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Monopole theories with massless and massive gauge fields
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We investigate magnetic-monopole-type theories, including those where the gauge field acquires a mass.

The study is based on a modification of Zwanziger's local Lagrangian formulation of the usual

(zero-mass) theory. The quantization is carried out by using Dirac's general method. For the mass-zero

case the known results are recovered including the charge-quantization condition. The Hamiltonian and

angular momentum for the massive case are derived and discussed. Further, it is shown how Nambu's

static phenomenological Hamiltonian can be derived as a special case of the massive theory. Certain

diAiculties associated with the rotational invariance of such theories are pointed out.

I. INTRODUCTION

In a classic paper' Dirac pointed out the con-
nection between the existence of magnetic mono-
poles in quantum theory and the quantization of
electric charge. Besides this interesting feature
such theories contain a natural mechanism for
T-invariance violation. These attractive features
prompted many authors' to investigate this theory
in depth, both from formal and phenomenological
points of view.

Recently, great progress has been made in
understanding gauge theories where the gauge
field acquires mass by spontaneous breakdown of
an underlying symmetry. These developments
provide a motivation for investigating theories
with both electric and magnetic charges which are
modified by the addition of a mass term for the
vector field. Further, the addition of a mass
term may solve some of the apparent experimental
difficulties associated with such theories. Spec-
ifically the usual theories seem to predict an ex-
tremely large T violation as well as a superstrong
coupling of the massless vector field to magnetic
charges. ' The addition of a mass term would be
expected to suppress the order of magnitude of
the effective coupling strength by a factor of
(M~/ju)', where p is the gauge boson mass and

M~, the proton mass, is a typical low-energy
scaling factor. Thus for suitably large p, we may
expect to overcome these difficulties.

For the treatment of gauge theories, it is most
convenient to proceed from a local Lagrangian.
Most previous workers on monopoles have not
used this approach. However, Zwanziger has
recently given a local Lagrangian formulation of
the problem. In the present paper we will start
from Zwanziger's Lagrangian. First, for the
p, =0 case we will carry out the canonical quanti-
zation of the Lagrangian by a different method
from that of Zwanziger. Since the Lagrangian of

interest describes the vector field by two po-
tentials, there are more than the usual number of
redundant variables. To handle these we shall
adopt a systematic method due to Dirac, ' in which,
among other things, the Poisson bracket in the
classical theory is replaced by a new object called
the Dirac bracket. Dirac's method is very power-
ful and has been used in general relativity, but
does not seem to be widely appreciated in particle
physics. Thus our treatment may also be useful
as a nontriviai example of the method. (In partic-
ular, this is one of the few nontrivial examples
containing the so-called second-class constraints).
As a result of our treatment we recover
Schwinger's Hamiltonian' for the problem and also
find that his infinite antisymmetric form for the
singularity line (the Dirac string) rather than
Dirac's original form' is required for consistency.
We also apply this formalism to study the angular
momentum operator and rederive the charge-
quantization condition, by generalizing a method
due to Fierz. ' This material is contained in Secs.
II, III, and IV. Section II treats the noninteracting
vector field, Sec. III treats the interacting case,
and Sec. IV treats the angular momentum.

In Sec. V the quantization of the p. 40 system
with interactions is carried out. The Hamiltonian
and angular momentum operators are derived.

In Sec. VI we show that the static limit of the
p, & 0 system reproduces a phenomenological
Hamiltonian recently proposed by Nambu' as a
model of quark binding. We also explicitly show
the lack of rotational invariance of this theory
and suggest possible modifications to overcome
this difficulty.

II. TWO- POTENTIAL DESCRIPTION OF

FREE ELECTROMAGNETIC FIELD

The well-known modified Maxwell equations
for electrodynamics when both electric and mag-
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netic charges are present are

P jfP SPY ji Pll Jv(x) . -(2)

where j „' and j „' are the conserved electric and

magnetic currents, respectively, and &„, is the
electromagnetic field tensor, with

1

PP 2 &vPg Pg ' (2)

with the identification

E„„=n„n~(an q') „—n„n~(sn q')~„

—ie&& en nz(&n q')&s . (4)

Here the index a runs over 1 and 2,
with «» =+1, while n is a fixed spacelike vector
satisfying n' =+ l. Also (» q')' denotes the dual of
(8* q') as in (2) while the wedge product (An B)
is defined by (An B)»=A&B, A„B„. No-te that in
this formulation the usual electromagnetic 4-
potential has been replaced by two potentials q„'

and Qp .
Since the physical electromagnetic field has only

two independent degrees of freedom while the
two-potential formalism introduces eight degrees
of freedom, it is clear that the system is very
highly constrained. Therefore the problem of
quantization is nontrivial. Zwanziger4 has solved
this problem by adding a gauge-dependent term to
the Lagrangian. Here we shall carry out the
quantization using Dirac's method, ' which leads
to a result analogous to the Coulomb gauge formu-
lation of quantum electrodynamics. This method
has the advantage of being systematic and general-
ly applicable. Modifications of (3) can be handled
in a routine way. Furthermore, the present
Lagrangian leads, in Dirac's language, to second-
class constraints and consequently is one of the
few situations where the full power of his method
is called into play.

