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It is shown that the scattering amplitude in $ theory obeys the renormalization-group equation in the
limit of high energy for fixed wide scattering angle. It is conjectured that this feature is common to all
renormalizable field theories involving spinor and/or scalar fundamental fields but no vector fields.

I. INTRODUCTION

The Green's functions of renormalizable quan-
tum field theories obey certain linear homoge-
neous partial differential equations, known as
renormalization-group equations' for large Eucli-
dean momenta provided the squares of all non-
trivial partial sums of momenta approach infinity
at the same rate (nonexceptional moment). Al-
though the asymptotic limit of Green's functions
for nonexceptional momenta is of no direct physi-
cal interest it nevertheless provides information
on the asymptotic behavior of the coefficient func-
tions in %ilson's operator-product expansion. '
Thus, it is related to the short-distance behavior
of electroproduction structuxe functions in the
Bjorken 1.imit. '

In this paper it is shown that, in certain field
theories, renormalization-group equations are
valid for certain exceptional momenta as well.
Specifically in a theory of scalar particles cou-
pled by a (Ij)4 interaction, the scatte~inI, amplitude
T(P, 8, m„,a„)as a function of the center-of-mass
momentum p, the scattering angle 8, the renor-
malized mass m„, and the renormalized coupling
constant X„obeys the asymptotic equation

(where A is the ultraviolet cutoff), the remainder
being of order I/P'. The essential point is that,
just as in the case of nonexceptional momenta,
the unrenormalized mass does not appear in the
leading asymptotic part of the amplitude.

The study of asymptotic behavior in perturba-
tion theory is most convenient in the framework
of Speer's analytic renormalization method4 which
is equivalent to the more widely used Bogoliubov-
Parasiuk-Hepp scheme. ' In Sec. II the Callan-
Symanzik equations2 and the renormalization
group equations are derived for the P4 theory
following the Speer method. Section III focuses
on the physical scattering amplitude and the proof
of Eq. (1). The main ingredients of the proof are
the asymptotic estimates obtained in Sec. IV.

In Sec. V the validity of renormalization-group
equations for S-matrix elements is explored for
other field theories. It is conjectured that they
should hold for all renormalizable theories in-
volving as fundamental objects scalar and/or
spinor fields but no vector fields. In theories
with vector fields only amplitudes for the scat-
tering of "neutral" particles are likely to obey
renormalization-group equations.

II. ANALYTIC RENORMALIZATION AND
RENORMALIZATION -GROUP EQUATIONS

FOR y' THEORY

in the limit P- for 8wo, m. The differential op-
erator on the left-hand of Eq. (1) coincides with
the one which appears in the renormalization-
group equation for the off-shell four-point Green's
function. It is likely that al/ multiparticle S-ma-
trix elements satisfy the renormalization-group
equations in this theory (in the limit where all
energies and momentum transfers grow at the
same rate) but the relevant analysis has not yet
been carried out in detail.

In a technical sense Eq. (1) follows from the
fact that in a perturbation expansion of the scat-
tering amplitude the Feynman integrals for p-~
behave like Po times some polynomial in ln(P/A)

Let Q{x) be a Hermitian scalar field whose dy-
namics arises from the classical Lagrangian den-
sity:

2 I 2 2 ~ 4z= ——,(s y)'--, n~'y' ——y'.

As mentioned in Sec. I, the renormalized
Green's functions will be obtained in perturbation
theory according to Speer's method of analytic re-
normalization. A specific choice of analytic reg-
ularization will be employed which consists in re-
placing the bare propagator (q + w —ie) ' by

{O2)P

{q'+ m' —ir)"P '
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A complex variable p is thus introduced for
each internal line of a Feynman graph. The real
positive parameter a which has the dimensions of
a mass is common to all propagators and ensures
that the regularized integrals have the same naive
mass dimension as the original unregularized ones
independently of the values of p parameters. It
can be verified (e.g. , by checking the naive degree
of divergence of subgraphs and using %einberg's
theorem') that if Rep,. &3I for all p, of a graph, the
regularized integral is convergent. The so-de-
fined regularized Feynman integra, l depends on
the external momenta P&, the (finite) unrenormal-
ized mass m, the (finite} unrenormalized constant
A. , and the parameter 0; furthermore, it is a
meromorphic function of the set of complex vari-
ables (p„p„.. . j. In fact, there is, in general, a
multiple-pole singularity at p, =p, = ~ ~ ~ =0. Follow-
ing Speer, one removes this singularity and de-
fines a finite unrenormalized integral at p; =0 by
applying the "evaluator" W which is the operation
defined by

