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We make a detailed calculation of the s-channel discontinuities of the two-Reggeon cut in order to
see how the singularities of the Reggeon-particle vertices affect the weight with which an intermediate

state contributes to the cutlike part of the amplitude. We confirm the counting of Halliday and

Sachrajda for the Mandelstam graph and show the extent to which this result can be applied to more

general cut diagrams so that the results of Abramovskii, Gribov, and Kancheli hold. We also consider
amplitudes with vertices constructed from the precepts of multi-Regge theory {for instance, from a dual

model) in which the counting of terms is different: In particular, the simultaneous discontinuity through
both Reggeons does not contribute to the cut. The weight of a given n-particle intermediate state in

forming the cut depends crucially on the analytic properties of the vertex one chooses.

I. INTRODUCTION

The problem of Regge cuts is an old one. Al-
though cuts were first discussed as early as 1962
by Amati, Fubini, and Stanghellini, ' it was
Mandelstam' who in 1963 found a Feynman graph
in weakly-coupled Q' theory which possessed cut-
like behavior. In recent years, Regge cuts have
been studied not only in field theory but also in

the framework of analytic S-matrix theory. These
investigations were pioneered by the work of
Gribov, Pomeranchuk, and Ter-Martirosyan. '
In this context, White4 has proven that the Regge
cut corresponding to the exchange of two Pom-
erons in the t channel contributes negatively to
the total cross section, thereby reaffirming the
field-theoretic result of Mandelstam.

These studies were carried out in the t channel.
It is also possible to study Regge cuts in the s
channel. There the problem is, on the one hand,

simpler because one ean use unitarity as an aid
in one's investigation; however, this simplicity is
negated by the fact that a Reggeon is a complicated
object when viewed in the s channel. For instance,
in field theory it is composed of sums of ladder
graphs so that its intermediate state is made up

of a very large number of particles.
The advantage of an s-channel approach to

Regge cuts in two-to-two elastic scattering is that
the imaginary part of the two-to-two amplitude is
formed by taking the two-to-n particle amplitude,
squaring it, and integrating over the n-particle
intermediate phase space. This is just a conse-
quence of unitarity. So one can take the Regge-
cut amplitude, slice it in all possible ways so
that all different intermediate states are put on

the mass shell, and find what the contribution of
the amplitude is to the total cross section by add-
ing up the pieces. One finds that some slicings

are more important than others; these results can
then be used to build models of production pro-
cesses which, when squared, reproduce the dom-
inant parts of the imaginary part of the two-to-
two amplitude.

This program has been carried out by Abramov-
skii, Kancheli, and Gribov in a general frame-
work and in a detailed calculation of the Mandel-
stam graph by Halliday and Sachrajda. ' They
found that there are three types of slicings which
are important in building up the cutlike asymptotic
behavior of the Mandelstam graph. The first„
shown in Fig. 2 and discussed in Sec. III, is a
diffractive cut in which no Reggeons are sliced.
The second type allows one Reggeon to be cut
(see Fig. 8 and Sec. V), and the third slicing is
one in which a discontinuity is taken across both
Reggeons simultaneously (Fig. 5, Sec. IV). There
are a total of two diffractive slieings, four one-
Reggeon absorptive slicings, and one double slice.
If the Reggeons are purely imaginary, as is as-
sumed to be the case for Pomerons, slicing a
Reggeon is equivalent to multiplying the amplitude
by —2. If one assumes that the two-Reggeon-two-
particle vertex is unaffected by the slicings (de-
signating it as a constant N), then the discontinui-
ties add up to give a cutlike asymptotic behavior
to IrnA which may be written schematically as

ImA = 2N, N, + 4(- 2)N, iV, + 1(-2)(- 2))V, N,

= —2N~ N2,

exactly the negative of the diffractive contribution.
Howeve r, we noticed that in order to compare

the slices through one or both Reggeons with the
diffractive slice, it was necessary to take a sec-
ond discontinuity in the cluster mass in the two-
Reggeon slice. The two discontinuities involve
overlapping-channel invariants. Such double dis-
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continuities often vanish for certain ranges of the
kinematical variables. (It has been proven in per-
turbation theory that double discontinuities in over-
lapping kinematic variables vanish in the physical
region of those variables. ') For the Mandelstam
graph this is the case; however, the above count-
ing is restored by the presence of anomalous sin-
gularities (triangle and end-point singularities)
elsewhere in the complex plane. This restoration
is so striking that one might wonder if it is unique
to the Mandelstam graph. Indeed, one can write
down Reggeon-particle couplings which possess
only normal threshold singularities; then a count-
ing of

ImA =2 (for diffractive slicings)

+2(-2) (one —2 for slicing through
each Reggeon times
two Reggeons)

results, which again reverses the diffractive con-
tribution. The different counting has the effect
that a different set of production processes than
those of the Mandelstam graph maybe regarded
as important in generating the asymptotic cutlike
behavior of the amplitude. These couplings, as
well as those abstracted from field theory, may
be used in the construction of a Reggeon calculus.

The outline of the paper is as follows: Section
II introduces the kinematics and lays the ground-
work for an analysis of the Mandelstam graph.
Section III is a. study of discontinuities in which
no Reggeons are cut. In Secs. IV and V slicings
of two and one Reggeon are considered. Section
VI is a discussion of the generality of the Mandel-
stam graph results. Finally, in Sec. VII we in-
vestigate models (in particular, the dual model)
of the Reggeon-particle vertex which give a, dif-
ferent counting; the discussion is motivated by
the assumption that such amplitudes lack second
discontinuities in overlapping channels. If there
is a single statement which this paper makes, it
is that the singularity structure of the two-Reg-
geon- two-partic le vertex, throughout the entire
complex plane, is as important in determining
the weight of some intermedia, te state of the two-
Reggeon cut as is the singularity structure of the
Reggeons.

the graph in the first figure. The advantage of
this picture is that the various slicings which will
be taken can be seen more clearly; for instance,
the presence of a slicing through lines q„q„q„
and q, is readily apparent.

The amplitude corresponding to the Mandelstam
graph is

—2
A(sy f)

(2 )8

with

x f, , P(f, }s,"~ t'„P(t„)s,+, (2.1)

s, =(q. +q, )',

s, =(q, +q, )',

&( = (qg —q2) = —q(z

ir = (qg —q6) = —qrz

s = (Pi+P2)',

f = (P, -P.)',

(2 2)

q~i 'P =O (2.2)

—]pl =Q P s —p, p. =q + Hl' (2 4)

d'q; =~z Is Ido, d}3,d'q. .. (2.5)

+ '5 (Zqii}
The amplitude (2.1) becomes

(2.6)

P3

P2

and $;, (i(t;), and o. ; are the signature, vertex
function, and trajectory functions of the ~th Reg-
geon.

A more convenient parametrization, the Sudakov
variables, ' will be used in this work. We define

q. =n p +P p8+q

p. =(P, -p, m, '/s}, p, =(p, -p, ~g'/s),

II. KINEMATICS

The Mandelstam graph with its lines labeled for
future use is shown in Fig. 1(a). It will be more
convenient to redraw it in a planar form, Fig.
1(b); the outer box represents the lower part of

P2

(a) (b)

FIG. 1. The Mandelstam graph in (a) nonplanar and

(b) planar form.
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g du; dp; d'q;, 6(pu; —1)—2 s i 1A(s, i) —
(2 g(u; p;s —g +is)

x 6(pp,. -1)6'(gq, , )

x p(t, ) t, s, ~ p(t„) $„s„"".

