
PHYSICAL REVIEW D VOLUME 11, NUMBER 8 15 APR IL 1975

Poles with both magnetic and electric charges in non-Abelian gauge theory~
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We show that a non-Abelian gauge theory with Higgs fields exhibits classical solutions which are both
electrically and magnetically charged. This represents a specific realization of the dyons discussed somt.

years ago by Schwinger. At the classical level the electric charge of the dyon does not appear tn be quan-
tized. We present some remarks in this connection.

I. INTRODUCTION

The possible existence of magnetic monopoles
has fascinated physicists since Dirac's classic
work' of more than forty years ago. The interest
in this subject' has been enhanced by a recent ob-
servation of 't Hooft' that classical solutions hav-
ing the properties of magnetic monopoles may be
found in a Yang-Mills theory' with spontaneous
symmetry breaking and with a suitable identifica-
tion of the electromagnetic field.

The magnetic charge is quantized according
to Dirac's condition. ' In particular, for an SU(2)
gauge theory with a Higgs field in the vector rep-
resentation the magnetic charge g is quantized to
have the value

The calculation of the energy is further clarified
in Appendix B. In Appendix C we discuss the intro-
duction of an electric charge for the string.

II. EQUATIONS OF MOTION

Following 't Hooft we will consider an SU(2)
gauge theory with a Higgs triplet. The equations
of motion are

Di'F„,. + ~hexa, .y = (},

&"D,A
—u'0+ ~4'0 = o,

where the covariant derivative D„ is given by

D~ = d~+ 8Ap&.

This is to be supplemented by the constraint equa-
tion

g= I/e. D)'F„,+ ~yxa, y = O. (2.3)

In this paper, we would like to extend the dis-
cussion of 't Hooft by showing that it is also pos-
sible to construct classical solutions having both
magnetic and electric charges. Particles with
both magnetic and electric charges had been pre-
viously discussed by Schwinger' and by Zwanziger. '
Following Schwinger, we will refer to such parti-
cles as dyons. In Sec. II we discuss the Yang-
Mills equations of motion. In Sec. III the boundary
conditions necessary are introduced. In Sec. IV
the calculation of the energy of these dyon solutions
is presented. In Sec. V we address ourselves to
the question of whether the dyons are stable. We
show that (at least for a range of parameter such
that the charged vector meson mass is comparable
to the Higgs meson mass) a dyon is energetically
not allowed to decay into a magnetic monopole by
emitting charged vector mesons. If there are
fermions in the theory the dyon may capture a
fermion to become a fermionic dyon. At the clas-
sical level the electric charge of the dyon is not
quantized; the connection with the quantization of
angular momentum is remarked upon. Appendix
A contains some details of our numerical analysis.

These equations correspond to the Lagrangian

with

ig 2 01 ot

{2.4)

and

We consider a time-independent (in the sense that
the gauge-covariant fields do not depend on time)
solution of the form'

(Rt I-1)

4', = x,J(r)j'er,

y' = &..II(r)/er .

2, is the unit vector x,/r.
This form solves the equations of motion and of

constraint if the radial "wave functions" satisfy

11



2228 B. JULIA AND A. Z E E

the coupled differential equations

HJ" = 2JK2 (2 6)

(2.7)

where we have used the constraint equation (2.3) and

Eq. (2.6). Thus, the charge is given by an expres-
sion of the form

(2.12)

r'K" = K(K' —J'+H' —1) (2.8)

The case discussed by 't Hooft' corresponds to
J= 0

A few remarks are now appropriate. Firstly,
notice that the form chosen satisfies the transver-
sality conditions

where i/i= (p p)'i'. It is easily verified that if
p = (0, 0, 1), say, then 6„„=@+3—B„A'„In the.
present case we find that the electric field is

d6'„= —x; „—[J(r)/er] . (2.10)

The electric charge can be written as

Q = ds;50i

d'xb; Fo;

d3~Bi x;—

8w
" JZ'e, r (2.11)

8;Ai = 0.
Secondly, since D,P = 0 the Higgs field and A', do
not directly influence each other as is evidenced
in Eq. (2.6) and Eq. (2.7). Thirdly, since the
spatial dependence of A', has the same form as
that of Q' and since F« = (D,A, )' we see that the
A. ', components of the gauge field almost act like
another isotriplet Higgs field in addition to Q'

[aside from the potential V(P)] had it not been for
the fact that (F„)' and (D, P)' appear with opposite
signs in the Lagrangian. This particular circum-
stance is reflected in the fact that the terms J'
and H' contribute with opposite signs in Eq. (2.8).
This will be discussed further below. Fourthly,
we have scaled out e so that the functions J, E,
and 0 depend on the coupling constants only through
the combination P' —= e'/X as is evidenced by Eqs.
(2.6), (2.7), and (2.8). Furthermore, the mass
parameter p. may be absorbed into r.

