simple kind of singularity
may give rise to very complicated and difficult-
to-manage amplitude behavior.

What we wish to show in this paper is how a
canonical choice of variables reduces the analytic
continuation of a multiparticle amplitude to con-
tinuation in one variable, a boost variable related
to the total energy. It will be shown that this

boost variable has as its physical domain the
real axis, while in the crossed channel the physi-
cal domain lies on the in axis. Thus, if one par-
ticle is crossed, the only analytic continuation
for any multiparticle amplitude involves the boost
variable of the particle being crossed in the strip
between 0 and in.

The canonical set of variables is discussed in
Ref. 1 and will be reviewed for completeness in
Sec. II. Now, given such a canonical set in which
analytic continuation is required in only one vari-
able, one naturally inquires as to what sorts of
singularities are possible in the strip. In this
paper the main emphasis will be on pole singular-
ities, and only a few remarks will be made about
cuts in the strip. For pole singularities it is
clear that analytic continuation in the strip is
possible, if the function is explicitly given. But
in general, even restricting oneself to pole sin-
gularities, the location and residues of the poles
in a scattering amplitude are not known, and one
would like to analyze classes of functions for
which poles could be scattered anywhere in the
strip. While a path of analytic continuation for
any one such function would exist, there would
not in general be a single path which would suf-
fice for all functions in the class. Thus one would
like a representation which would allow for any
function in the class to be analytically continued.
This topic will be pursued in Sec. Pf with the help
of a Paley-Wiener theorem'; it will be shown how

knowledge of the Fourier transform may be used
to compute the function anywhere in the strip and
in particular on the im axis.

The basic idea underlying all of this analysis
is to exploit properties of the substitution rule'
for crossing a single particle and in particular
to make use of the discrete nature of the substitu-
tion rule. The emphasis is thus on the discrete
operation of replacing p~, the four-momentum of
the particle C to be crossed, with -P~, the four-
momentum of the antiparticle C. When the sub-
stitution rule is combined with the group-the-
oretical structure of relativistic multiparticle
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states, the canonical variables arise as the na-
tural variables to use in multiparticle amplitudes.
Section II will review the meaning and use of
these variables by way of preparation for Sec. III,
where two-dimensional space-time amplitudes
are introduced to simplify the study of the analy-
tic properties of multiparticle amplitudes in the

boost variable of the particle being crossed. Fi-
nally, Sec. IV will begin a discussion of how to
represent functions so that their behavior under
the substitution rule can be given meaning.

II. REVIEW OF KINEMATICS AND CANONICAL

VARIABLES FOR MULTIPARTICLE AMPLITUDES

In this paper general multiparticle reactions
will be considered in which a cluster A of incom-
ing particles [labeled 1', . . . , N' (N'~ 2)] react
to produce a cluster B of outgoing particles
[labeled 1, . . . , N (¹2)] and a particle C, the
particle which is to be crossed. Such reactions
will be written A-B+C, where A. has invariant
"mass" sA = (p,'+ ~ ~ ~ + {{)„')2~ M„', B ha, s invariant
"mass" sB = (p, + ~ ~ + p„)2~ MB', and C is the

single particle of mass Mc, which is to be
crossed to the reaction A+ C —B. All particles
are assumed to be spinless, with known nonzero
masses. (Spin and isospin will be treated in a
subsequent paper. )

As shown in Ref. 1, canonical variables needed
in the amplitude describing the A-B+ C reaction
can be broken into three distinct types:

(i) variables within clusters A and B which do

not change when particle C is crossed (the choice
of these variables will depend on how the ampli-
tude is being used; for example, if another par-
ticle from cluster A is subsequently to be crossed,
to give crossing as the term is generally used in
S-matrix theory, then canonical variables within
the A cluster would be appropriate),

(ii) angles specifying the direction of particle
C relative to other momenta, and

(iii) two energies sA and sB, which will be in-
volved in some sort of analytic continuation, as
can be seen by noting that the physical domain
for the A -B+C reaction is partially characterized
by ~sA ~ ){s~ + Mc, while the physical domain for
the A+ C B reaction satisfies the opposite in-
equality ~s~ ~ )t s„+Mc.