p, &p

(2wi)" c p, v p,

dpn
X

( ~f(pz P2«««po)
Cn prf '

perm
nt ~

The sum runs over all nt permutations of

p„p„.. . , p„and C; is the contour
~ p; ~

=R, with

Let r&"'(p;, m, v, a) denote the finite, unrenor-
malized, truncated, one-particle irreducible, n-
point Green's function obtained by the above pro-
cedure and &z(p, m, v, A) the full unrenormalized
propagator. In terms of the renorrnalized nl„and
the renormalized coupling constant A.„,the condi-
tions

a,' '(p', m, v, Z}~~
a
, d.,' '(P', , m~v)[~ .„=Z-',

r")(p, , m, o, x)~, , = —z„z-'
express nl„, A.„,and Z as functions of nl, A. , and
G.

The renonnalized Green's functions I'~"' are
given by

= Z-"~'(n(, v, x)r&"&( p, , m„(m,v, x), x„(m,v, Z)} .

Equation (2) essentially asserts that the theory
is multiplicatively renormalizable. The differen-
tial equations of dimensional analysis for I'~" and

r~"~.ead

8 () 8P;„+(T—+m +n —4 F~")(p;, m, o, ~) =0,' aP,.„BO Bm

(2)

where

0' ~m„p(z„)=- 1—m„~G
1 v Bm„' BlnZ

y z, )= — 1— 0
2 m, Bv

The fact that the dimensionless quantities P and

y depend only on A„(and not also on Z) can be
established by looking at the asymptotic behavior
of I'"' and m(B/Bm)rt"' for large nonexceptional
momenta: p; =qp,', q-~. As will be shown in
Sec. IV, in every order of perturbation theory

I'&"& I ~"&-q4-~
r 0 r

8
— -I ~"&-q'-"

anl

within powers of lnq. Dropping the right-hand
side of Eq. (5) for q-™one obtains

( ot«, ) ~ «(«, )) o!"„',= 0," anl "
BA.

„

(7)

where I ~"~As is the asymptotic part of I'„"'which
clearly does not depend on Z. Thus, p and y can-
not depend on Z. Equation (7) is the familiar re-
normalization-group equation for the Q4 theory.

III. RENORMALIZATION -GROUP EQUATION
FOR THE SCATTERING AMPLITUDE

Equation (5) and its analogs in other renormali-
zable field theories are useful whenever the right-
hand side can be neglected (as in the case of large
nonexceptional momenta), in which case it leads
to a homogeneous linear differential equation for
the asymptotic Green's function, i.e., a renormal-
ization-group equation like Eq. (7}. The purpose
of this paper is to show that in (II)4 theory an equa-
tion like Eq. (7} is valid for the scattering ampli-
tude.

Consider the amplitude 1""for a process p, +P,

aE«,„~,+ -4) r',"'(o, , „„)=o.
Pfp

(4)

A straightforward combination of Eqs. (2), (3),
and (4) leads to the Callan-Symanzik equation

( o( .)
'

~ ( ,)) !"'"&m„"~A
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p3 +p4 where al 1 external masses are taken to be
equal:

p2 p2 p2 p2 ~2

Thus, I' "may be considered a function of m„m,
0, A. , the center-of-mass momentum p, and the
scattering angle 6 defined by (pl+p2)' =4p'+4me',
-(p, —p, ) = —2p'(I —cos8). The relation between
I" "and the renormalized amplitude r(') is

r"'(p, 8, m„»m, o, «)

= Z '(m, cr, «. )r»"( p, 8, m„m„(m,o, «), «„(»i,o, «)) .

From dimensional analysis one has

(
a 8 8 8

p —+ me + m +0 — r(4) =0,
ap ' a»~, by~ 80

p —+ me +»'r rr
8 8 8 (4)

p ~ pÃe 'mr

From the preceding three equations one obtains
the differential relation

( p —4. P(«„) + 4y(«„)
BP

" 8Ar

IV. ASYMPTOTIC ESTIMATES
IN PERTURBATION THEORY

The derivation of the renormalization-group
equations in Secs. II and III relies crucially on
the asymptotic estimates of Eqs. (6) and (6'). In
this section these results are derived for four-
point functions from a study of the asymptotic be-
havior of Feynman integrals.