In a local neighborhood of a point in space (not
including the origin) the P field will point in a
definite direction in isospin space and one of the
three gauge fields will remain massless and hence
is to be identified as the photon field F„,. A
gauge- invariant definition is1, , 1

&„.=
i~i

O'F'„. i~). &.s. AP~@P.4"

where I is the scale of A,' and has the dimension of
a mass. (This scale will be introduced below. )

The function ( can be determined only numerically.
In contrast, the magnetic charge g is quantized
exactly as in 't Hooft's solution since K(r)-0 at
infinity and

1x —=- as r-~.ij ija e

By Gauss's theorem, g= gc/e.

III. BOUNDARY CONDITIONS

As r - 0 we impose 4- 0, H- 0, E- 1. Using Eqs.
(2.6), (2.7), and (2.8) we find J- const x r', H
-const &r', E- 1+ const &r'; the fields are dif-
ferentiable at the origin ensuring a finite-energy
solution. As x-~ the Higgs field approaches its
"vacuum expectation value, " that is, H(r)„= Ppr
+ ~ ~ ~ . From Eq. (2.6) we see that if K„=„Oex-
ponentially we may have J(r)„-„Mr+b+ ~ ~ ~ . M
is a parameter with the dimension of a mass and
sets the scale for J. The parameter 6 determines
the charge. As can be seen from Eq. (2.11) the
asymptotic form of Eq. (2.8) is then

r'K" = [(Pp)' —M'] r'K+ ~ ~ ~

and admits one particular solution decreasing like
e ', where a = [(Pp)' -M']"'. Thus we require
Pp, &M. In particular, the hope that the Higgs field
4 could have been omitted cannot be realized for
this type of solution. The A; components of the
gauge field act like an isotriplet Higgs field with
negative metric, and by themselves would cause
the other components of the gauge field Ai to os-
cillate rather than decrease exponentially as
+~00

We have studied the nature of the solutions to
Eqs. (2.6), (2.7), and (2.8). We have also integrat-
ed them numerically. The result is discussed in
Appendix A, and the general form of the solutions
is displayed in Fig. 1. We will just note here that
the electric charge can assume a nonzero value.
From Eq. (2.6), we see that starting with J"(0))0,
J stays positive, and the electric charge given by
Eq. (2.11}is nonzero. In the limit of small J on
the effect of J on the equations is small, and
thanks to the Higgs field, the solution should exist
as in 't Hooft's example with J = 0.

The Higgs fields ensure that our solution has a
finite energy but introduce two parameters A. and
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g which enter in the electric charge g(A/e', M/i(, )
Eq. (2.12). The electric charge is then apparently
continuous; we will return to this problem.

the covariant energy-momentum tensor coupled
to the gravitational field. The "gravitational" Ham-
iltonian density in this case has the form

IV. MASS OF THE DYON

The mass of the dyon is given by fdKXT» accord-
ing to the principle of equivalence, where T„, is

Kr = Fo 'Fog +Dog Do

This expression is gauge-invariant, of course.
Explicitly, the mass of the dyon is

K = ) 4 d(4,

= (44M„/ ')f 4 ((K')' ~ (K —1)''/2*' -', *'(4"2 —,'d(d')' K (4" 4' ) (4 /44 )(1 —d ) ) '' ',
0

(4.1)

where x=M)2r, M„= pi(, , 4 =H/M)Kr, 214= J/M(Kr,
and f' = d f/dx Some n.umerical examples are
given in Appendix A. Dyons are not much more
massive than magnetic monopoles. A dyon with
an electric charge Q-137e is only about 40%
heavier than the magnetic monopole (with g= 1/e).