First let us consider the fre e-f ield ease, for
which the last term of (3) is absent. The resulting
Lagrangian Zz, as expected, turns out to be a
complicated way of describing the noninteracting
electromagnetic field. To proceed with Dirac's
method for Z& we first calculate the momenta n„'

canonically conjugate to q'„. For definiteness we

take n„= 6» in what follows. Instead of defining
v&=M&/sq' we form the combinations

Z; =w', + —,'e„('Vxq'), , (5a)

We are using the metric g»= 5». Zwangiger has
shown that these equations can be derived from
the Lagrangian

2n„-(a nq') one(anq')s„

—(i(2)e„n (sn q')~„ns(&nq')8„j„'-q„', (3)

Z; = w', + —,
' e„(Vx q'), ,

Z'=w'
4 4t

v:= 2 e.~(»q'4-t(&*q')~.

(5b)

(5c)

(5d)

Za Z =Za Q2 4 (7)

Note the distinction between (5d) and (7}. Thus
(5d) defines dynamical moments since it involves
time derivatives of the fields q„. Equations (5a),
(5b), and (5c}, on the other hand, involve no time
derivatives and imply that certain functions of the
w's and q's (but not involving the q's) vanish, as
expressed in (7). Equation (7) is thus a set of
constraint equations called the primary con- .

straints. In Dirac's method, constraint equations
should be imposed only after evaluating all
Poisson brackets. The Hamiltonian density gets
modified to

X~=-g~+g~jp+u Z~, (6)

where the v'„are given by (5a}-(5d) with Z„' =0,
and the u' are six functions subject to certain
(uninteresting) consistency requirements. Now to
guarantee that the constraints (7) hold for all time,
their time derivatives or Poisson brackets with

H& = fd'x3C& must vanish. In addition to determin-
ing some of the u's, this leads to some secondary
constraints. Here, requiring [B» Z4]~B =0 gives
the secondary constraints

Z'=V w'=Q
5

which again should only be considered to vanish in
a Poisson bracket relation after the bracket has
been evaluated. Continuing the process leads to
no further constraints. Dirac points out that the
division of the constraints into primary and

secondary is not very important. The more mean-
ingful division is into first-class and second-class
constraints, the first-class ones being the con-
straints which have vanishing Poisson brackets
with all constraints on the constraint surface. '
The remaining ones are then said to be second
class. First-class constraints can be thought of
as generators of gauge transformations while the
second-class constraints can be effectively elim-
inated from the theory by modifying the Poisson
bracket to a new object called the Dirac bracket.
In our case the first-class constraints are easily

The quantities w'„and q„' are here considered to
obey the usual Poisson bracket (PB) relations

[q„'(x, t), v'„(y, t)]p, = 5„5„„5'(x—y)

(others = 0), (6)

as if no constraints were present. Note that the
quantities m& would be given by ~Z&/~q~& if we set
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seen to be Z4 and Z; . The others have the non-
vanishing Poisson brackets:

n„+(x —y}=[Z«b(x, t), Z,'. (y, t)) p„

(13a) to (13d) by (-i) times the commutators and

by interpreting the first-class constraints as the
following supplementary conditions on the allowed
states

~ ) of the theory:
a

e-„e,» t}«(x —y),
3

{t,qj ={1,2) . (IO)

v,'~ ) =o,

v v i&=0.

(14a)

(14b)

We need the inverse of (10), satisfying

d y 6«( bi(x y) bj «b (y x) 5 5(b5 (x z) '

The inverse is thus

-I
tb«(, by (x —y}= -ebbeob 5 (x —y), (11)

3

where the integral operator (S/Sx, ) ' requires a
boundary condition for its complete specification
which we will discuss below.

Using (11), the Dirac bracket of 2 dynamical
quantities A and B, [A, B]*, is defined to be

[A, BJ *=[A, B]

The second-class constraints are to be set equal
to zero as operator identities. The "observables"
of the theory are those operator functions which
commute with the four first-class constraints.