Let G be a Feynman graph with four external
lines, I internal lines, and v vertices. The num-
ber of independent loops is I =I —v+1. Note that
all vertices are of the (Ij)4 type since no explicit
mass counterterm is used in the analytic renor-
malization method. It follows that I =2L and v
= L+1.

To construct the analytically regularized ampli-
tude associated with G, a (bare) propagator of the
form

(o')»'»(»f + m' —ie) '-»'»

is used for the ith internal line carrying momen-
tum q;. The resulting integral is convergent if
Rep; & —,

' for all i. If the I denominators are com-
bined via the "fractional-power" Feynman identity

,/8

r (4) por S

8 8 1
p2

(6')

within powers of lnp. Thus, one may drop the
right-hand side of Eq. (8) in this limit and write

(
8 8

p&+ p(«, )-,—, +4&(«„) r,",.', =O.
r

This equation is valid for arbitrary but finite
rn, . In particular, it is valid for the scattering
amplitude

Since dimensional analysis for T(p, 8, m„«„)
implies

In Sec. IV it is shown that to every order in per-
turbation theory for large p and 60 or m we have

r(n+Qp, )= nr(I p)

x xj'~dxj 5 xj — ) x, j) "

the L four-momentum integrations can be explic-
itly carried out to obtain the parametric form of
the regularized integral:

ya« " r(Zp ) p

(4 )" Qr(I+p» )

(gx»»'»dx, )6(px, —1)
IT (f/U+ m —it) ~i (10)

Here y~ is a numerical factor which depends on
the topology of G and is of no interest for this dis-
cussion. The Symanzik functions U and f are giv-
en by well-known topological formulas:

'=Z(II*)
P —+ m„T=O,

the differential equation for T can also be written
as

(
8 a.»ti4, I,—.4,r, I) 4 i», e, „4,I=4.

r

i = p ( 11 *,) P „*I4;I.
2

(12)

In Eq. (11) the sum runs over all tree graphs
T of G, i.e., over all sets of v —1 lines which
form no loops. In Eq. (12) the sum runs over all
two-tree graphs T, of G, i.e., over all sets of
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v —2 lines of G which form no loops. A two-tree
graph divides the vertices of G into two disjoint
sets. In Eq. (12) P „'(T,) stands for the Lorentz
square of the sum of the external momenta flow-
ing into one of these sets associated with T, . The
momentum P „(T,) shall be referred to as the two-
tree momentum of T,.

In carrying out the analytic continuation of
F(G, ii;) to the neighborhood of p; =0, Speer makes
use of certain topological concepts which will be
recorded here for the convenience of the reader.

Definition 1. A graph is 2-connected if it cannot
be disconnected by removing a vertex. Every
graph is the union of its maximal 2-connected sub-
graphs and single lines; these are called the
pieces of the graph.

From now on, it will be assumed that G is 2-
connected without loss of generality since the
amplitude for a general graph is simply the prod-
uct of the amplitudes of its pieces.

Definition 2. Two subgraphs of G are disjoint if
they have no common lines; subgraphs are non-
overlapping if they are either disjoint or one is
a subgraph of the other.

Definition 3. A singularity family of G is a
maximal family E of nonoverlapping subgraphs
of G, each 2-connected or consisting of a single
line with the property that no union of two or more
disjoint elements of E is 2-connected.

From definition 3 it follows that (i) G belongs
to E and (ii) for eachHe E, there is precisely
one line of H, called v(8'), which lies in no sub-
graph of H in E. Thus, there is a one-to-one
correspondence between lines of G and graphs
in E.

It is helpful to visualize the following hierarchi-
cal construction of a singularity family E along
with the corresponding function c(H). Begin with
G which, of course, belongs to all singularity
families. Choose as cr(G) any one of its lines.
If &(G) is removed, the pieces of G-0(G) will be
members of E. From each such piece H which is not
a single line choose as o(H) any one of its lines.
Then the pieces of H-0(JI) are also members of
E. Next choose o for each of the new pieces, etc.
Clearly, at the end of this process of removal of
lines one is left with a (tree) graph whose pieces
are all single lines —they are precisely those
members of E which consist of single lines.

Consider now the analytically regularized inte-
gral of Eq. (10) for a 2-connected Feynman graph
G. For each singularity family E of G define the
domain D(E) in Feynman parameter space by

D(E) =Ix&iii) xi if i:H) .