The angles appearing under (ii) are defined re-
lative to two frames of reference: the frame in
which p„—= p, , + ~ ~ ~ + p„=0 (the c.m. frame for the
A —B+ C reac tion) and the frame pB

-=p, + ~ ~ ~ +p„=0,
which is called the helicity frame for the A -B+C
reaction. Clearly the two frames interchange
roles for the A+C-B reaction, so that pA=5 be-
comes the helicity frame and pB =0 becomes the
c.m. frame. The notation 6);,&» will denote the

(polar) angle between the momentum vectors p;
and p& in the frame p„=0, with a similar defini-
tion for 8;,&B}. Since azimuthal angles are angles
between planes, the notation y;~ „«A} means the

angle between the plane formed by p; - p, and the

plane p» -p„all evaluated in the frame pA =0.
Reference 1 shows that variables for the ampli-
tude describing the A-B+C reaction can be
chosen to be of the form

mA ~B+C ~ ~B+C[,
[SAt C S1 'C{A)t 9 1'C-Cl(A) t Bt CO 1C(B )t PC1-1 (B) 29Clt'-1'2'(A)] (2.1)

plus subenergy variables within the A and B clusters which are suppressed here because they do not

change under the crossing of particle C. These variables are chosen because of their behavior with re-
spect to a similar set chosen for the crossed reaction A. +C-B:

(2 2)KA+C ~B z. A+C ~B fE = E [sBt cosHlc(B)t (( cl-12(B)t (Blc-cl '{A), sAt cos61'c(A)t t2cl'-1'2'(A)] .

Reference 1 shows that when the four-momentum P& of particle C goes to —P„of the antiparticle C under

the substitution rule, all the variables in Eqs. (2.1) and (2.2) except sA and sB stay in their physical re-
gions, but take on new physical meanings:

pc

cos of c(A} (direct-channel scattering angle)

cos Of c(B} (direct-channel helicity angle)

9' f 'c-cf(A}

9 Ci-f2(B}

+cf '-f '2'(A}

A+C B

-p c

cos tt f c (A) (crossed-channel helicity angle)

cos t) fc (B} (eros sed-channel scattering angle)

+1'c-cf(A} (also true in frame B)

+Cf -f2('B}

~ C 1 '- f '2 '{A}

(2 2)
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0
pC E= SA SB I

2 v'SB hfc

coshP

P&0 (2.4)

' sinhP

The arrows connecting angles mean that when

the angles are written explicitly as relativistic
invariants, the form they have in the A-B+C
reaction becomes transformed to the relativisti-
cally invariant form they should have in the
A+ C -B reaction [see Eqs. (5) and (7} of Ref. 1].

It is not hard to show that the variables appear-
ing in Eqs. (2.1) and (2.2) form complete indepen-
dent sets, so that any function of relativistic in-
variants describing the A-B+C or A+C -B
reactions can be transformed to the above canoni-
cal set. Reference 4 shows how the simplest
production Feynman diagrams can be expressed
in these canonical variables. It should be noted
that the partial-wave amplitudes for both reac-
tions are obtained by transforming the appropri-
ate polar and azimuthal angles to an angular mo-
mentum variable and two spin projection variables
using O(3) D functions; under the substitution rule
the angular momentum of cluster A simply ex-
changes its role with the angular momentum of
cluster B.

Since under the transformation P „-—P„all
the angles remain in their physical regions, it is
only necessary to analyze the behavior of the two
remaining variables s„and SB. Now SB is a sub-
energy for the A-B+C reaction, but since it
becomes the total energy for the A+C -B reac-
tion it is sufficient to choose Vss & M„+Mc
(M„= M, , + ~ ~ ~ + M„) in order that, when the sub-
stitution rule is used, sB also stays in its physi-
cal region. Thus, we have reduced the problem
of connecting the amplitudes for the two reactions
to a study of the behavior of the amplitude E"
as a function of SA, with all other variables held
fixed and in particular with ~s~ fixed but greater
than M A+ Mc.