Since the quantization requires the replacement
of the Dirac bracket [A, B] * by a commutator
[A, B] which is antisymmetric in A and B, we

should require the Dirac bracket itself to be anti-
symmetric in A and B. The antisymmetry proper-
ty in turn requires 4„» '(x —y) to be antisym-
metric in x and y. This leads to the following
determination of s, '=—(s/sx, )

Ix, 'fl(*„*., ) lxf =l«(x x*l f*(.*l-„., *l

d'x d'y Ay Z g pa

x«t. . . '(x-y)[Z~(y), B]

(12}

In (12) the indices i and j take on the values 1 and
2. The equations of motion take the same form
(on the constraint surface) whether we use Poisson
or Dirac brackets of the Hamiltonian with the
dynamical variables. In this formalism if we use
Dirac brackets to write the equation of motion,
the second-class constraints may be set equal to
zero identically, since they have vanishing Dirac
brackets with all variables (on the constraint sur
face). Straightforward computation with (12}gives
the fundamental Dirac brackets for this theory:

-1
(el(, &), e!(v, &l(*=-x., „. (g„&'(*-xl,

(13a)

where e(x) =+1 for x& 0 and -1 for x& 0. This is
the determination of ~, ' adopted by Schwingcr, '
and is different from the one originally proposed
by Dirac. ' It is interesting that we are forced to
adopt Schwinger's prescription for consistency.

To show the equivalence between the present
theory and the theory of the free electromagnetic
field, consider the Hamiltonian acting on states

~ ) satisfying (14a) and (14b). We find, using the
first- and second-class constraints,

2

«, l ) =-', J«' p(bx« l (Vxrl,

+ [&—le., (&xq'), ]' I &

Making use of the identity

(&&&q } =-s ps((v" q )(

[v„'(x, t), v'„(y, t)] *=-,' e„e„„p, 5'(x —y), (13b)
Xp

[v'„(x, t), q«(y, t)]*=--,'o„~ 5„, + 5„,
e a

x 5' (x —y) (v = 1, 2), (13c)

[n'„'(x, t), q„(y, t)] *=-D,bd»6«(x —y), (v =3, 4) .

(13d)

and the second-class constraints, we find

(Vxq'), = 2e„s, '-Q s,v,'

If we define

Pg = 2') —5]3~~ O' 5

and use (7) and (16), we get simply

«„()=l f« x«' «'I ) . '.
(16)

(17)

Now, the passage to quantum theory is made by
replacing the fundamental Dirac brackets of Eqs.

Equations (13) imply that the quantities P'. obey,
in the quantized theory, the equal-time cornmuta-
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E=P', H=-P' or E =-P', H=P'.

Furthermore the definition (17) implies that

v p'=v & (20)

which, being a first-class constraint, vanishes on
the allowed states. Thus only the tranverse parts
of P' contribute to (18), which therefore describes
the free electromagnetic field.

With the canonical Fourier decomposition for
the transverse parts of P' one can show that the
commutation relations implied by (13) for all the
field components can be fulfilled by introducing
some additional operators. "

III. INTERACTING ELECTRICALLY AND

MAGNETICALLY CHARGED PARTICLES

For definiteness we consider a system of spin--,'

fields g„carrying both electric and magnetic
charges. The conserved currents in (1) take the
form

jp = ten0nyp0n ~

~ (.) ~ .— (21)

where e„' and e„' are respectively the electric and
magnetic charges of g„. The total Lagrangian is
thus

tion relations:

[Pt(x, t), P~(y, t)] = ie,~e()~ 5~(x —y) . (19)
exp

These are the commutation relations of the elec-
tric and magnetic fields E and H when we identify
either

H~ ) = d x[2 P"P'+ g„(y' V+m„)g„+ j~+ q']
~ ),

where the second-class and the new first-class
constraints have been freely used. Note that P'
is still given in terms of the w' by (17) so that
(20) is still valid. The Fermi field g„ is seen not
to commute with the constraint Z; given in (23).
This means that g„acting on allowed states may
create unphysical states. This is just another
way of saying that g„ is not gauge-invariant in the
ordinary sense, since Z; is a generator of gauge
transformations. It is convenient to eliminate g„
in favor of the gauge-invariant field

1
g„' = exp —i e'„—,V' q'

(no sum on n) . (24)