It is easily seen that (i) if EywEg then D(E, )

AD(E, ) is of zero measure and (ii) UD(E)

=(x; »0), so that

F(G, p;) = P E(G, E, p;),

where E(G, E, p;) is given by the integral of Eq.
(10) when the domain of integration is restricted
to D(E). One may thus focus on the contribution
of a single singularity family E. It is convenient
to introduce new "scaling variables" t„(one for
each member H of E) according to

Xq tH

Let I„andLH denote the number of lines and
the number of loops, respectively, for the sub-
graphH and set Q;, sp; =A„.The following rela
tions are easily established:

IIdx; = II dt„f„'H',

U = II f„'HU(f),
Hf E

f t, t„'H f .
Hi E

Here U and f are polynomials in the t variables.
In fact, they are linear in each t separately.
Moreover, U» 1 and U = I +0(t) for small t.

The t~ integration can be explicitly carried out
and yields

yc&"' I'+c) a ~,F(G E i)p=
4 gx IIF(I )

(+ )

II d, I q(„H:8 0 H

U'(j/0+ m+P, —ie)~c '

(13)

where p, =x, (t)/tc and d„-=4L„—. 2I„="degree of
divergence" of the subgraphH.

F(G, E, p;) must now be analytically continued
to the neighborhood of (p;=0j. It is clear that
if d„&0 the tH integration is convergent at p; = 0.
In P4 theory there exist subgraphs with d„=2
(self-energy parts) and d„=0(subgraphs with four
and two external vertices). The required analytic
continuation will be carried out essentially by
appropriately redefining the integration with re-
spect to the t variables of all such "divergent"
subgraphs of E.

For subgraphs H with d„=0, it will suffice to
make the replacement
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t AH-l~ H +t /IH-lg5(t )

AH
H ~

where ~H is the "difference operator":

~HI(

—g(. . . , 0, . . . }.

(14}

(15)

5(t„) 5'(t„)
H H

where

(18)

For subgraphs mith dH = 2, it mould be adequate,
for the analytic continuation, to replace t H ' by

without loss of generality, that

d fd 8

~td Od ~t (18)

d

Thus, the derivative in Eq. (17}can be replaced
according to Eq. (18) (Jf = d). After elimination
of the derivative with respect to t, by an integra-
tion by parts one obtains the relation

5(ta) 5 (ta)

d d

~' y(. . . , t, . . . ) =4(. , t, . ) —q(. . . , 0, . )

(17)

However, such a replacement would result in
the appearance, in the integrand, of multiple
derivatives of the quantity (f/l7+Q j3a —is)
and thus in several terms of the type

P„(f/U+QP,. n~' —ie)

with P„anNth-degree pol. ynomial in t:he invari-
ants P; p, . As a result the asymptotic estimate
mould require a detailed study of the structure of
f. The following procedure avoids explicit deri-
vatives. Let d=E be a self-energy part and let
x„x,be the Feynman parameters of the lines
joining d to the rest of G. Let U, and f,q' be the
Symanzik functions of d as a Feynman graph with
external momentum q. From the topological de-
finition of the Symanzik functions [Eqs. (11) and
(12}]it follows that the dependence of f and U on

xl x2 and the parameters of d is given by the re-
lations

f =Uaf, +[fa+(x, +x.}Ua]f„
U =U, U, + [f,+ (x, +x, )U, ]U„,

where f„,U„are the Symanzik functions for the
graph obtained from G by removing the lines 1,
2, and all of d, and f„U,are the Symanzik func-
tions for the graph obtained from G by shrinking
1, 2, and d to a point. In terms of the t variables
one obtains

f fa+(tg+t2+tafa/Ua)f.
U 0, + (t, + t,+ t,J,/U, )0„'
U = U, [U, + (t, + t, + ta fa/Ua) U„].

Note that f/U and U depend on the variablest„t„and td only via the combination
t, +t~+tafa/Ua. Actually, either 1 or 2 may be
a(g) withH ~d in which case the corresponding
t variable in the above formulas should be re-
placed by one. In any case, it may be assumed,

a~ '(t), f ~ p)(' - c
P(Ej( ) U~2+~ Pj 2

n (n)

(20)

where a„' '(t) is a product of factors like t„H,t„'s', t„'H ', 5{t„),-5(t-„—1), fa/U„andPt"
is a meroporphic function of the p's having zeros
at A„=0 for H in some subset E„of"divergent"
subgraphs in E. The subscript n indicates that
some t variables have been set equal to 0 or 1
inside the bracket. Note that the summation sign
cannot be taken out of the integral because there
are nonintegrable singularities in individual terms
which cancel only in the sum.