To make a change of variable to a boost vari-
able, we orient the momenta of all outgoing par-
ticles so that pc forms the z axis of a coordinate
system in the outgoing particles. Let p be the
boost parameter which takes C from its rest
frame to the frame B, where its four-momentum
ls

That is, in frame B where pB =0,

SA (pB +pc)

=SB+Mc'+2~SB ~ coshp. (2.5}

Since SB is fixed, Eq. (2.5) is a change of variable
from s„ to P. The amplitude E" 'c(s„, ss) then
becomes

fA B +c(P) +A +Bc(s s )

where

(2.6)

SA = SB+ 31c' —2~s~ Mc cosh/3,

implying

Vs„-«vs, —M, ,

(2.7)

which is the correct inequality for the crossed
channel. Since sA is a subenergy in the A. +C -B
reaction, bounded by the fixed value of SB, it also
satisfies the inequality ~sA =-MA, which means

MA' ~ SB+~' —24s~ 31c cosh/ (2.8}

s +M -I
2vsB Mc

Thus, when j3 is real, f, (P) is the amplitude for
the A-8+C reaction [f, (li) is even in p, as can
be seen from Eq. (2.5)], while when P moves to
the upper boundary of the strip, f, (P+ fr) is the
amplitude for the crossed reaction. So for any
multiparticle amplitude, crossing one particle
requires knowledge of the analytic properties of
that amplitude in the total energy va, riable only,
or, equivalently, requires knowledge of the analy-
tic properties in the boost variable P in the strip
between 0 and iw. If one wishes to cross more
than one particle, one proceeds, a,s noted in Ref.
1, in a stepwise fashion, always choosing
canonical variables relative to the particle
being crossed, which then determines how a
boost variable ]L)l is related to the relevant total
ener gy. (Transf ormation from one canonical
set to another involves the Racah coefficients
of the Poincare group. -')

It is now necessary to ask how one might make
sense of f, (P+fs), when f, is originally de-

B B
fined only for P on the real line. To try and an-
swer this question the next section introduces a
simplification, namely, a, ll four-momenta are

0 ~~ p ~ ~, 1l1B + Mc, 1l1A ~ v s A
~ ~,

so that it is necessary to investigat:e the behavior
of P as P„--P„. From Eq. (2.4) it is clea.r that
sending the four-vector momentum of C into its
antiparticle C forces P-P+i&; that is, P„--P„
implies P - P+i m. Then
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reduced to two-momenta, which is equivalent to
dealing with multiparticle amplitudes in only two
space-time dimensions.

III. SIMPLE FEYNMAN DIAGRAMS IN

TYCHO-DIMENSIONAL SPACE- TIME

It is possible to analyze multiparticle scattering
amplitudes with respect to crossing in two-dimen-
sional space-time because, as discussed in Sec.
II, all canonical variables except s„and s~ re-
main in their physical regions (but with a possibly
new physical meaning). That the angles discussed
in Sec. II stay in their physical regions under
crossing for simple Feynman diagrams is shown
in Ref. 4. In dropping two spatial dimensions,
every angle is replaced by a sgn, indicating whether
a particle has a positive or a negative momentum
Thus, the analog of angle dependence for ampli-
tudes in four-dimensional space-time is a sgn
dependence for amplitudes in two-dimensional
space-time (group theoretically this corresponds
to the full three-dimensional rotation group being
restricted to the "one-dimensional" rotation
group, which means only parity transformations).
But the important point in this reduction is that
the energy-subenergy dependence remains and
can be explored more simply. Also, since the
underlying invariance group is now the two-di-
mensional Poincare group, with the O(1, 3) Lor-
entz transformations restricted to O(1, 1) trans-
formations, the Racah coefficient structure is

F.; =M;coshP;, P;~ 0

p; = aM; sinhp) .
(3.1 }

The + sign fixes the direction of a particle rela-
tive to the z axis. Further, each P; can be writ-
ten as a function of s„and s~. For example, in
the B cluster

v s~ = M, coshP, + M, coshP, ,

0 = M, sinhp, + M, sinhp, ,

(3 2)

which for fixed masses Mi Ma gives p, and p, as
functions of s~.

To simplify matters we assume that the parti-
cles represented by solid lines have mass M,
while those with the wavy lines have mass m.
Then two of the diagrams of Fig. 1 have ampli-
tudes

also much simpler; this is convenient when one
is discussing the crossing of a sequence of par-
ticles (rather than just one as in this paper).