(2. I)

The usefulness of Sudakov variables will shortly
become apparent. The inverse propagator of line

Ql is

This factorization is just a statement that the two
ends of the Reggeon are separated by a wide rapid-
ity gap,

One could proceed at this point to a discussion
of the discontinuities; however, it will be con-
venient to make a further change of variables to
aid in a physical understanding of what is going
on. Define the cluster masses of the two-Reg-
geon-two-particle vertices as

M, '=(q, +q, )'

—(p, +g)s- (q, ~+ q, ~ )

and that of line q, (=p, —q, ) is

q5 - ~ = —(1 —u~)(P~s —d ) —$5

(2.8)

(2.9)

2 2
Mj J 'QfJ )

M, ' =(q, +q, )'

(2.11)

where the Sudakov variables for the line p, are
u =1, p=d'/s (the mass of p, is d). In order for
these propagators to remain finite as s goes to
infinity P, -1/s and so u, —1. Similarly, if the
particle in the bottom lines of Fig. 1(a) is to have
finite momenta, p3 and p4 must be of order unity
and u, and u~ of order 1/s. These constraints
are justified by the fact that the behavior of the
amplitude at s-~ is sought, and the dominant
part of the amplitude therefore occurs for q2«s
on all internal legs.

The four-dimensional 5-function factors:

6(Q u- 1) 6(Q p —1)—6(u, + u, —1) 6(p, + p, —1) .

(2.10}

(us + u4)s {qgx +q~j. }

2 2
M2J —g, J (2.12)

(2.13)

where

A. (x y g) =(x+y —z)' —4xy

The integral becomes

and change variables from p, to M, ~'/s —p, and
from u, to M»'/s —u, . In addition, one of the
four transverse integrations may be performed
to eliminate the transverse 5 function and the
other transformed to

—is dt, dt„de, dM222e(- a) du, du26(1 —u, —o'2) dp~ du, dp, dp46(1 —p, —p4)

(2z) 16[-A(t t, t,)]' g (u, p;s —g +i~)

x p(t, ) ],s, ~ p(i„)]„s„~. (2.14)

As a final simplification one can do the integra-
tions over the 5 functions to eliminate one n and
one p, change variables from p2 and a4 to p2s
and (24s, and rewrite s, and s„ in terms of s:

dald s)d Q'l~ al)~ 1 —~l) f

(q —ni +is)
i =1 I2I5~6

s„=ul p4s = uz(1 —p~)s,

s, = u, p, s = (1 —u, )p,s. (2.15)

Ap3d Q. s)d q~ p) ~1 —p3

li +ZE
i =3,4, 7, S

(2.1'ib)

The amplitude becomes

A(s i)= ' " dM'dM's" " '
16(2v)' v'- Z

x B,(M,', i, t„t„)B,(M,', I, i„t„),
(2.16)

where

The first part of this expression is recognizable
as the familiar phase-space integral for the dou-
ble-Regge cut, the power behavior of s is cutlike,
and the final expressions are the two-Reggeon-
two-particle vertices, which are functions of M,

'
or M2' and t, t„ t„. This particular form of the
amplitude is valid only for the limit M'/s-0 as
s ~, for only then does the longitudinal part of
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q,' —rn, ' = —a, (P,s —d')- p,',
q, —m, =P, (Q~' —a4s —d )- p, 3',

q,' —m, ' = (1 —P, ) a,s —p.,',
—m7 = —p~(a~s —d ) —Q7

q,' —m, ' = —(1 —P, }(M~' —a,s}—p, ,',
(2.20)

where (q, =q, +q„and i = —q~'),

i5i q].l ~

q6i q].J + qf'

(2 ~ 21)

qvl q4J ~

P
q = —q —

q& {2.22)

q., =q„-q„
u, = (q, +q, )' = —M,~' —q„' —q, '+2d',

u, =(q, +q, )' = —M, ~~ —q„' —q~'+2d'. (2.23)

In the amplitude all integrations run from — to
+ 00

The particle-Reggeon vertices are analytic
functions of the momentum transfers 3nd the
cluster mass. They possess poles in the n and

P complex plane from the propagators, whose
position depends on the values of M' and the t's.
At some particular value of M' (say} two or more
of the poles may pinch the hypercontour in the
o. -p plane, and the two-Reggeon-two-particle
amplitude develops a singularity which corre-
sponds to a slicing of the graph: Following Cut-
kosky, the discontinuity across the singularity is

the phase space, the n and P 5 functions, decou-
ple. (A limit s-~ is implicitly assumed in writ-
ing the Jacobian as I/~s ~

in the transformation to
Sudakov variables. ) All the results derived here
are valid only in that limit. One can imagine that
the limits on the M integrals are not +~ but some
large mass +', where M' «M, ' for M' any char-
acteristic mass associated with the particle propa-
gators, but still with

(2.18)

(The integral over M' must of course be conver-
gent for large M'. )

Finally, a list is provided of propagators and

other kinematical variables for future reference.
They are

q ~
—pg = a ~ ()V2~ ~ —P~s ) —p, g

—'H7~ = (1 —&y} PoS p p

q, —m, =-(1-o.,)(M„—P,s —d }-p, ,

calculated by replacing (q' —m'+ ie) ' by
(-2vi}5+(q —m'). In addition, we will find gen-
erally that the pinching will only take place if
either Qt or Ps or both is confined to a restricted
range; for instance, the diffractive slicings, or
discontinuities across the normal thresholds in
the missing mass in the Reggeon-particle ampli-
tudes, are present onl. y for 0& a, &1 so that in the

equation for the discontinuity across that thresh-
old the o, integration runs from zero to one only.
The procedure which will be followed in determin-
ing the weight of a slicing (which is, of course,
completely general and does not apply only to the
Mandelstam graph) will be as follows:

(1) Draw a slicing in the graph which will separ-
ate the lines p, and p, from p, and p4 while leaving

p, and p„and p, and p„connected to each other.
{2) Look at the part of the amplitude composed

of all the propagators which were sliced in step
(1) and find if there is a pinch on the a, P hyper-
countour; if so, learn what sort of a singularity
in the external and internal variables it corre-
sponds to, and what the ranges of integration on

n and P are, such that the pinch exists.
(3) Calculate the discontinuity across the singu-

larity: place all the intermediate (sliced) parti-
cles on the mass shell and take the complex con-
jugate of the part of the amplitude to the right of
the slice.

(4) If it is necessary to take a second discontinu-
ity in one term in order to compare it to another,
do so. In these calculations this case arises when

the discontinuity of the amplitude has cuts in M'.
The M' contour, which runs from —~ to +~, is
wrapped around its singularities in a manner ana-
logous to techniques discussed by Rothe, ' so that
instead of integrating the function from M' = —~
to ~ one integrates the discontinuity of the func-
tion along the branch cut. Note that since the n, P
integrations are now bounded, new singularities,
not present in the amplitude, can be present in the
sliced amplitude in the form of end-point singulari-
ties. These must also be taken into account in the
contour rotation.

(5) Add all the discontinuities together to find
the imaginary part of the scattering amplitude.
From this expression the contribution to the total
cross section can be found. Actually, it is well
known that the contribution of the two-Pomeron
cut to the total cross section is negative, ' ' and
the interesting part of this calculation lies in
seeing how this result is obtained.

Step (1}must be guided by insight since there
are obviously an infinite number of slicings which
can be made. Arguments will be advanced to dem-
onstrate why only the particular set of graphs dis-
cussed here are important,
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III. DIFFRACTIVE DISCONTINUITIES

The diffractive discontinuities are so named be-
cause they do not involve slicing any Heggeons.
They correspond to the square of two-to-four pro-
duction processes with a large rapidity gap, ex-
cept that the lines are crossed. They are shown
in Figs. 2(a} and 2(b). 1 will call the slice involv-
ing q„q„q„and q, the "M' discontinuity" since

the pinching of lines q, and q, and q, and q, occur
at the M2 normal thresholds of the amplitudes By
and B,. Similarly, the slice involving q, and q,
will be called the "u discontinuity. " The M' in-
tegration over the B functions are performed at
fixed t, so right-hand cuts in u appear as left-
hand cuts in M2, and vice versa.