The Hamiltonian then becomes

H~ ) = d'x[-,'P'P'+ g'(y. V+ m„)p„' + j'q' ] ~ ),

where j' = ie'„g„y-g„= —i e„'g„'yP„' and q' = q'
-(V/V')V'q' is the transverse part of q'. A more
physically transparent form of (25) is obtained by
separating the field strengths P' into their trans-
verse and longitudinal parts P' and P~
=(VjV')V P'. Using (23) we find

Hl ) = d'x —,'P" P"+0„'(y V+m„}y„'

& = & y i '„'q„' 7—.(y„s,—+ m. )0. , (22)

where m„ is the mass associated with g„. For
quantizing (22) we will treat the spin-z field in
the usual way. We ean also proceed by using
Dirac's method, but we shall not give details since
it leads to nothing new. The quantization of the
boson fields is almost exactly the same as in the
last section. The canonical momenta are still
given by Eqs. (5) and (7). The primary constraints
(7) are thus unchanged. The only change is in the
secondary constraint (9). In this case, requiring
the Poisson bracket of the total Hamiltonian H
and Z4 to vanish gives the secondary first-class
constraint

(23)

The second term clearly arises from the inter-
action term in the total Hamiltonian. Since the
second-class constraints are the same as in the
preceding section the fundamental Dirac bracket
relations (13) still hold.

Proceeding as before, the total Hamiltonian of
the system on allowed states takes the form

+ j'q" + li"—i"
I & {26)

This is the Hamiltonian of Sehwinger. ' The last
term in (26) represents the generalization of the
static Coulomb interaction to the case where par-
ticles have both electric and magnetic charges.

Note that the constraint equations (5a), (5b),
and (7) imply that

(V x q'r}, = (Vx q'),

(27)

where the equation for i=3 is inferred from the
identity V'(Vxq~ )=0. Since V q' =Owe can
solve (27) for q' to get

q; =-&„&„,—,&,(P, —&„&, 'V P ),V2 {28)

which agrees with previous work. ' Perturbation
theory for the Hamiltonian (26) has been discussed
by Rabl. '
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IV. ANGU LAR MOMENTUM

AND CHARGE QUANTIZATION

The most striking feature of theories containing
both electrically and magnetically charged par-
ticles is the existence of a charge-quantization
condition. The need for such a condition has been
discussed by several authors in different ways.
Here we would like to generalize the argument of
Fierz, ' which was made in a first-quantized
framework, to the present field-theoretic frame-
work. Zwanziger' has also treated this problem
with a different method from the present one.

Fierz noticed that the Coulomb-type fields re-
sulting from a classical point electric charge e'
separated from a classical point magnetic charge
e' give a nonvanishing net contribution
fd'x rx (Ex H) =(e'e'/4x)(r/r) to the angular mo-
mentum of the system. It is noteworthy that this
contribution does not vanish even when e' and e'
are infinitely separated from each other. In the
passage to quantum theory the quantization of
angular momentum then leads directly to the
quantization of e'e'/4x as well.

For the field-theoretic case we now consider
the canonical expression for the angular momen-
tum

J, =(-i/2)e„a

where (S)3}, = —i(6), 63 —6, 63, ) and Zia
=(I/2i}[y„y&]. Using (17) and (20) to solve for v'

in terms of P' and using (27) for Vxq' we find

Jf d x 2 &ab x P'x P ), + )a)" P'} xxq'

(so)

Substituting for p„ in terms of (l„' from (24) and
using (23) we fxnd

J; I
&

= Jd x( l'e.,[-x" ta'"P')],

x [x,(sa ie„'—qa' ) +(i/4)z„] g„') I ),

(sl)

where
I ) is an allowed state and the longitudinal

part of q' has been eliminated. To elucidate the
meaning of (31) we will substitute for q' in terms
of P' from (28) and further separate P' into its
transverse and longitudinal parts. By (23) and

(2o),

—$5)~ XgBP —Xf 8)}+ SgI f gg g'yg

+ $ t[(x&8 —x ()) ) + ( i /2 }Z& ] (l)„j,

(29)

j(a)
I )

V

Then (31) takes the form

+ e 3S, —j"x V —j'"—e,j"(x S, —O„x V) —,a 'j' ' (32)

In arriving at (32) we used integration by parts"
[and (33) below] to find that all terms linear in
P' cancel each other. The evaluation of the third
term in (32) is analogous to that of Fierz. Intro-
ducing

—,F(x) = —— d'x'1 1 F(x')
4w Ix-x'I

and carrying out some integrations results in the
following net contribution of the third term in
(32) to L,, :

aa d3Xdayj(a)(X) j(3)(y) y i(x- )

ax Ix-yl ' (34)