The goal of this section is to examine the sim-
plest production Feynman diagrams in order to
see what their analyticity properties are in the

P variable between 0 and in. The simplest dia-
grams are given in Fig. 1. Each pa, rticle can be
thought of as being boosted from its rest frame
to the frame p~ =0, where it has its appropriate
energy and momentum:

~A 8+C 1
(tf)+(&) 2 2 + 2t~, —m s2c M t2'c Af

1 1 1
2M' —m' —2M'cosh(P, ' —P, ) rn +2mMcosh(P, —P} m' —2mMcosh(P2 —P) ~

' (3.3)

It is clear that the only types of singularities for
these simple graphs will be poles and thus the
question is where they are located. For the s,c
-M' propagator, we see that

nl'
cosh(p, —p, ) =1 —

2

(3.5)

cosh(P2 —P) =—

l'J 7=P, Pi+(6, +2 rm}cos8, =—
(3.4)

and

cosh(P, —P) =
2

so that there is a pole in the strip between 0
and irr, located at P=P, (ss)+i 8, . As shown in
Eq. (3.2), P, is a function of ss only and there-
fore the pole is fixed within the strip. The other
two poles can be handled in an analogous manner,
except that p, , and p, , are also functions of s„
and therefore of p. The location of these poles
is given implicitly by

'Bl
p2r —p= l cos

To locate the poles explicitly it is necessary to deter-
mine the dependence of P, and P, on s„and hence on

P. But as far as crossing is concerned, only
analyticity in the strip is of interest and it is
clear that poles will occur in the strip because
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ss+ 3/q'+ 2vs~ Mc coshp„, = (km)'.

Because ~s„~ & s3+ Mc this means the branch
points P» will occur along the real P axis with
branch cuts chosen to go to +~. Similarly, the
amplitude for the A+C -B reaction will indicate
the existence of new channels by branch points

(3.7)

it is possible to add factors of 2mn to the angles
cos '(1-m'/2M') and cos '(m/2M), which means
that there is some P in the strip satisfying Eqs.
(3.5) and (3.6). There will in general also be
graphs of the kind given in Figs. 1(c) and 1(d},
which again generate pole singularities; in par-
ticular, Fig. 1(c)hasapole of the form (s„—m') '
which locates the pole as a function of P at
cosh '(~s~/2m)+iw Now if one knows explicitly
where the poles are, it is always possible to
continue analytically f, (P) to f, (13+ in). The
goal of the next section is to find a wa. y of com-
puting f(P+i v) via an integral representation
which expresses the content of analytic continua-
tion.

To conclude this section we briefly describe
what happens when cuts also occur in the strip
That cuts will occur is clear from the fact that
poles occurred in the simplest Feynman produc-
tion diagrams of Fig. 1. It is not so useful to
analyze two-dimensional Feynman diagrams that
generate cuts, as it is not clear how one general-
ly represents their discontinuities. This will be
seen in the next section. But there will be branch
points whenever new channels open up, which, in
the A. —B+C reaction, occurs at ~s„=k m

(k =2, 3, 4, . . . ); in the p variable this translates
to

in the subenergy s„. These branch points, when
translated to the P variable, are located along the
iv line, with cuts going to ~. F nally, branch
points not in the physical s„-s~ region will be-
come branch points in the interior of the strip.

In the next section a general representation for
functions meromorphic in the strip will be given.
Such a representation seems difficult to general-
ize to functions with cuts in the strip, so it would
be highly desirable to map away the cuts confor-
mally. Such a conformal map should leave the
real P axis invariant, so that it is still possible
to Fourier transform the conformally mapped
function. It is at this point that we make use of
the fact that the physical region of the A+C-B
reaction extends only between

0+ i v & P + i v & cosh '[(s8 + Mc' —M„'}/2Ws~ Mc]

+ l 7l',

because s„ is a subenergy in the crossed reaction
bounded by the fixed s~. The conformal map
should move the cuts onto the in boundary while
also leaving the physical subenergy region on the
i Tl boundary. If such a conformal map could be
found, it would have the effect of moving all the
cuts to the i ~ )ine, leaving the interior of the
strip with onl. y pole singularities.