The M' discontinuities arise from the pinching
of the poles in the integrand

t

�du,
d(p, s}dp, d(u, s) 1

[P,(M» —u~s) —jl, +LE][(l —Po)u~s —p4 +sf] [a,(M» —P s) —p, +to][(1—a, )P s —po +i@]

and

—ZE
Qg =

M~~ —P2s

2 —ze
1

(3.2a)

(3.2b)

In order that a pinch between them can exist,
one requires

The pinching in n, and I3, and a4 happens separ-
ately and in an identical manner in each case (as can
be seen by just relabeling variables in the first
two propagators) and so it suffices to consider
the pinching in B, or B, only.

In the amplitude B„ the n, and p2s integrals
run from -~ to +. Poles lie in the e, complex
plane at

Then 0& a, &~ from (3.2a) and 0&1 —a, &~from
(3.2b), so that a pinch is possible only if

Q(~ (1. (3.5)

n

—2p jg q ~ ) Z'(&~ y(2&4
j=1

(This discussion assumes p, ,'&0 for all i; this
is true as long as the q, integration contour is not
distorted too far from the real axis. The positiv-
ity of p will be assumed throughout the paper).

The contribution of this term to the imaginary
part of the amplitude may now be caucluated by
replacing the cut lines with 5 functions and taking
complex the conjugate of the part of the amplitude
to the right of the slice; i.e.,

(M i' —p s) p s&0,

which is satisfied by

M„'& P,s &0.

(3.3)

(3.4)

(3.6)

with dQ„being the phase-space integral over the
intermediate on-mass-shell states. The M2 dis-
continuity of A is

oo

21~(s, i) =
)

~' " 8(- X) dM, dM s '+~ ' p(t, )(,[p(t,)g,]*sP s =o s oo
1& 2&

2 2

~Q, 4 P29) 4]]3, 4 Q4S)

II [-»i5(&™'}]d'q ~ d'& [(u )(1-P,}]~[(1-u}P,J '

(go —m o + i E ) (go —mo —i E ) (q 7
—m

&
+ i E ) (go —Bl —i f )

We now look more closely at the M' discontinuity of B, as formed by Eq. (3.6}:
21 IM] J

di „scB,o=(-2 i}vdu, d(p s)d q»( a)~ 1(—a, ) i

0

X&y(~j.x gS) P y ) 4( &g)P2 P2 )
[-(1—a, )(M»'-P, s d') p, '+ i e][-u, (-P,s d')--po' ie-J-

Performing the P,s integration over the second 5 function, we find
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1 2 2

disc~ 2Bq = (- 2wi) dn~ d &~~5 Mqj1

1

[n, (l-a, ) d' p, '-+ d, (g,' p, '-) ie]- (3.9)

The discontinuity exists along the surface

2 2

M, ~ =0
cy, 1 -(y (3.10)

and one finds [by minimizing p, ,'/n, +p~'/(l-o, ) with respect to o., and q] that this surface is a, cut in the

M,
' plane with a branch point at

&J,'= {~n, + ni, )'

The act of slicing the Mandelstam graph along the line of Fig. 2(a) has resulted in taking the discontinuity
of the box graphs B, and B, across their normal thresholds in the cluster mass.

The situation with the u discontinuities is similar. The pinch in B, occurs between the other two poles,
q, and q„and one finds a pinch can happen only if d' & P,s &M»' and 0& zy + 1. The u discontinuity of B, is

1 2 2

disc„8, =(-2vi)' do. , d'q„6 M„'+ " +

(1-~,)"'(o' )~
I &i(1 &i) d p i o'i(&s &i )+ f~]l o'i(1 o'i) d 02 + &i(v2 &6 )

Again the singularity surface is a cut with a branch point at

M, '=-(m, + m, )' —q„' —q, '+2d'.

This is the position of the u-channel normal threshold branch point in B.
Finally, let us calculate the contribution of the diffractive slices to the imaginary part of the two-to-two

amplitude:

v, ~2=a
dM, 'disc„2B, disc~ 2B,(, („*

u
2=1& g2J 2-O+,', ' dzsc„B,dzsc„,B,$,*$„ (3.12)

The amplitude B is closely related to the box
graph if the Reggeons are treated as particles of
mass t, and f( mcopare Fig. 3), the only differ-
ence being the presence of the (1-u, )"&(o,)~
terms. These terms do not affect the M' singular-
ity structure of the amplitude. With the external
masses p~lg p'H2 E) and t„small, the only singu-
larities of the box graph in the M' plane are left- dM dxsc„2B+

=pm 2
dM2 disc„B =0

=pm

(3.13)

and right-hand normal threshold cuts. An inte-
gral of B along the contour shown in Fig. 4 will
equal zero and so (since the function is sufficient-
ly convergent that the infinite semicircles do not
contribute)

(a) (b)

FIG. 2. Diffractive discontinuities: (a) I discon-
tinuity; (b) u discontinuity.

FIG. 3. The function Bf,. The Heggeons shown here
only represent the residual terms in the numerator of
{2.17).
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FI~3. 4 Singularity structure of 8&, the two-particle-
two-Reggeon vertex, in the M2 plane. The contour of in-
tegration leading to (3.13) is shown.

flf7h1 —ha)id Cut

dM; disc772B7(M;, t, t„ t„), (3.14)

the diffractive contribution to the imaginary part
of the amplitude may be written as

(3.15)

by combining the integrals of the left- and right-
hand cuts in M'. A technique due to Ref. 5 enables
one to simplify the expression. The Reggeons are
assumed to be simple poles of positive signature
and may be written schematically as

t)(t;) (;s 7-iD;. (3.16)

The two-Reggeon amplitude may be represented
a,s

A(s, t) = —i(iD, )(iD„) (3.17)

(all integrations and Reggeon-particle vertices
have been dropped). Then the M and u slieings
produce a Reggeon counting of

With the definition of the residue of the fixed pole
at j= —1

N;(t, t„ t„)

FIG. 5. Slicing through both Reggeons.

sliced in this manner is quite different from that
of the unsliced vertex.

Of course, there are many cuts which slice one
or both Re ggeons only part way, as in Fig. 6.
Such slicings in which the Reggeon is cut almost
completely involve the production of a very large
mass at the end of the Reggeon. They do not con-
tribute with cutlike asymptotic behavior if one as-
sumes that any amplitude in which a large q' is
carried on a, virtual line is suppressed (cf. Ref. 5).
In this case the line q decays into a. mass compar-
able to s and so the contribution of such a slice
is asymptotically small. (A q'-s is outside the
range of usefulness of the Sudakov variables, for
the longitudinal 6 functions no longer decouple:
One would not expect Regge behavior for such a,

slicing since the rapidity gap across the Reggeon
is small. ) Slices which cut a small number of
rungs (thinking of the Reggeon as a ladder) are
just corrections to the diffractive discontinuity;
they figure in the cancellation of the AFS (Amati-
Fubini-Stanghellini) cut in planar diagrams. "
Slices which cut a Reggeon completely in two are
important since this sort of cutting can be done
with the q" s sma, ll and since the discontinuity of
a Reggeon amplitude is proportional to that ampli-
tude.

In order to investigate the singularities result-
ing from the pinching of the two Reggeons, it is
convenient to write the Reggeon amplitude in a
dispersed form:

Imh = (iD, )(iD„)*+(iD, )+(iD„)

= 2(ImD, ImD„+ ReD, ReD„} . (3.18)
(;s ~=

where

—2 7T 't'

0 7'pl2, dlscm [ hi( 7 77)s-nI +ze
(4.1)

The overall factor of 2 is the weight with which
the diffractive slicings contribute to ImA. Equa-
tion (3.18) written in a form similar to (3.15) is

f7fA

disc~2[F7(777 ) i] = dlscm2, (777 )sinn o, ;

= —2i ()~~'} (4.2)

(2 ImA), .„=
dt, dt„e(-7) ~.. .
16(2m)'4- x

&& N, N, [2 (Im $ 7 Im t„—Re (7 Re $,) ] .