(
1 Ix —y I+(x —y ) (35)

sx, Ix-yl ' " Ix-yl-(x, —y, )
'

Using (35) and (33), the fourth term of (32) be-
comes

Next consider the fourth term of (32). From the
definition of 8, ' given in (15) we get the result

eaa 3 d3 (3)( ) (3)( )
6i3(x3 y3) I x —y I (x3 y3} (xi-yi)

s& - ' Ix-yl[ lx-yl'-(x, -y, )']

Combining the above terms we get the final expression

(36)
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z
I ) = Ja'*)- -,

' e.,) x (p"x r"')), —)c„„y„' )*,8, ~ ) /4)z, „l)')I)

x x~ v~
(37)

(3S)

where I 0) is the vacuum state. We find

~ 0'(, )4.'( .) I o) =
I. &, 0.'(z, )4„' (,)] I 0&

2A

+ '&(„Q~-„gm (&, ]).)')(&,)+ 4~ ( z)( E„.)')(&,)]) lo&

The first two terms of {37)are the usual expressions for the angular momenta of electromagnetic and
Fermi fields. The last term does not vanish only when both electric and magnetic charges are present.
Note that this term also vanishes when the ratio of e„' to e„' is the same for all particles n. We may see
this by using the expression for j „' given in (21) and the antisymmetry in x and y of the remaining inte-
grand.

To see the need for charge quantization we will consider J, operating on the allowed state

q.'" (z, )y.'(z, ) I 0),

(39)

. s8 e„(l —5(~)
I I

l~ ( )~
3

where Z ' is the spin matrix for the field labeled
by z& ~ The preceding expression is precisely the
one which has been shown by several authors to
require the quantization relation

(40)

e' e'„
4m'= gn 4

(41)

where for each pair (mn), N „ is a positive or
negative integer (including zero). A sketch of a
simple proof of (41) follows. Construct the state
f, satisfying

d, f, =jf„(g, w+, )f, = 0 (42)

(where for simplicity we have suppressed spin
indices). f, is the state of highest weight for a
given angular momentum j ~ Since the irreducible
representation of the rotation group associated
with f& must be (2j + 1)-dimensional, it is clear
that we need

(8, f 4,)""f, =o. — . (43)

where we have used j~ I0) = 0, which corresponds
to neglecting higher-order pair effects. '-'

On introducing relative and center-of-mass
coordinates z =z, - z, and X zl+ zp the operator
representing the ith component of the relative
angular momentum on the state (38) is seen to be

QI) 'Ef 'y grZ + g g y +
a; (1) (2)

k

Equation (43) implies (41). For instance, in the
spinless case where the Z's are set equal to zero,
condition (43) requires'

Pj+ 1

I (1 —coss)~'"~" (1 + cos &)' "m~] = 0
dcosb

{44)

where 0 is the angle z makes with the third axis.
It follows that the expression in square brackets
must be a polynomial in cos6) of degree 2j. As j
is non-negative and integral or half-integral, (41)
must hold for p, „. Note that j may only take one
of the values I p, I, I p, I+ 1, I p I+ 2,

V. MASSIVE VECTOR MESON

O'ITH ELECTRIC AND MAGNETIC COUPLINGS

One of the most natural applications of the pres-
ent type of theory would seem to be to the con-
struction of a model for T violation in weak inter-
actions. If one associates the massless vector
field with the usual electromagnetic field, the
quantization condition seems, at least naively, to
imply a very large magnitude for the T violation
in addition to a superstrong photon coupling. Thus
it is interesting to investigate the possibility that
the vector field is not the electromagnetic field,
but a massive field like an intermediate boson.
An attractive mechanism for generating a mass
term for the vector meson is the Higgs mech-
anism. " For the Lagrangian (22), the simplest
procedure is to add a scalar field with only type-2
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charge in an appropriate way. If only one scalar
particle is added, this choice of charge is es-
sentially general because of the freedom we have
to make rotations in the two-dimensional space of
electric and magnetic charges. " For our present
purposes, the degrees of freedom associated with
the auxiliary scalar particle are not particularly
interesting, and the net result is that we are led
to consider a Lagrangian with an additional mass
term:

Zl ~1
4 4y

Zl = V. &+ &j~»
5

while the second-class constraints are

Z;=w,'+ —,e„(Vxq'), (&=1, 2),
Z2 7T2

4 4&

Z', = V '+

(47)

(48)

~'=~„- 2u'q„'q„' i'„-'q„' -4.(r, s„+~.)4. (45)

At the outset it is not obvious that the first two
terms of (45) describe a free massive vector
meson. However, we will see below that this is
indeed the case.