In Appendix B we give some clarifying remarks
on the relationship between the "gravitational*'
Hamiltonian and the "canonical'* Hamiltonian.

V. STABILITY CONSIDERATIONS AND
CONCLUDING REMARKS

't Hooft's monopole is guaranteed to be stable by
topological arguments. " There is no such argu-
ment for our solution. We find apparently a solu-
tion for each M in a range of values 0«M &Pp. .
To answer the question of stability we should treat
the quantum problem. But that appears to be a
complex task, given the presently available meth-
ods, without knowing the explicit form of the solu-
tion. We will only give a heuristic discussion
based on simple energetic considerations. The
electric field of the dyon will polarize the vacuum,
producing W'W pairs. Here 8' denotes the
charged massive vector meson in the theory.
(For ordinary electrodynamics the intensity of
the field needed" to create a pair of mass m is
enormous, of the order e(E ~-nP. ) One member of
such a pair created far from the dyon will fall in
towards the dyon giving up an amount of energy
equal to - Qe/8 - im since the size of the dyon 8 is
of order 1/m, where rn is a combination of M(K

and p. ; g was introduced in Eq. (2.12). On the other
hand, it costs 2M~ to create the pair at infinity.
As one member of the pair falls in towards the
dyon it effectively loses its mass. Thus, we expect
the dyon to be stable provided &rn&M~. If the
charge of the dyon measured in units of 1/e is
small the dyon should be stable, at least against
emission of W's. A dyon with a very high charge

(in units of 1/e) may indeed radiate off W mesons
to lower its charge. This process cannot terminate
in the pure monopole since the numerical computa-
tion (based on the choice of parameters P' = 2)
presented in Appendix A shows that the mass of
the dyon (in units of M)K} increases slowly with

charge (in units of e). For example, the mass
difference between a dyon with Q-137e and the
magnetic monopole is only about 60M~. Thus, the
decay processes

dyon(Q)-dyon(Q —1)+ W

and

dyon(Q)- magnetic monopoles + (Q/e)W's

are kinematically forbidden (at least for P' = 2}.
Our argument does not preclude the dyon from
decaying via

dyon(Q)- (? bound state with Q —1)+ W,

where {?bound state with Q —1) represents some
possible solution with electric and magnetic charge
which we have not studied and which is unknown at
present. In any case, there must be at least one
state which has both electric and magnetic charge
and which is stable. We thus suggest that the

H/(M~r)

—J/(M+r)

FIG. 1. Schematic representation of the behavior of
H(r), J(~), and K(r). The functions H(r), J(w), and

K(r) correspond, respectively, to the Higgs field, the
time components, and the space components of the Yang-
Mills field.



2230 B. JULIA AND A. Z E E

magnetic monopole may like to capture 5' mesons
to convert it:self into a dyon.

We may endow our solution with a fermionic
quantum number in the following way. A fermion
may be introduced into the theory in the standard
manner. This fermion may then be put into orbit
around the dyon and be trapped by the electric
field and the Higgs field. If the fermion mass is
large, then the dyon will be energetically stable
against emission of antifermions.

Schwinger' and Zwanziger' had argued that if
particle i has electric charge e; and magnetic
charge g; the quantization condition of Dirac should
be generalized to read

e;g; —e,g; = n = an integer .

This would imply that the electric charge of our
solution should be

Q= ne,
or, equivalently,

We see no evidence at the level of our calculation
that the quantity on the left-hand side should be
equal to an integer with the three parameters e',
A/e', and M/ii taking on arbitrary values. In

fact, if for some reason I(X/e', M/g) can only
take on discrete values for any choice of X/'e' and

M/p. and if the argument of Schwinger and Zwan-

ziger is relevant for the present case, then one
would apparently be faced with a mysterious con-
dition saying that the theory will only make sense
for some definite value of e'. Of course, it may
well be possible that some such quantization con-
dition will emerge when one extends the present
classical discussion to a quantum discussion.