(3.19)

IV. SLICING BOTH REGGEONS

We turn next to the slicing shown in Fig. 5—a
eut down both Reggeons. The singularity struc-
ture of the two-particle —two- Re ggeon ver tex

FIG. 6. A slicing which does not contribute to the
cutlike behavior of A(s, t).
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The pinching may be sought between the denomina-

tors of the Reggeon dispersion relations. That is,
it arises in the expression

l 1
b [a,(l-ti, ) s- mi + ib][(1 —a, }p,s-n&, '+ se]

(4.3)

The p3 integral vanishes unless 1+ Ay+0, for
only then does one pole lie in the p3 upper half

plane and one pole in the lower half plane. %hen

the pole in s, is encircled, the pinching expres-
sion becomes

1 ' da, PP2~A=- S — — +26
s b a~(1 -ag) ag 1 —ag

(4 4)

Pinching arises along a branch cut in s whose
branch point is given at the minimum of

PP 2y' PP2g

S0= +
1-Qg

i.e. , at

S, = (PP2„+ PP2, )'

(which is expected}. Note that since the range of

a, over which the integral is singular as 0&a, &1.,

p3 is al so confined to 0 & p3 & 1 . The imaginary
part of A resulting from this slice is

1
(2 ImA) double ubr 16(2 au

Pt') S
dt, dt„8( a) „-

6PN
x .' disc p t, ) g, m, ) —2mi5(1-n, )p, s-PP2, ')

Cf PPx . disc„2[P(t„}$,(n:„')+][-2 is6(a, (l P, )s--ni„'))

1 OO

da, d(P, s) d'q»[(q, ' —m, '+ i e)(q, ' m, '+ -ie)
0 ~ OO

x(q, ' —m, ' —ie)(q, ' —m, '- ie)]-'

x dP, d(a, s)d'q, [(q,' -m, '+ i )(eq,'- ,m' i+a)(q, ' m, ' i-e)(q, ' m, '--ie)) '-
0 OO

(4.5'

The ie prescription for the propagators to the right of the slice is reversed because they are complex-con-
jugated.

After eliminating the 5 functions by doing the n2„' and PP2,
' integrations, we consider the cut 8].

duubleube & a (I &
P S) p +ib

1

[-(l-a, )(M„'-I3,s- d')-}db'+ ie][(l-a, )p,s-p. ,'-ib][-a, (t},s- d')-p, ,'-ib]

(4.6)

For 0& a, &1 the complex P plane has poles above
the real axis due to q, and q, and in the lower half
plane due to q, and q, (see Fig. t). Since the con-
tour of integration runs along the real axis,
neither the q, and q„nor the q, and q„poles
collide to pinch the hypercontour. A pinching of
the first two poles would lead to a singularity cor-
responding to the normal threshold in M, ' while a

qlX xq2
LP2S

q x
Q5 LP, S

X

X q Xq q
X q X

FIG. 7. Singularity structure of (a) (disc, B&)~,„„„,
and (b) 8& in the P&s plane, for 0&&& &1, showing the
integration contour.
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pinching of the last two poles corresponds to the
u -channel normal threshold. Such pinching occurs
in the amplitude B when 0&@&1;all the ic's of
(4.8) are positive and so the q, and q, poles lie in
the upper half plane, the q, and q4 poles in the
lower half plane. We must therefore conclude
that when the amplitude is sliced through both

Reggeons, the Reggeon-particle vertices possess
no normal thresholds in the cluster mass.

To show the absence of normal thresholds ex-
plicitly (and to find out if some other singularities
are present}, close the P,s contour about the q]
and q, poles to give

1 1

Wy /ng-+pg /ag+ 1, E d —pg /ng —ps /(1 —a~)-1 e

1 1

M» —d P2/-(l-a, )+p, /(l-a, )+ se d p, , /-n, iJ., /-(1- n) ie (-

(o, =x/ix i ), (4.7)

which appears to have the 1-2 normal threshold pinch. By a little algebra the propagators may be arranged
to give

[a (M '- d ) p+p, -+, ie][(l n, )(M, ~-d) p2—+g--ie]

1

-a, (l-a, ) d'+ p, ,'+ n, (p, ,'-p, ')-ie
1

—a~(1-a~) d + p, ~ + a~(p2 -p8 )+ l6

(4.8)

which obviously lacks the normal threshold singularity. However, if this function is integrated over M' to
find the fixed-pole residue, one sees that the M' poles lie on either side of the 18' axis; therefore, wrap-
ping the contour about one of them gives

f
00 40 2 2

dM, ' disc, B,=(-2vi)' dM, 25 M»'- d'- ' ' dn, d'q, ~(l-a, ) '(a, )~
~ oo ~ oo 1

x' 1 1
-n, (l-n, )d'+ p, ,'+n, (p,'-p, ,')+ ie -a, (l-a, )d'+y, ,'+ a, (p, ,'-y. ,')+ i e

(4.9}

The M, ' integral around the pole has been shown explicitly for comparison with (3.9). In both cases M, '
has been removed from the integral everywhere except in the & function; integrating over the & function
just eliminates it and the AP integration from the expression for N. In both cases one finds

o -ag(I —ag)d +pg ng(p+p5 g ) —ie -ag(I —ag)d +pe +ay(A2 —A8 )+ ~e
(4.10)

The contribution of this slicing to the cut can be
found by using the trick of Ref. 5: Slicing a Reg-
geon effectively changes the signature from 8 to
2i Imp. In addition, there is a factor of i from the
closed loop on either side of the slice (see Fig. 5),
and so the slicings through no and two Reggeons
combine to give

tX~ + Ctdt dt 8&-&)

&& (21m), Im), —2 Re(, Re(„+41m), Imf„), ,
(4.11)

which is still positive-definite.
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It is remarkable that two functions which have
such different behavior in the AP plane should give
identical answers upon integration over M', and it
is of some interest to investigate further to see
where this result comes from.

First of all, the phase space of the internal loop
momenta is bounded by the pinch requirement.
This boundedness introduces end-point singulari-
ties which are easily seen in the last two denomi-
nators of (4.8), at o.'=0 and o =1. In the denomi-
nator

for instance, an &, =0 end-point singularity is
found at M~ =~ and an &, =1 end-point singularity
at

i%I) ~ ——d + Q ~
—|J.6 —L E, (4.12}

n, (M„' —„l, s) —p, ,' ~ i e =0,

—(1 —o, )(M, ~' —P, s —d') —p. ,'+ ~e =0,

—
cubi (P2 s —cP) —$.8 + LE = 0

(4.14)

from which P, s has been eliminated, which is to
be minimized with respect to o'„P~s, and q, . A
direct calculation is not the simplest way to pro-
ceed. One can write the integral (4.6) symbolically
as

d4kX= dM —
2

— 2, )=1,2 5 6
s j

The branch points of this singularity lie at the
minima of (4.12) with respect to q, . But writing
p. ,' =q, '+&n, ', g, '= (q, +0)'+m, ', we see (4.12)
has no minimum in q~. This cut runs from -~to ~
in the M' plane. For the sake of simplicity the branch
line may be distorted into a semicircle at infinity.
Then, since the function is sufficiently convergent
at infinity (it vanishes like Vf, '), this cut will
give no contribution to the integral when the M'

contour rotation is performed. The same argu-
ment hoMs, of course, for the last denominator
of (4.8).

Other singularities may result from the pinching
of three propagators on the hypercontour [as can
be seen from Fig. 7(a)]. For instance, the first
and third denominators of (4.8) may pinch. Then
one requires

—n, (I —n, ) d'+ p, '+ o., (ij. ' —p, ') —is =0,
(4.13)

o., (M„' —d') —p, '+ii, '+i e =0

and the branch point in M' may be found by mini-
mizing these expressions with respect to & and q.