We will now apply Dirac's method to the quanti-
zation of Z'. Since the mass term does not affect
the definition of the canonical momenta, the pri-
mary constraints are th same as those of Secs.
II and III. On the other hand, the secondary con-
straints become

Z; =V m'+i@, 5„q'+ ij' (46)

The additional term in Z; is due to the fact that
Z,' does not commute with the term & p'q„'q„' in
the Hamiltonian density. It is interesting that the
division of the constraints into first and second
classes differs somewhat from the p, =0 case. The
first-class constraints are

D, „(x—y) =[Z„'(x, t), Z'„(y, t)],„. (49)

Here a and g take on the values indicated in (48).
This can be expressed as

a(x- y)

D(x —y) =
0 0

0 0 ip'5'(x —y)

—i y. '5'(x —y)

(50)

where the 4X 4 matrix d (x —y) is given in (10) and
the fifth and sixth rows refer respectively to Z,'
and Z,'. The inverse D '(x —y) is clearly

As we saw earlier, to compute the Dirac brack-
ets of the dynamical variables we need the matrix
D(x —y) of the commutators of the second-class
constraints where

a '(x-y)

D '(x —y) =
0 0

O 0 (i/u')5'(x-y)
(-i/p. ')6'(x —y)

where & '(x —y) is given in (11). The Dirac
bracket [A, B] ~ is then defined as in (12), but
with D '(x —y) replacing n '(x —y). Except for

that

[q,'(x, t), p„(y, t)] = ——,e'„g„(», t)5'(x —y) . (52)

[ql(x, t),ql(y, t)1*=—8„5'(x—y»

(52a)

[v,'(», t ), q,'(y, t )] *=o, (52b)

the fundamental Dirac brackets are the same as
in Eqs. (13).

To quantize the theory we replace the Dirae
brackets by (-i) times the commutators and con-
sider the first-class constraints (47) as supple-
mentary conditions defining the allowed states.
The Fermi fields obey the normal anticommuta-
tion relations among themselves. Note, however, P~] =2n] —5]383 'V'm', (54a)

This follows by observing that [q,', g„]* involves a
factor [ Zq„] wPhich by (48) is nonvanishing
when we assume that f)„has the usual Poisson
bracket with j,' and vanishing Poisson brackets
with Bose fields. The field P„commutes with the
Bose fields other than q,'.

It is convenient, as before, to introduce the
modified Fermi field g„given in (24) which will
commute with the first-class constraints (47).
The boson variables which commute with the first-
class constraints can be taken to be
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qi'= &-.~«ga ~. Sg(Pa —6&383 'V'P') (54b)
q

2
q

2T +q 2'
~ (57)

longitudinal part of q'; and use the unified notation

and V q'. [The list does not include q', since it
equals (i/p'), (q P.'+ij ~,")by the vanishing of the
second-class constraint 252]. However, these
boson variables do not commute with f„'. For
many purposes it is useful to define careted boson
variables which do commute with g„' and also the
first-class constraints (47). We therefore define

The commutation relations among the careted
variables themselves are seen to be the same as
the commutation relations among the uncareted
variables. The commutator [P';, P~'] is given by

(19}with the replacement of Ps by Ps. In addition
we have the usual commutation relation

[P';(x, f },q,'. (y, I )] = —i6, ,&,
q
6'(x —y) .

which by (54b) leads to the definition

q', = —e„e,q, ~, &q(P' —5, , 8, 's, P,'}

1 , . (
+~&a& &iJ'3 2~(~3 24 ~

V'

(55}

(56a)

(56b)

The remaining commutators between the careted
variables follow from (54b) and (56a).

To understand the structure of the present the-
ory we now examine its Hamiltonian. After the
introduction of the careted variables and some
manipulations similar to those of the p. =0 case
we get

(59)

Sine e V' q' commutes w ith both g„' and the fir st-
class constraints we may set q';~=q'; for the

where the free-field Hamiltonian H, acting on
allowed states takes the form

2

H, l ) = d'x ,'P';P';+,' e—;„(,g-', )e„(&,q')+ —q';q';+, (s;P', )'+ g„'(y 9+m„)(„'
l ) (6o)

and the interaction Hamiltonian is given by

2 2

Hr I&= d x i,P; —,j, + &j, —,j, ——& ),—,s,s, j, +ip &„.,q,. , e;s,—3 .
g 2 . (2) 1 . (a) . (a) i -1 (1) 2 "2T -1 (1)

3 4 J3 g J 3

(a) ~aT - (a) -1 (b)+j q; -'& o& y3j 2sge3 j l)V'
(61)

We see that (60) contains the well-known expression" for the Hamiltonian of the free massive vector field
in terms of the canonical variables q', and P', . Since (58) shows that these two variables indeed obey canon-
ical commutation relations we are entitled to conclude that the first two terms of (45) do describe a mas-
sive vector meson.