The application of Speer's evaluator on

F(G, E, p;) in the form of Eq. (20) results in a
finite amplitude at p; =0 given by an integral of
the form

Z(C, E)= dtH

(21)

The general term in the sum of Eq. (20) gives
rise to one or more terms of the sum in Eq. (21).
The highest power of the logarithm is equal to the
number of divergent" members of 8:
N(E)=-max X, =number of subgraphs H —F with

(~)
H

Equation (21) is the starting point in the deriva-

x[5{t,—1)-5(t,)-p, t, ~i-'A, ], (19)

in which explicit derivatives do not appear.
As a result of the replacements indicated by

Eqs. (14), (15), and (19) (carried out for all H~E
with d„0~)the integral in Eq. (13) takes the form
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tion of asymptotic estimates. Consider first the
case of Euclidean, nonexceptional external momen-
ta (i.e., such that no 2-tree momentum vanishes).
Set p; =0p so that f(x, p) =q'f(x, p') and

f(i, p) n
' f (t, p')

Uo' o 0

It will be shown later that the polynomial f(l, p')
does not vanish identically when certain I, 's are
set equal to zero or one as specified by the ~

functions in 6, . One then concludes from Eq. (21)
that F(G, E) is finite for is' = 0 since (i} the factors
In(f/U) are integrable and (ii) the poles in bt, ' are
still canceled in the sum as they are for all values
of m'. It follows that, as g-~,

-z(s)
F(G, E) —F(G, E)i..=, — in—

Furthermore, differentiation of Kq. (21) with

respect to m' yields

z(oa ,/II, ~~„=Pb& &(&)(~'
HCE,

(22)

where

As g- ~ the contribution to the integral of Eq.
(22) from any open t-space region in which f x0
behaves at most like (ln q)"t ' '/g'. On the other
hand, because of the fact that f is linear in each
l variable separately, the hypersurfaces f =0 are
of a, special kind. In the neighborhood of some
point ts= tz, at which f vanishes, f must be of the
form

where g +0 and the ~ s are linear combinations
of disjoint sets of I,~'s:

cH IH- tg,

E,. A E„=0 for i c j.
By introducing the ~ s as new integration vari-
ables, the asymptotic contribution of the neighbor-
hood of the point (t„=t„fcan be easily found to
be stronger than that of the fw 0 regions only by

a factor of (Lnq)". This establishes that

1
, F(G, E)- —

~ times some power of Lnq.
~m 17

Consider now the wide-angle high-energy limit
of the scattering amplitude. In the notation of
Sec. III, let F(G, E, p, 8, m„m, o, A. ) be the con-
tribution to I""associated with the graph G and

a particular singularity family 8 of G. The
Symanzik function f has the form

f (x, p) = p'f, (&, e)+ m'g (x),

so that

Ua2 o2 ~}l o2 U o2 8( }+ a2 QPJs

where again the tilde denotes that the product
g &s " has been factored out.

The asymptotic behavior in this case is obtained
the same way as in the Euclidean case except
that it is now based on fo not vanishing identically.
The resul. t is that as P approaches infinity,

p N(Q)
F(G, E)- F(G, E)

~
a —~~ -o- ln—

V

p
-ll

, F(G, E)- —ln — (n = integer).em' ' p' o

It must now be shown that f and fo do not vanish
identically when certain I' variables are set equal
to zero or one as specified by the ~ functions in

It is clearly sufficient to carry out the proof
for f,.

Recall that f, depends on the variables of a sub-
graph H with d (H}=2 only via the expression
l, + t, + t~ f„/U~ which, as is obvious from Eq. (19),
is never forced to vanish by the 6 functions in 6, .
Therefore, insofar as one is exploring the ques-
tion of whether f, vanishes identically or not, one
may replace each such expression by a single
new variable, e.g. , F. This means, effectively,
that each self-energy part in E together with the
two lines connecting it to the rest of G may be
replaced by a single line. Thus, it suffices to
see whether f, vanishes identically when t„=0for
all HHE, with d(H) = 0 (H a G).