But it is unnecessary to perform this calcula-
tion. Equation (4.13}is actually the set of equa-
tions

and introduce Feynman variables ~,. to write

(4.15)

Then the singularity (4.14) occurs at

=0,

q. ' —m. '=0 i =1 5, 6

and a minimization of the denominator of (4.15)
with respect to k gives

g&,.q,. =0, i =1, 5, 6

which is the usual Landau equation for the triangle
singularity of lines 1, 5, and 6.' The other three
triangle singularities of the box graph arise from
the other three combinations of three propagators
in (4.8). If all propagators are required to pinch
at the same point, the M'-u doub1. e-spectral func-
tion results.

The plausibility of this behavior is evident upon
examination of Fig. 7(a): One sees that, even
though the i& prescription is mixed, the higher-
order Landau singularities still occur since the
J3, s contour is still trapped by them. Of course,
the Landau equations tell only that singularities
collide and not that a pinch results, but they can
be used to tell where a pinch which is known to
exist can be found.

It is also striking that the triangle singularities
should appear on the physical sheet. This comes
about when the cuts arising from the end-point
singularities are moved from the finite M' region
to infinity. In the beginning they lie along the M'
real axis from -~ to ~. Then they are pushed back
into infinite semicircles. But this distortion ex-
poses the triangle singularities (and the box singu-
larity} lying at complex le. Then the kP integration
is done. The end-point cuts at infinity do not contrib-
ute because the amplitude vanishes there; the integral
around the higher-order Landau singularities
reproduces the effect of the normal threshold.

V. ABSORPTIVE CORRECTIONS

We turn now to the slicings which will reverse
the sign of ImA given in Sec. III, those in which
one Reggeon is cut completely. These slicings
are shown in Fig. 8. They correspond to produc-
tion processes in which a multiperipheral chain
is produced and in which a Reggeon is exchanged
internally between points at the top and bottom of
the chain.

The analysis will be carried out along the lines
of the previous two sections; the singularity struc-
ture in the M plane resulting from these slicings
turns out (not unexpectedly) to be of an intermedi-
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ate nature compared to the two cases of slicing
no Beggeons or two Reggeons.

Writing the Reggeons via dispersion relations
as in (4.1) we see the cutting of Fig. 8(a) takes
place when the poles in

d~, d(P;) dP,d(P.s)
[s„—m„'+ ie][(1-o., )P,s —i),,'+ i ~] (a) (b)

P, (M, ~' —o.',s —d') —p, ' + i s (5.1}

with s„=o', (1 —P,}s, collide. The pinching, and its
constraints on the phase space, may be investigated
by evaluating the integrals one at a time.

Singularities lie in the &, plane at
(c)

m„—EC

(1 —P, )s
' (5.2a) FIG. 8. Absorptive slicings of the Mandelstam graph.

—gE
1 —Q

AS
(5.2b)

1

P, (M,~' —n, s —d') —p, '+ ie

The singularities in p3 lie at

(5.3}

Only if (1 —P, )P2 & 0 do the poles lie on the op-
posite sides of the o', contour so that pinching oc-
curs. Assume that the inequality is satisfied and
encircle the singularity (5.2b); then

d (&,s) dP,d(P, s)
P,s([1- (q, ' —ie)/P, s](1- P,)s —m, + je)

the position of the pole in the complex plane can
be determined. This is done by expanding the
denominator (e is, after all, infinitesimal) and
combining the 0(e) term from the expansion with
the & in the numerator. The only effect of the
terms multiplying E is to determine its sign, and
so the denominator is dropped in going from (5.6)
to (5.7).

Now the phase-space constraints may be esta-
blished: First, the only pinching solution to (5.2)
is that P, &0, 1 —P, &0, and 0«, &1. For a pinch
in the p3 plane, either

and at

(1 P )
P s(m, ' —se)
p2S —p2 + sE

(5.4)

(5.5)

(5.6)

-d'+M, ' —+,s&0,

P,s —g,2+m„2 & 0

and P, & 0 from (5.4), so 1 & P, & 0, or

-d2+M ~2 —& s & 0,

P,s —p, '+ m„' & 0.

(5.6)

(5.8)

I3sm '",—ie sgnp, s(m„'+P, s —y. ,'),P,S —I,'
(5.7)

where sgn(x)=x/(x~. The e in the denominator of
(5.5) must be raised to the numerator in order that

This second case can be excluded by recalling that
if 0& a, &1, the second denominator of (5.1) will
not vanish unless P,s&M, ', which is assumed to be
a positive number.

The discontinuity of the amplitude in s along
this slicing is found in a manner identical to that
of the last two sections:

(22 A)„,=,f '
d'— fdMdMff, 'dds(d, s*)f dd, f d(s),16(2r)' 0 0 0 +pg -d2

d 2

x . disc m„' g„m„' r a, 1 —p3)s-m')p t )p t )gs,

6(P, (M,.2 —o.,s —d') —p, '}6((1 u, )P,s —u—,'}
g (q,

' m, '+i.)g-(q, m, i.}-- (5.10)

1 r3r5r7 6ra

The first 6 function can easily be eliminated by doing the m„' integration. The heart of the calculation of
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the discontinuity is to be found in the integral over the inner box,

d(P, s) (n, )"~(1 —n, 1"'5((I —n, )P,s —~')
[u,(M„' —P,s) —p, ,'+ ie] [-(1—o,)( M,

' —P,s —d')- p, ' - ie]

1
[-o,( P, s—d') v-, ' ~e]

(5.11)

and the outer box,

d(o.s)d'e..(I —P, ) "(P,)"5(P,(I)f,.' —o..s —d')- u, ')

1
[-(1—P, }(M, ' —,) —p, ' —, «]

The P, integration may be used to eliminate the 5 function in (5.11):

(5.12)

d,d'q„(~, )" -'(I —o,)"~

[M, ' —p, ,'/(I —o. ,)- p, ,'/o. , + ie] [-(1—o. ,)(M„' —d')+p, ' -p, '+ ie]disc B ) = -2mi

1

[ p6 +-og(p6 —p2 ) +op( -I&,) d —ie]
(5.ls)

The first pole in the expression demonstrates
that disc, B, has a normal threshold cut in M,'.
Whenever M»' = (y. , + p, ,)' two singularities pinch
the u, contour at o, , = p, /(i, + p, ,); i.e., anywhere
in the range 0& a, & 1. The other two propagators
may simultaneously vanish at

2 2

M '+ ' + ' +2d'-it=0
1 —a n y

1 I

but this pinching takes place at

d2 ~ ~ 2 ~ 2~ gl/2(d2 l„2 ~ 2)

2d2

i.e., for
n I& 1 or n, & 0, if d'& 4m'. Therefore

disc, B has only a right-hand normal threshold in

M,2.

However, the normal threshold is not the only
singularity of disc, B in M. We see in fact that the
second propagator of (5.13) has a pole in the M
upper half plane, while the normal threshold lies
in the lower half plane. This singularity is "half"
of the ones encountered in the slicing of both
Reggeons: It is a combination of n =0 end-point
singularity (the o = 1 singularity lies at M' =~)
and, in conjunction with the third propagator, a
triangle singularity between q„q„and q, . There-
fore, when an M' contour wrapping is performed
to compare J disc, BdM' with J disc„2 8 dM', one
can enclose either the normal threshold or the
triangle-end-point singularity. The result is the
same:

-, [d'a, (I —n, ) —p, ,'+ n, (p, ' —p, ')-i,ej[-(I —n, )(M„' —d')+ p, ' —p, ,'+i&]

= dxsc„2B . (5.14)

The situation in the outer box is identical. The
integration over o.4s can be performed to elimin-
ate the 5 function and then an expression identical
to (5.13) results (except for a relabeling of all
the variables) which has only a right-hand cut in
M2' and, in addition, higher-order Landau singu-
larities and end-point pinches which lie on the
opposite side of the M' contour from the normal
threshold. Performing the M' integration about
either singularity gives a result of N2. The con-
tribution of Fig. 8(a) is, putting all the pieces
together,

dt, dt„&(-A)
(2imA},b, =,

( ),~ s ' ~ 'N, N,

x &, $„(-2), (5.15)

where the (-2) comes from the slicing of the
Reggeon.