It is also of interest to compute the angular momentum operator for the present theory. Carrying
through an analogous procedure to Sec. IV we find, starting from the canonical expression (29),

J, I ) = -e... d'x[P' x e„q' +P ', q', +i)„'[x,so+ (i&4.)Z,a]g) I )

x-
Xd p ) 4 X))4 $ +2l~a2~gPg X))4 p) ( — g3) (62)

The first three terms comprise the normal form
for the angular momentum operator of a system
with a massive vector meson and fermions. The
fourth term in (62) is the same as the last term in

(37) while the last term is unique to the present
case. Note that this term contains products of
Bose and Fermi field operators. Thus even in

lowest order, J; acting on a state containing, for
example, one Fermi particle, will produce among
other things a state of one Fermi and one Bose
particle. This appears to be an important differ-

ence from the Jj. =0 case.
Since H, given in (60) has the usual form, we can

easily develop a perturbation theory to treat the
effects of H, in (61). Although the validity of the

perturbation expansion is doubtful due to lack of
manifest covariance (see also Sec. VI}, we give
for completeness the effective momentum-space
propagators for the exchange of the massive vector
mesons. Denoting these by P„",(k} for the elastic
scattering of a particle of type a and a particle of
type b, we find"
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P„"„(k)=, , 6„,+,(6„„—n„n,), (63a)k'+ p.
' "' n k '

1 3 Q 1. . . 1H= — d g j4 2 2 j4 —g j4 2 2 93 j4V

(70)
22P~„(k) = „,+ p,

-1 kpn~„.( )=„,

(63b)

(63c)

where we have omitted the kinetic energy terms
for the charged particles. The operator ~3

' is
familiar in two-dimensional quantum electrody-
namics. It is defined by"

VI. NAMBU'S HAMILTON IAN

(&f1(,*.*) = l f& ll .*— ( If( (1 (71)

Nambu' has recently proposed a static Hamil-
tonian for two interacting particles ("quarks")
which contains a short-range Yukawa potential
as well as a long-range "string" potential pro-
portional to the separation between the particles.
His motivation for considering this Hamiltonian
was to retain some desirable features of both dual
string and conventional field theory models. We
now show that his Hamiltonian is the static limit
of the Hamiltonian given in (60) and (61). We also
briefly indicate some of the peculiarities of the
angular momentum operators in such models.

We commute our Hamiltonian with the observable
boson variables p and ~; q to find the equations
of motion

ft

dt

j,'(x) = igd'(x) + zg'6'(x —(), (72)

where g and g' are coupling constants. If self-
interactions of the particles are ignored, the sec-
ond term of (70) becomes

l2gg dx I& —
k

exp[- p,((,'+ t,' x+,")'~']
(t. 2+t 2+X&2)l/2

Equation (70) contains Nambu's results. The
first term evidently represents a Yukawa inter-
action between the static charges, while the sec-
ond term contains the "stringlike" interaction that
he finds. To see the latter, consider the situation
when there are on1.y two particles present. If one
is at the origin and the other is at (, the magnetic
charge density j 4 is given by

d -, V'
q2 — 1 8& p. Sj

dt

(64)

(65)
x f(x') . (74)

Here we have used (71), (72} and the identity

1 1, , exp(- g(x —x'()
2 2 X ~~ ~ ~ d 3~I

~
~

~
~I~

~I

(66)

8,. q2 =p,
2

g p2
2 V2

2

q' 2 "2 V26f. f j—v

(68)

(68)

Substitution of these expressions into the total
Hamiltonian yields, after some straightforward
algebra,

Note that, due to (56a), these equations determine
the time evolution of the conventional variables
q2 and P2

Nambu's Hamiltonian can be obtained by first
considering the situation where only charge den-
sities are present (j

' =0} and P;' and (f'; are time-
independent. Equations (64) and (65) then give

For large
~ $, ~

(which implies a large separation
between the particles), the interaction (73) is evi-
dently proportional to

~ $, ~. Nambu considers the
special configuration (, = (2 = 0 so that both the
particles are located on the third axis. In this case
as well, (73} is proportional to