We assume here that all cuts go in a straight
line in the strip from the branch points to +
(possibly overlapping other branch points). This
means the region in the strip is simply connected
and there exists a Schwarz-Christoffel transfor-
mation' carrying the strip to the upper half plane.
The boundary of the strip plus the cuts get mapped

~l

(s)
JI

)I

(b) 4(

C

~Z )8

~l

(d)

FIG. 1. Simple production Feynman diagrams.
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Ql =D+fV

=u, —zln[z, +1 —e-'"~']
——,

'
ln[z, —1 —e-' "&'],

8= &+zy.
(3.8)

The pertinent map is the Schwarz-Christoffel map
from region (2) to region (3) in Fig. 2, given in
the appendix of Ref. 6, p. 210. The map from (1)
to (2) simply allows for the possibility that the
branch point does not start at Rep =0. The map
from (3) to (4) is again a translation which brings
the point h to the origin so that upon going to (5)
the segment AB gets mapped onto the whole real
axis. Finally, (6) is again a translation which
puts 8 at i n. The two wavy lines indicate the
physical regions for the direct and crossed re-
actions. Thus, it is clear that if the locations
of the b anch points are known it is possible to
map away the cuts onto the line i m of the strip.
Implicit in this discussion, of course, is that
there is some path of analytic continuation to the
i n boundary. We defer to a future paper the
question of what sorts of cuts are generated by

onto the real-line boundary of the upper half
plane. By translating the half plane to the left
or the right it is possible to adjust the points on
the real line, so that the conformal map u = —e '
carries the upper half plane to the strip with all
the cuts lying on the im line. Thus, in general it
should be possible to map all the cuts conformally
to the upper boundary of the strip.

As an example of this procedure consider a cut
starting at iw/2 and going to+~. Then a confor-
mal map which transforms the cut to the upper
boundary of the strip is given by the sequence
of maps illustrated in Fig. 2, and given function-
ally by

IV. A REPRESENTATION FOR MULTIPARTICLE
AMPLITUDES IN THE STRIP

In this section we assume that only pole or cut
singularities of the type discussed in Sec. III
occur in the complex P strip, so that analytic
continuation is possible. The question to be
raised here is how the function fz(P+ iw) can be
computed from a known f, (P). Clearly, for a
given f, (P) whose singularities in the strip are
known, analytic continuation will uniquely define
f, (P+ iw). What we wish to do is find an integral
representation for f, (P+ i w) which expresses the
content of analytic continuation. To obtain a rep-
resentation only the weak assumption that f, (P)
have a Fourier transform is made (including
Fourier transforms in the distribution sense').
For such a class of functions singularities can
occur everywhere in the strip and there is in
general no one path of analytic continuation that
can be used to compute f, (P+iw).

The integral representation for f, (P+ i w) is
obtained in two steps. First f, (P) is assumed
to be analytic in the strip, in which case the
Paley-Wiener theorem' guarantees that if

dPe "f.,(P) (4.1)

then

f, (p+ iw) = ~ dke '~e""'f(k) .
v2m

production Feynman diagrams or from general
S-matrix considerations using the unitarity dis-
continuity equations. At this point we simply want
to make use of the fact that if there are cuts in
the strip, they can be mapped away conformally.

H im' G F

x~XXX%'E
ggc

0 8 A 0
U

8

Z
(4)

0

B C DE FG H I 8 CDE F GH I
Y

Hier G FED C

A 0 B

FIG. 2. Sequence of conformal maps moving the cut CDE to the i~ boundary.
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It is clear that the Paley-Wiener theorem allows
one to compute explicitly the analytic continua-
tion of f, (P) to f, (P+in) when f, is analytic
in the strip. To generalize let f, , (P) be mero-

morphic in the strip. Then f, (z) -Q,.I',./(z —z,. )

is analytic in the strip (I',. is the residue of the
jth pole located at z,. ), which means that the Paley-
Wiener theorem can again be used:

dke'" f, (k) —g I',f, (ki

0

f, (P + in) = dk 2 cosk(43+ in) f, (k} —e"~ 'n' '~ Q I',.f,. (k} + g
oo J

2

(4.3)

It is noted that the upper limit of integration of the Fourier transform is 0 rather than +~; use has been
made of the fact that f, (k) is even, while f,.(k), the Fourier transform of the jth pole, vanishes for k&0.
Now the two integrands in (4.3) cannot be split since they are both singular at —~. Also, the pole inte-
grals evaluated at 0 just cancel the Q,.I',./(P+ in —z, } terms. Thus, it is possible to write

ia(8+ i 7;-Z&')—

f, (/=in}= lim dk 2cosk(p+ in) f, (k) —QI', .
v' 2n P+ 7n —z. (4.4)

1f = ~, zp~ strip .—z0

Then

2n '" . ..