Calculation of the discontinuities from other
graphs of Fig. 8 is carried out along lines similar
to those just described. In each case, when the
ranges of integration which are allowed for pinch-
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ing are calculated, it will be found that the vari-
ables ni or p, will range from 0 to 1, so that
disc, B will have only right-hand or only left-hand
normal thresholds inM' and, in addition, a com-

bination of end-point and triangle singularities.
For example, the slicing of Fig. 8(c} results

from the pinching of the propagators

l dn, d(P, s)dP, d{n,s)
[(1—n, )P,s —~'+ xe] [-n, (P,s —d')- p, '+ te] [-(1—P, )gf, ~' — ns)-p, '+ ie]

Comparison with Eq. (5.1) shows that the transformations

Ck ~1 —QI I)

P,- 1 —P, , P,s- -(P,s —d'),
M»' —n, s —d'- -(M»' —n, s)

(5.16)

(5.1&)

(5.18)

(5.19)

convert (5.1) into (5.16), so that the weight of this slice is identical to that of (5.14).
Since all the various discontinuities of the Reggeon-particle vertices enter with the same weight, one can

again use the Reggeon-counting scheme of Ref. 5 to see how the absorptive slices contribute to the imag-
inary part. The slicings of Figs. 8(a)-8(d) give respectively

(2 ImA),„,=N N, [(iD, )(- i6D„) +(iD, )*(-i6D,) +(i 6D, )(iD„) + (ioD, )(iD, )*]

= -8N,N, ImD, ImD„) (5.20)

where 5D=2iImD is the discontinuity in s of a Reggeon. The imaginary part of the two-to-two amplitude
resulting from a sum of the diffractive, absorptive, and double-Reggeon slice imaginary parts is

2ImA =2N, N, (-ImD, ImD„+ ReD, ReD, }

=-2 ' ', N, (t, t„ t„}N,{t,t„ t„)p{t,)p(t„)s &' ~ '(Im), lmg„—Re), Re/„).dt, dt, &(-X) (5.2 1)

If the Reggeons are nearly pure imaginary (Re) = 0), then the one-Reggeon absorptive corrections re-
verse the sign of the diffractive discontinuity of A(s, t ).

Vl. GENERALITY OF THE RESULT

How general is this result? Does it apply to all
field-theoretic vertices? Abramovskii, Kancheli,
and Gribov' present arguments that any two-
particle, v-Reggeon vertex should be unaffected
by different slicings. In our language, they write
such a vertex (Fig. 9) as

dy 5(y —p + p, ))
0

x -- ' ' o o. ;+ 6i)
—0O

IId(p; ) (p; ')(;)"'"d'q

(6.2)

N, = II '- ' 6(gn; +gn;)
1=1 i i

where Abs~R is the absorptive part of R in the
variable 8'= ys. But, they say, this is the same
as N: Equation (6.1) may be premultiplied by

where

Zi ~i Pi2i + Z; =k —)n +i@

(6.1)
(6.3)

and tt is the (2v+ 2}-particle blob. The cut vertex
in which p, of the v Reggeons are sliced, JLt, , are on
the left-hand side of the cut, and p,, are on the
right-hand side, is

FIG. 9. A two-particle-v-Reggeon vertex examined by
Ref. 5 in the study of slicings of multi-Reggeon graphs.
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and the contour of integration over y distorted
about the right-hand cut in R. Therefore Eq.
(6.2) equals Eq. (6.1).

The arguments do not work for the following
reasons: %hen the cut is made, some propagators
Z; or Z; find themselves to the left of the cut and
their +ic's change to -ic's. This changes the
analytic structure of the integral and quite differ-
ent behavior may occur in N,"'"&'"&. Also, the
limits of integration in n; and n; are not always
-~ to ~. The pinching of the singularities in the
Z s and in R which produce a normal threshold
occur only for some limited range of the integra-
tion variables, which might be different in differ-
ent slicings.

The contour distortion in y going from (6.1) to

(6.2) may encounter singularities other than the
one enclosed in (6.2) so that (6.1) and (6.2) differ
by integrals along these other singularities. The
singularity structure of B in the M' plane can be-
and as we have seen, is —generally quite differ-
ent from the singularity structure of a discontinuity
of B.

Despite these objections, the fact still remains
that all the slicings of the Mandelstam graph give
the same result. This happens because of the
great symmetry of the amplitude, which is masked
when the singularity structure of the vertex is
studied as a function of M'. For if the vertex is
written as an integral over P, and P„not P, and

M, ', it has the form (setting d' = 0 for convenience)

d(p, s) d(p, s}
(n, P, s —p. ,'+ ie)I-(1 —o. , )P,s —p, '+ ie] I(1 —o. ,}P,s —p, '+ ie](-o, ,P,s —p,'+ ie)

(6.4)

The amplitude has poles in P, and I3, which lie on

opposite sides of their contours for 0& a, & 1 only.
This constraint is at least as strong as any con-
straint arising from a pinching in the diagram.
Then, taking a slice of the Mandelstam graph con-
verts at most one of the propagators in each P

integral into a 5 function, possibly flipping the ie
of the other propagator, or flips neither or both
ie's (but never just one alone). But all these opera-
tions leave the quantity ff(P)dP unchanged.

Now if one follows a completely field-theoretic
program and builds one's Reggeons out of ladders
with n rungs, so that

K"(t lns }"
Reggeon =

n=O sn!

and studies the exchange of such ladders, summing
over n at the end of the calculation, one is justi-
fied in ignoring two-particle-two-Reggeon vertices
which are more complicated than the Mandelstam

graph. This is because detailed calculations of
these scattering amplitudes show that their energy
dependence is damped by powers of lns relative
to the Mandelstam graph. " "

These calculations have been also carried out
for two-particle-n-Reggeon amplitudes; a "nesting
hypothesis"" has been proposed where the leading
lns contribution to many-tower exchange is domin-
ated by the generalized Mandelstam graphs shown

in Figs. 10(a)-10(c}. But all slices of these graphs
leave N unchanged, as the following argument
shows.

R,

(b)

(c) (d) (e)

FIG. 10. (a)-(c) Multi-Heggeon cut graphs from the
"nesting hypothesis. " (d) -(e) Other multi-Reggeon cuts
whose slicings obey the rules of Ref. 5.

Consider the three-Reggeon cut of figure 10(b)
(with its labeling of lines). The inner two-Reggeon
cut (R„R,) is made of P integrals identical to
those in (6.4), with the exception that a, + n, = o.„
not 1 as in (6.4). But one needs 0& o.,&1 so that
the outer Mandelstam box does not vanish, so that
the poles in all the P integrals are aligned as they
are in (6.4). All slicings of the inner cut graph
have the same weight; then, in studying the outer
box one can replace the internal two-Reggeon cut
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by a "black box" four-point function: this reduces
the problem to that of an ordinary Mandelstam
graph, all of whose slicings have the same weight.
The argument may be generalized to any sort of
multi-Reggeon graph whose vertices are Mandel-
stam boxes or nests [Figs. 10(d) and 10(e)J. All
slicings leave the various N's unchanged.