~ $, ) for large
~

t',
~

(the "stringlike" interaction), although the integral
multiplying

~ g, ~
is infinite. These are the same

as Nambu's results.
The angular momentum operators J& in the static

approximation can be obtained from Eq. (62) by
using the preceding expression for the fields and
currents. As in the usual magnetic-monopole the-
ory, one of the subtle questions concerns the con-
servation of angular momentum. The commuta-
tors [J;,H] can be worked out directly, but a more
convenient approach is to use the expression for
the divergence of the angular momentum tensor
density M „.For our purposes, it is sufficient
to consider the equations
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M~, =fe„~[8, '( j,'+ g'q„')] [&, 'j8], a = 1, 2

(75)

(76)

In the static approximation (75) gives
P 2

~aa~ s~ ss ~ ~ j4 (ss

(79)
Here we have not made the static approximation.

Recall that the field g' is given by where we have used (69) and (77). The time evolu-
tion of J, and J2 is thus given by

x M+3+ d x ~g

x(&3 'j'), a=1, 2 (80)

Equations (75) and (76) can be obtained from Zwan-
ziger's Eqs. (4.18) and (4.19) (Ref. 18) if it is ob-
served that the 4-divergences of the gauge-field
tensor F„,and its dual F„,[cf. Eq. (4)] fulfill the
equations

(78)

Equation (16) differs from Zwanziger's field equa-
tions for F„„by the addition of the term g'q'„ to
the current j'„. This is reflected directly in the
difference between Eq. (75) and Zwanziger's re-
sult.

and the identifications

(81)

It folloms that if g is zero, angular momentum
is conserved in the static approximation, while
if g is not zero, [J„H] is not zero for a =1, 2.
One may, at this point, hope to recover angular
momentum conservation for p, 40 by requiring that
[J„H]vanish on the allowed states of the theory.
Unfortunately, however, it seems difficult to im-
pose such constraints. For example, when the
charge density is given by (72), we find from (79)-
(81) that [J„H] is

(82)

if self-interactions are ignored and the definitions
of the operator inverses are used. " This expres-
sion does not vanish for any value of $ when p 40.
Essentially this is because the operator y, '/(p' —V')
in (79) "spreads" the point charges in (72) into
charge distributions filling all three-dimensional
space. Thus the constraint that (82) vanish on
allowed wave functions mill imply that these wave
functions are identically zero.

In the usual nonrelativistic magnetic-monopole
theories it is well known that one requires a con-
straint on allowed wave functions to insure angu-
lar momentum conservation. To see the need for
this constraint, however, one must go beyond the
static approximation and retain the contribution
to the current j ' (say) fromatleastoneof the par-
ticles. In this (p. =0) case no operators like p, '/
( p,

' —V') are present and operators like 3 ' which
are present "spread" the point current j ' out along
a line joining this particle to a particle carrying
type-2 charge. '9 Thus the constraint only amounts
to requiring that the allowed wave functions van-
ish sufficiently fast along this line and hence allows
a viable theory. We may note here, for complete-
ness, that if the current j ' is retained when p, &0,

then, besides (82), there are additional terms in

[J„H]which are nonvanishing everywhere. " The
presence of these terms may be shown by calcula-
tions similar to those indicated above and are due
to the effect of the operator p, '/(g' —V') on the
current.

There seem to be at least two different ways of
overcoming these difficulties connected with rota-
tional invariance. The first is to note that the
mass term for the gauge field can be thought of as
arising from the Higgs mechanism. Since the
gauge field is massless and the theory is rotation-
ally invariant before spontaneous breakdown (cf.
Ref. 4), a more careful treatment of the Higgs
mechanism may give a rotationally invariant the-
ory after spontaneous breakdown as well (cf. Ref.
21). Alternatively, since the difficulties with an-
gular momentum seem to be connected to the fact
that the "Dirac string" is regarded as a given
fixed object and not as a dynamical variable, an-
other approach to the problem may be to treat the
Dirac string as a dynamical variable, (cf. Ref. 8).
It is suggestive, in this context, that (82) vanishes
mhen both particles are aligned on the third axis,
that is, when (, =0. Both these approaches are
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currently under study.
Since the completion of this paper, it has been

brought to our attention that monopole theories
with massive gauge fields have been previously
considered" by Taylor and by Acharya and Horvath.
The last-named authors, in particular, point out
that the Dirac-Schwinger charge-quantization con-
dition is not expected to hold when the gauge field
is massive. Further new reports by Creutz" and

by Jevicki and Senjanovic" on very similar models

have appeared. The last-named authors have also
discussed questions of rotational invariance.
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