(4.5)

1f (/+i n) = lim,„„v2m

where the Paley-Wiener theorem guarantees that
the limit as a- ~ will exist when J, is meromor-
phic in the strip.

To see how this works consider the simple
example where

f.,(P) = f.,(~),

(4 8)

cated; if the pole at cosh/= —~s~//2n~ is simply
ignored it is possible to compute the Fourier
transform of Eq. (4.7), but it has not been possi-
ble to evaluate the indefinite integral needed for
the limits in Eq. (4.3).

To conclude we turn to cuts. Here the proce-
dure is somewhat different. If the locations of
the branch points are known, with the cuts going
to +~, it is possible to map the cuts onto the in
line of the z plane of Fig. 2. We have

0

2cosk p+ in)e ' '0
-a

—ig(8+ i ff —~'g )
dk

2vz, P+ in —vz,

with the change of variable from P to x given by
the conformal map (see Fig. 2). Then

~-)- ac

f, (x+in) = ~ dke'("'"""f, (k),
oo

1

(P+ in}' —z,
(4.6) f, (P+ in) = f, (x+ in),

(4.9)

More instructive would be computing the Fourier
transform of the amplitudes of Eq. (3.3). Here the
hyperbolic functions generate an infinite number
of poles. Because of the complicated dependence
of J3,

' on P it has not been possible to work out the
Fourier transforms for Figs. 1(a), 1(b), and 1(d).
For Fig. 1(c) we have

f. (P)"
&coshP+ (~sa/2 I) cosh(P —P, ) + (m/2M)

(4.7)

so even here the Fourier transform is compli-

where for simplicity we have assumed that there
are no poles in the strip. If there are poles, Eq.
(4.3) replaces Eq. (4.9). Thus, by conformally
mapping the cuts away, Fourier-analyzing in the
cut-free strip, analytically continuing via the
Paley-Wiener theorem, and then changing vari-
ables back to /+i n, it is possible to give mean-
ing to f, (P+ in) via an integral representation.Sg
Whether all possible cuts can be dealt with in
this manner requires further analysis into the
cut structure of Feynman graphs and the use of
general S-matrix considerations.
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V. CONCLUSION

We have shown how to choose a set of canonical
variables for any multiparticle amplitude with
the property that only analytic continuation in the
total energy s„ is required to connect with the
amplitude for the crossed reaction. And the
analytic continuation can be brought to a standard
form by changing variables to the boost variable
P of the particle being crossed (the form is stan-
dard in the sense that it is possible to write the
crossed amplitude via an integral representation
expressing the content of analytic continuation).
This should be useful in two ways. First, in phe-
nomenological applications, where one knows
some approximate properties of an amplitude
over a limited region, it should be possible to
check how this behavior is manifested in the
crossed channel; in particular it should be possi-
ble to check the influence of cuts by seeing how

they "interact" with the direct-channel approxi-
mate amplitude in the crossed channel. That is,
by providing a means to connect direct-channel
and crossed-channel amplitudes without knowing

the detailed singularity structure, it should be
possible to work out interesting constraints in

phenomenological analyses.
For example, in a 2-4 reaction, with the pro-

duction of two m mesons, one of which is to be
crossed to the 3-3 reaction, one has eight vari-
ables. By performing an approximate angular

distribution in cos8, «», while holding s~ fixed,
it is possible to obtain the angular momentum de-
pendence J~ of the amplitude in the crossed chan-
nel. If something is known about the cluster of
three outgoing particles, this fixes the behavior
of the three incoming particles (in the crossed
channel) because of time reversal. But inelastic
unitarity' fixes the associated 2-3 reaction and
the inelasticity parameter of the 2-2 reaction,
so that one has a check on the phenomenological
form used for the B cluster of the 2-4 reaction.
In this way crossing can be used in conjunction
with unitarity to provide tight constraints on phe-
nomenological fits of production processes.

In a more theoretical vein one might hope to
use the representations of Sec. IV when more
channels were open and find a representation
which "diagonalized" the simultaneous constraints
of inelastic unitarity and crossing in all the chan-
nels open up to a certain energy. This should
provide a way of truncating infinite sets of am-
plitudes coupled by unitarity and crossing. Of
course, it is not at all clear what other assump-
tions, such as the high-energy behavior of multi-
particle amplitudes, would be needed in order to
get a unique solution.
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