The Reggeon calculus in its orginal formulation
by Qribov" uses the Mandelstam vertex as its
model for the two-Reggeon-two-particle vertex.
No explicit picture of a two-particle-n-Beggeon
coupling is given. Homever, if the "nesting as-
sumption" is used to construct these couplings,
the resulting Reggeon calculus will satisfy all
the slicing rules in Ref. 5. If one treats the
Reggeons as ladders in weakly-coupled P' theory
and takes as the Reggeon-particle couplings a sum
of Mandelstam graphs plus more complicated
terms, these counting rules are correct in the
dominant part of the multi-Reggeon graph but may
be violated in the next-to-leading lns order of the
amplitude.

Unfortunately, the ladder assumption which
produces this counting can generate in P' theory
only a singularity at j = -1+ O(g') at t = 0. The
singularity may be raised to j = 1 if vector particles
are exchanged. However, a result which is true
only for a restricted class of perturbation-theory
graphs (the slicing rules) is questionable if the
coupling constant becomes large (as is the case
in hadronic physics). We turn to another class of
vertices, which evade this last problem and whose
structure is rather different from field theory, as
an input in the construction of a Reggeon calculus.

VII. MULTI - REGGE AMPLITUDES AND VERTICES

So far in the discussion of Begge cuts no use has
been made of our knowledge of Reggeon-particle
vertices from another source: multi-Regge ex-
pansions of n-point functions. It would seem to be
a natural extension, in the calculation of Regge-
cut amplitudes from pole amplitudes whose analytic
behavior is well understood, that one takes the
vertices of the cut amplitude also to be closely
related to vertices whose behavior can be studied
in a more controlled environment. Indeed, the
only way one has to compare Reggeon-cut contri-
butions to pole contributions in the scattering
amplitude is to assume that one can obtain the
vertices of the cut from inclusive reactions and
then perform the phase-space integrals. Such a
program was first discussed by Muzinich, Paige,
Trueman, and Wang, "and has recently been ap-
plied to the Reggeon calculus by Capella and
Kaplan. "

The relevant vertex for the two-Reggeon cut is

shown in Fig. 11. It is a function of the variables

~'= (P, +P, +P.)',
&= (P 3+ Pg+ Pg)'

S= (P, +P, +P,)',

s;, =(P; P)',
fi = (Pi+ P6)'

f. = (P, + P.)',
f= (P, +P,)',

evaluated in the helicity limit

(7 1)

23 f

S)2= S23= S45= S56= S,
s-~, M', t, t„ t, fixed.

(7.2)

FIG. 11. The six-point function in the helicity limit
whose two-Reggeon-two-particle vertex is relevant to
the double-Regge cut.

One can imagine building the two-Reggeon cut
by taking two of these six-point functions, amputa-
ting the Reggeons on one of them, and gluing them
together. (The alternate method of gluing them
together as they stand is not done because if the
Reggeons were ladders, joining the ladders and

then summing over the rungs could lead to double
counting. ) The amplitude as it is drawn is planar
in the sense that if it were a dual model, it would

be planar with this particular ordering of external
lines.

At this point it is necessary to make assumptions
about the analytic properties of the six-point func-
tion. This is because our knowledge of the nature
of higher-order Landau singularities is very in-
complete and so, to get anymhere, assumptions
must replace (nonexistent) calculations. Follow-
ing the treatment of DeTar, Brower, and Weis, "
we assume that the amplitude is (in some sense)
dominated by its normal threshold singularities.
This assumption has a strong effect on the weights
of the various slicings, for double discontinuities
across normal thresholds in overlapping-channel
invariants vanish.

This assumption is valid in the dual resonance
model which has no cuts, only poles, in the channel
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invariants. A single discontinuity leaves a sum of
residues, but they are just numbers and lack dis-
continuities in overlapping channels. Further, a
dual model planar as in Fig. 11 has a nonvanishing
third double-spectral function: It has singularities
in both M' and u, and so the residue of the fixed
pole is not zero.

Although the dual model has no cuts, its reson-
ances lie along the real axis of the kinematic
variables, in the same place that normal thresh-
old branch points would be found if the amplitude
had them. The poles can be thought of as analogs
of the normal thresholds. There are no singularit-
ies analogous to the higher Landau singularities—
triangles or boxes. The dual model is an amplitude
dominated by its normal threshold analogs where
the domination is absolute: No other singularities
exist.

(I should remark that a two-Reggeon cut con-
structed with dual vertices is not the same thing
as a dual loop. It is really a semiphenomenologi-
cal object, well defined only for s- ~ and all mo-
mentum transfers small. )

One can proceed to write down the general form
of the six-point function satisfying the above as-
sumptions:

1 1';
2mi u —ue+ i

(7.4)

which is only an asymptotic expansion for the gen-
eral multi-Hegge amplitude but is exact (in the
Mittag-Leffler sense) for the dual model. The
Mandelstam vertex has a similar form for large
M: The vertex as a function of M' looks like

da, d'q f,(t(.'s}
M ~ —p( /a (

—p. 2 /(1 —n () + ts

analytic in the angular momentum and cannot be
reproduced by a Froissart-Qribov projection and
Sommerfeld-Watson transform. Following con-
ventional analyses" of the cut, we assume such
terms are absent. ] Further, each of the slicings
through one Heggeon (which here is a discontinuity
in some s;, ) possesses M' singularities only on
the right (M') or left (u). The labels are drawn on
the s;, 's only to indicate which slicings are taken.
The numerical value of all the s's is fixed by
(7 2)

The function g(M') of (7.3) may be written as

1 I';
2m~ M' -m '+ I

(M') + (u) = ~~

-s )a(t2'(( s)a ( (-g ( V2)

+ (-s„) "('(-s„}"2'g, (u)

+ other terms, (7.3)

dn, d'q, j,(p' s)
M,'+ p, '/(1 —n, )+ t(, ,'/a, + 2d' —ie

1
dn d'q, f, (p, 's)

where g(x) has right-hand singularities in x and
the "other terms" are entire in M' but may have
cuts in S. Performing the M' integration in the
cut graph by contour wrapping about the M' dis-
continuities, it follows immediately that the slicing
through both Beggeons does not contribute to the
cut because it lacks M' discontinuities: The con-
tour may be closed upon itself to give a weight of
zero. [This conclusion assumes that the "other
terms" of (7.3) are not constant in M', which
would lead to a constant infinity as the weight of
the two-Beggeon slice. Such a constant term is
a Kronecker 0 in the j plane: Such a term is not

1
+ dnd'q f(p s) (7 6)

A(s, t)= '~ ( i(, $, )s -" ' '1(s),dt, dt, tt( ~)-
where

as M' becomes large.
Now the discontinuities of the four-point ampli-

tude may be calculated. The simplest approach
is again via Sudakov variables. Write M, ' = o. ,P,s
and M, ' = n, P,S, and then the four-point function
becomes

sz
1(s)=,g dn, dp, dn, dp, o(1 —n, —n, )6(1 —p, —p, )

(—2 ((g

Q yells —Pl) + l t Q2P2S —ftl~ + SE.
(7.6)

After eliminating n„P„and the 5 functions, the
slicings can be computed. Taking a discontinuity
of A(s, t) is equivalent to slicing 1(s) and altering
the signature and closed-loop i structure. This
is another example of the techniques of Sec. II.