In the argument" of Sahd and Wilson, the quan-
tization condition emerges when the angular mo-
mentum of a magnetic monopole in motion around
a dyon (or an electric charge) is quantized. In
our case the electric charge distribution and the
magnetic charge distribution are not separated.
The angular momentum of the solution is clearly
zero. While it is possible to envisage classical
solutions with an electric charge in orbit around
the dyon we do not yet know how to write down a
solution representing a magnetic monopole and a
dyon. Another suggestive connection between the
angular momentum and the quantization of charge
is described in Appendix C for the case of the
Abelian Higgs model. In conclusion, the price for
the introduction of the Higgs fields, which are
necessary for the convergence of the energy, is a
nonquantized electric charge. The nonlinearity of
the Yang-Mills equations was not sufficient for our
very symmetrical solution to ensure discrete
values for the charge at the classical level. Be-

sides the possibility of a quantization at the quan-
tum level, it is of interest to look for less sym-
metrical solutions which could not be reduced to
an "Abelian Dirac string" form in a specific gauge
but about which very little is known at the present
time.
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APPENDIX A

We did the numerical computation choosing the
parameter P' —= e'/X = 2; all the parameters are
then of order 1 and M~ = ~2p. We have to solve
a system of three coupled second-order differen-
tial equations. We may impose six boundary con-
ditions

H(0) = J(0) = IC(0)- I = 0,

Z(r) 0, -
(A 1 )

(A2)

(A3)

H(r ) —Pp, -0 (A4)

as r-~. In practice we will impose j"(0) = C and
not Eq. (A3}. We use a very elementary approxi-
mation procedure: Starting from the origin with a
set of parameters C = J"(0) fixed, D = K' '(0),
E = B"(0) arbitrary, we adjust them to fit the
boundary conditions at infinity. The asymptotic
form of Eqs. (2.7) and (2.8) gives the general
solution Ae "+Be'" + const for B/r and E. Ad-
justing the parameters with a precision e ' should
give us a coefficient J3 of that order of magnitude,
and in fact we find good approximate solutions for
r up to 6/b.

We give here two solutions (n —= e'/4vfic is the
fine-structure constant):

(i) Q = (0.324e)o. '= 44e, E = 1.25Mivo. ' = 171M~,
(ii) Q = (1.235e)a '=169e, E = 1.85,~~-'=253M .

For comparison, note that for the monopole
(iii) Q = 0, E = 1.18M~a ' = 162M~.

We may make two remarks:
(a} The convergence of our approximation pro-

cedure is about the same as for 't Hooft's mono-
pole solution.

(b) The dependence of the dyon mass E on the
charge is regular.
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APPENDIX 8

In the text we appealed to the principle of equi-
valence and used the time-time component of the
energy-momentum tensor to compute the mass of
the dyon. One may, however, also insist on con-
sidering the canonical Hamiltonian (in Coulomb
gauge 8;A; = 0):

&. = Fo ~OA +Do%'~OS —&

where F„=F„+F„with 8;Fp& = 0and E'&&pB;Fpy = 0.
(For a static solution JC, is equal to the negative
of the Lagrangian. } The longitudinal components
F„are not independent. Writing them in the gra-
dient form F~o = —8;f, one may determine" f in
terms of A; &F„. By using the constraint equation
(2.3) one may show that the two Hamiltonians
differ by the surface integral

rr'. tx, -z,)=- Jas,.tr. , r..r a~.
and thus generate the same dynamics (in our case).

In our solution a,A; = 6, but

1 „j(r) d j(r) 1 „MbF A=- —x - —x. --- for r-~
e r 4r x e r

and the surface term does not vanish. But it is
gauge-dependent and unphysical; if we compute the
work necessary to bring a small charge 5Q from
infinity to a finite distance, at constant potential
A„at infinity, the surface term cancels out. It
is worth remarking that the surface term here is
just QM.

Let us consider the dyon with electric charge Q
and described by a classical solution of the form
given by Eq. (2.5) withA;-Mx, as r ~. We-
will refer to this equilibrium state as {1). By a
gauge transformation with the group parameters
e, = e5Mtx, u(r) [where u(r) is a smooth function
which -1 as r ~] one m-ay effect the following
changes in the potentials at r = ~:

Mo= 5Mx, , 5A; = 0, and 5Q' = 0.
This of course describes the same dyon; in this
formAO- (M + 5M)x, as r-~. Let us consider
another state, to be referred to as (1'), which
consists of this dyon plus an infinitesimal charge
5Q at infinity (spread out over a thin spherical
shell of infinite radius, say). We wish to compute
the work necessary to bring the charge 5Q in from
infinity to form a dyon with charge Q+ 5Q, a state
to be referred to as (2). This work is equal to the
difference between the values of the Hamiltonian

for the final state (2) and the initial state (1'),
keeping the boundary conditions fixed. Using the
Hamiltonian H~ we find the work W,

W = H~(2) —H~(1') = H~(2) —H~(1) . (Bl)

The last equality follows because the charge 5Q
does not contribute to the energy of the field. To
argue this we picture the situation physically as
a dyon located at the origin and surrounded by a
thin shell of radius R and charge 5Q. The infinit-
esimal. increase in the field energy is 4wQ5Q jR
-0 as R-~.