From the definition of the Symanzik functions it
is easily seen that when the I; variables of the
above subgraphs are all set equal to zero, f, co-
incides with the corresponding Symanzik function
of the "reduced" graph G~ obtained from G by
shrinking these subgraphs to points. But G~ is
still a 2-connected four-point graph with only
(I)'-type vertices and has at least one loop. There-
fore, G~ has at least one 2-tree graph with 2-tree
momentum other than p„p„p3or p4. Thus,
its Symanzik function f for p, ' = p~ = p3 p4
namely, g~ does not vanish identically.

It should be pointed out that the above proof
breaks down in the fixed-momentum-transfer
limit: s = —(p, + p, }'-~, t = —(p, —p, )3 = fixed.
The reason is this: the dependence of the Syman-
zik function on s, t, and ~&,

' is given by

f =f,s+ f,t + grn, "",
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where f„f„andg are multilinear polynomials
in the Feynman parameters. For this asymptotic
limit of the Feynman integral to be mass indepen-
dent, f, must not vanish identically. But this is
simply not true for all graphs —there are reduced
graphs G~ which do not have P, +P, as a 2-tree
momentum. (The t-dependent one-loop graph is
the simplest example of such a graph. )

&a", t"
I
T

I
ha' &„,& a", ~"

I T( a, 6&„, (23)

It is clear that the asymptotic contribution of
the angular range in which both factors represent
wide-angle scatterings is again mass independent

V. OTHER FIELD THEORIES

The question naturally arises whether the vaLid-
ity of renormalization, -group equations for S-ma-
trix elements is a general feature of renormaliz-
able field theories or perhaps just an accident
for the p' theory. The following remarks are
speculative and are only intended to provide a
conjectural answer to this question.

Consider a generaL renormalizable quantum
field theory arising from a Lagrangian density of
mass dimension four or less. Such a Lagrangian
may involve fundamental fields of spin 0, —,', or 1
(see Ref. 7). At the tree-graph level the T-ma-
trix element for any two-particle process like
a+ b- a'+ b' behaves at most like a constant at
high energy and fixed wide angle. Moreover, this
"constant" depends on the scatteringangle andthe
helicities but not on the scale of the unrenormalized
masses (the perturbation expansion is considered
here as an explicit function of the unrenormalized
quantities and the ultraviolet cutoff). In order to
explore the possibility that this feature (i.e., the
mass independence of the high-energy limit)
continues to be true at the loop level, consider
the imaginary part of the one-Loop approximation
which, by unitarity, is given bg angular integrals
over products of the form

because each factor may be replaced by its wide-
angle limit.

However, the situation may be different in the
angular range in which one of the two factors is
a small. -angle process; for example, when the
angle between the momentum of the initiaL par-
ticle a and the momentum of the intermediate
particle a" is of order 1/vs (where Ws is the
center-of-mass energy squared), then the Large-s
behavior of the second factor in Eq. (23) is no
longer a mass-independent constant. It depends
on (unrenormalized) masses and it generally be-
haves like s~ where /is the spin of the "exchanged"
particle in the tree approximation. These
"unwanted" mass-dependent contributions to the
unitarity integral are of order s ' and they are
negligible' if 4&1. One is thus led to the con-
jecture that '.f the Lagmngian in&&olves only
scakrr or sPinor ficndamenfal fields tIze renor~nal-
ization-group equations are vatid for S-matrz'x
elements at high energy and n~&ide angle. In
theories uitlz vector fields the renormalization-
grouP equatzons should hold on1y for tIze scatter-
ing of "neutral" particles, i. e. , particles zolzich

carry no "char ge" or "color" to n~hich vector
mesons couple. As a consequence, in such cases
S-matrix elements will have a power behavior
(in the wide-angle limit) determined by the
anomalous dimensions of the relevant fields—
provided they approach ultraviolet stability.

In the presence of vector fields the situation
is considerably more complicated for 5-matrix
elements with "charged" particles in the initial
and/or final states. For example, in a theory of
fermions coupled to vectors (e.g. , massive QED)
the fermion-fermion amplitude in fourth order in
the coupling constant behaves, at high energy
and wide angle, like the Born approximation
times In'(s/M„'). Such "mass logarithms" are
to be distinguished from the cutoff logarithms
like ln(s/A') which are "organized" by the re-
normalization-group equations. '
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In t&t&4 theory there is no particle-exchange tree graph,
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but anyway the tree amplitude behaves like s0.
~This conjecture is supported by calculations in lowest

nontrivial order of perturbation theory.
The problem of high-energy wide-angle scattering for

vector theories and the related question of "organizing"
the mass logarithms will be dealt with in a forthcoming
paper in collaboration with J. M. Cornwall.