The two diffractive slicings are calculated by
requiring that the two M' or two u singularities
pinch the a, P hypercontour. Consider the M'
pinch. Following the rules of Sec. II, we see that
it can only happen for 0 & a, & 1 and 0& P, &1, so
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that

[disc I(s)Jd « = s g F I

1

x dP, 6(a,(1 —i),}s—m )
0

x 6((1 —a, )p, s -m, ') (7.7)

(7.10)

changing variables back to M, ' and M, ', performing
the integrations, and summing over the residues.
A result for the u discontinuity is found to be iden-
tical to (7.10) (for the same reason that the u and
M' discontinuities are equal in the Mandelstam
graph). The two diffractive slicings give a weight

x ((&Is + 5 & hq) ~ (7.11)

= P r r f sM *der 'nag * — '}

x 5(M, '-m ')

(7.8}

(7.9)

Now we turn to the four absorptive slicings.
Because of the form of (7.3) one of the sums of
resonances in (7.4) is eliminated by the slice:
Assume, for example, that s» is sliced and the
u-channel resonances disappear. Then

F,F, d~,dP,
disc, I(s)= s''as, , (-2«i)' „[a,(1 —P, )s -m + ieJ[(1 —a, )P,s -m, '+ ieJ (7.12)

disc, , I(s) = sg FsF dQ1
a r(1 —a i)

x s — — +$6
1 1

The integrations must be done in order: If the p2

integration is not to vanish, poles must lie on

opposite sides of the p2 real axis, so 0&a, 1.
Encircling one of the poles gives

s„. If both Reggeons are identical, these two
slicings must be considered simultaneously under
the class of discontinuities which preserve the
M' normal thresholds.

The two sliced I(s)'s and their associated signa-
ture factors are

disc, I(s) x (signature) = -i(2i Imp, )(g, )~

x i(I, + iI, ), (7.16a)

or

disc, [disc, I(s)J = [disc, I(s)J„«.

(7.13)

(7.14)

disc, , I(s) x (signature) = + i(2i imp, )(E, )

x ( i)(I, —-ii, ) .

(7.16b)

So if

disc, I(s) = I,(s)+ iI,(s),

then

I,(s) = —,[disc, I(s)J~,.«
1

1= —.NN .
2 1 2 (7.15)

The first i is for the closed Reggeon loop and is
complex-conjugated in going to (7.16b) because
the closed loop lies on the opposite side of the
slice. The function i(I, + iI,} is complex-conju-
gated in (7.16b) because the two propagators now

lie on the opposite side of the slice and their ic's
are reversed by complex conjugation. (Reference
to Fig. 8 may be helpful in visualizing these
changes. } The two expressions sum to

If the Reggeons have positive signature (pure
imaginary $), it is not necessary to calculate the
real part of disc, „l(s) in order to find the weight
of the absorption slicings. The reason is that
there is another slice through a Reggeon which
has only right-hand singularities in M, ' and M2'
but different signature factors: that is through

disc, I(s)x (signature)

= 2iI, (Im (,Re (, + He F„fm g)
—4ir, (lm t', lm $,

—,'-i(lm (,Re $, —Im(~He), )J . (7.17)

For positive-signature Reggeons the terms multi-
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plying I, vanish. The surviving term is

-4(N, N2/2)im ),Im F2 . (7.18)

Similar arguments combine the two slicings which
preserve the u-channel discontinuities into another
factor identical to (7.18), so that the sum of slices
through no Beggeons and one Beggeon add up to
give

2imA(s, t) = ' ~ N, N, (s)~ ' 2 'dt, dt, B( X)-

x ( ],g + ],$,* —4 Im ),Im $,),
(7.19)

which again reserves the sign of the cut for posi-
tive-signature Beggeons; however, the counting
is 2 —4= —2.

So we see that different sets of intermediate
states build up the two-Beggeon eut in a model
with cuts but no poles (the Mandelstam graph)
and in a model with poles but no cuts (the dual

model). The difference in the two results happens
because of the difference in strength of the higher-
order Landau singularities in the vertices. In

both these models the singularity structure of the
vertex is known unambiguously. The situation for
an arbitrary multi-Begge vertex is much less
clear. The problem is that in these various slic-
ings the results of theorems about double discon-
tinuities can only be applied after the M' contour
rotation has been performed. They are only valid
close to the physical region of the M' plane. There
is no guarantee that some other kind of singularity
will not be encountered at complex M' which must
be considered in addition to the integral of the M'
normal-threshold discontinuity. Indeed, these
relations hold for the Mandelstam graph —for
instance, the slice through both Beggeons elimin-
ates the M' normal threshold —but other singular-
ities appear in the complex plane to compensate.
The part of the counting in that case due to normal
thresholds is identical to the result we have found

here, 2 —4 = -2.
What does this result imply for the Reggeon

calculus? It would seem that there is no unique

Reggeon calculus, that one can build Reggeon cal-
culuses which have similar j-plane properties but
have rather different energy-plane behavior. In

fact, the energy-plane behavior desired by phys-
ical reasoning selects a particular form of the
vertices and gives a Reggeon calculus for one kind

of scattering different properties from one which

describes the scattering of a different class of

particles.
Consider first the high-energy scattering of

nuclei. It is plausible, for instance, that in deu-

teron-deuteron scattering the deuterons could
disassociate into protons and neutrons which could
then scatter independently off one another. Fur-
ther, it is not a bad approximation to regard the
nucleons in a nucleus as weakly interacting (phe-
nomenologically) fundamental f ields. A Beggeon
calculus with field-theoretic particle-Reggeon
vertices would probably provide a good descrip-
tion of these processes. It would obey the counting
rules of Abramovskii et al. for the particle-Reg-
geon vertices. However, there is still no reason
to expect that the Reggeon-Reggeon vertices would

have a field-theoretic structure, and so the count-
ing rules for these vertices might differ from
those of the particle-Reggeon ones. At any rate,
here is a case where, because the binding energy
of the nuclei is so small, the triangle and higher-
order Landau vertices lie very close to the phys-
ical sheet and must be taken into consideration in
calculations ~

A second example is not strictly a Reggeon cal-
culus but involves Regge cut amplitudes: cor-
rections to wide-angle hadronic scattering. Here
one imagines that the hadrons are made out of
weakly interacting fundamental fields, the partons,
and the Mandelstam graph is a model for, say,
m-m scattering. One can imagine scattering of
several constituents of the hadrons at once, lead-
ing to polyperipheral final states: the field-theo-
retic vertices again lead to a counting of 2-8+4.
Again, in higher-order processes slicing several-
Reggeon couplings might give different results
than in Ref. 5.

The situation is quite different for hadronic
scattering in the forward direction. The richness
of the hadronic mass spectrum suggests that the
Reggeon-particle vertex is dominated (in some
sense) by its resonance poles and normal threshold
branch cuts. While it is possible that the proton
could disassociate virtually into a proton and a
pion so that a polyperipheral reaction could occur
in a pP collision in the manner of Nandelstam,
the proton must move 200 MeV off the mass shell
for this to happen; One would not expect this
channel to be nearly as important as the cor-
responding deuteron disassociation. Indeed, be-
cause of the large pion-nucleon coupling constant,
one would not regard the pion and nucleon as free
and noninteracting. One might want to say instead
that the proton had become a virtual N~. So in
the scattering of systems of baryon number 1 or
0, a better description of nature might be via
vertices abstracted from the dual model. A 2-to-
m amplitude would be (in two-component language)
a sum of multiperipheral and diffractive produc-
tion which included elastic rescattering correc-
tions. The square of the production amplitude
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would give a Reggeon calculus with a j-plane
structure similar to that of a field-theoretic ver-
tex calculus, although the s-channel behavior
would be quite different.

It seems that writing down a Reggeon calculus
for two-to-two scattering does not lead to the
domination of two-to-n production amplitudes by
a unique set of processes. Rather, the reverse is
true. The most general statement that one can
make about the sum of slices of the two-Reggeon
cut is that the sign reve rsal takes the form

-R =8 —2(R+ xi+ 2x,

with x strongly dependent on the presence and

importance of the higher-order Landau singu-
larities in the vertices, and hence on the nature of

target and projectile: x=8 in the scattering of
nuclei, x=0 in the scattering of objects of baryon
number 1 or 0.

The calculation of the imaginary part of the two-

Reggeon cut amplitude by unitarity and the de-
termination of which production processes are
important in generating the cut is extremely am-
biguous. Not only is the internal structure of the

Reggeon important; the result depends critically
on the analytic properties of the Reggeon-particle
vertices throughout the complex plane.
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