On the other hand, using the canonical but gauge-
dependent Hamiltonian we find that the work neces-
sary

W' =H, (2) —H, (l'), (B2)

but H, (1') = H, (1') + (Q+ 5Q)(M + 5M ), where we
have used the previously mentioned fact that the
difference between the two Hamiltonians is equal
to the product of the total charge and the value of
the potential at infinity. Thus, using H, (2) = H, (2)
+ (Q+ 5Q)(M+ 5M) we find W' = W as desired.

The prescription to keep the boundary conditions
fixed is crucial in the derivation of the equations of
motion, and also in the elimination of the super-
fluous degrees of freedom, when we express A. o

in terms of A„& E, . In the present case the bound-

ary values are nonvanishing and the necessity of
keeping them fixed is especially apparent.

APPENDIX C

(44 )' (Cl)

where D„P= (a„—ieA „)P and u.
' & 0. Nielsen and

Olesen" have pointed out that this theory admits
a stringlike classical solution with finite energy
per unit length. We would like to ask if a solution
of the form

A„= (h(r}, yf(r), xf(r), 0)-

@ = O(&)e'"'

(r = radius and 6 = azimutha. l angle in cylindrical
coordinates) can exist. [In the solution of Nielsen
and Olesen" h(r) = 0.] With a nonzero A, the solu-
tion contains an "electric" field E; = I'„= —BP
= —f'ji'. (Here f' is the radial unit vector and
h'= dh/dr }Of course. , in this theory all the vec-

In this appendix we present some remarks simi-
lar to those in the text but for the case of ar
Abelian gauge theory. The theory to be considered
is scalar electrodynamics:

& = (D„0)(D"4 )' '&„.F"" + -i '00-'
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tor mesons are massive and E& is not an electric
field in the usual sense. Nevertheless, the angular
momentum density is still given by E &B and the
solution would have a spin. We will conclude that
this situation implies infinite energy per unit
length. The covariant energy-momentum tensor
ls

This may be dropped since the boundary conditions
are f- constant, h - constant, p —constant r" as
r-o, and p-(p'/X)"', h-(w/2g)"'e ',
i;= (2p'/A. )"'er, f-n/er' as r-~. The first
term in Eq. (C2) is just the canonical expression
for the angular momentum and for k = 3 has the
explicit form

~„.= (D~A)(Du 4) + (D„0)"(Dud') F„i-Fv'

-g„,Z.
J, = 2m dz dry -2enhp' .

0
(C4)

The angular momentum is given by
The combination (-2e%p') may be recognized as
precisely the "charge" density, however:

JP 'EP jP d X X)TPj QjTP2 ~ a "I = —2e'h p'
pp (C5)

By using the equation of constraint

a„F, +fed D,P —ie(D,Q) y= 0

and by integrating by parts, we find that

Jq= e]j~ d s x] Dpgbj@+ Dpg 8j

(C2)

+ x; F, sp4 „+F„A, I

d'x8 A)A j I'0 (C3)

d'xa (f r'fh').

The last term in Eq. (C3) is a surface term and
for k = 3 has the explicit form

Thus, we find a relation between the angular
momentum and the charge (per unit length if one
prefers):

Z/q= n/e.

This would connect the quantization of charge and

angular momentum. We note, however, that a
solution with nonzero charge must necessarily
have infinite energy (per unit length) since Q
= fd'xV E= f~&„&dS E —f~~,&dS E, where S(~)
and S(0) denote cylindrical surfaces at r = ~ and
at r = e (e —0), respectively. Since E-0 expon-
entially as r-~, the charge is nonzero only if
iE(- I/r as r-0, i.e. , h -logr as r-0. In that
case the string has infinite energy per unit length.
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