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We present a diagram technique to isolate the leading singularities in the vacuum expectation values

of current products, thereby making it possible to study the question of convergence of spectral-function

sum rules associated with the currents. Working within asymptotically free theories, we derive certain

sum rules, notable among them being Weinberg's first and second sum rules, which are shown to be

valid if the strong interaction is globally SU(2) X SU(2) invariant.

I. INTRODUCTION

Sum rules" involving integrals over the current
spectral functions have, in recent years, pro-
vided a useful tool in studies of low-energy had-
ronic processes, most notable among them being
the successful calculation of the ~+-m' mass dif-
ference by Das et al. ' and the prediction of the
A, mass' by Weinberg. Derivations of the sum
rules, 4 however, have always been based on
phenomenological assumptions such as asymp-
totic symmetry or the possible nature of
Schwinger terms, etc. , and have never been al-
together satisfying. This is, of course, largely
due to our ignorance about the nature of strong-
interaction physics. Some years ago, using the
method of short-distance expansion of operator
products, Wilson' discussed the question of con-
vergence of these sum rules and their derivation
and, in particular, showed that the spectral sum
rules involving the p-&, combination used in the
m'-7l' mass difference calculation can be derived
in the exact SU(2)x SU(2) limit of strong interac-
tions, ' independent of its detailed nature. With
the recent progress in gauge theories, it has
been suggested' that asymptotically free "color"
gauge theories may be used to describe strong-
interaction processes. Et is therefore of interest
to investigate the validity of the spectral sum
rules in these theories. For this purpose, we
will use Wilson's method to isolate the "geometri-
cal" structure of the most singular terms in the
short-distance expansion of current products. We
will present a diagram technique which helps us
to write down the geometrical structure in asymp-
totically free theories. We will then be able to ex-
amine the validity of the various existing sum rules
and derive some new ones.

II. THE WILSON PRESCRIPTION
AND THE DIAGRAM TECHNIQUE

Let us define the current propagator function as
follow s:

6„'j,{q, V) = i e""d'x 0 T V„' (x V,', 0) 0

, V,"( ', V)
4 f/4 PPl

m 2

6„",{q,A) is defined in a similar manner.
Derivation of the so-called first and second sum

rules require that the suitable linear combination
of ~'s vanish respectiv ly as follows for large q'.

lim P C', ;. 'b, '„', (q, a) = 0
q2~ oo

~ &j
a= V, A

lim q' P C'; &",(q, a) =0.
~ oo t, j

a=&, A

To estimate the asymptotic behavior of ~'s,
observe that in the short-distance expansion of the
T product only I, Uo, U„and U» [since we are
working within an SU(4) framework] will contribute,
i.e. ,

& o[T(v„(~)v„(o)j[ o&

~H„„(x)+H'„",(x)(ol U010)

+et'„'(x)& 0) U, (
0)+H'„',)(x)&0( U„) O&. (4)

Next, we observe that since the V„' transform
a.s (1, 15)+(15, 1) under SU(4) x SU(4), and also
since me are interested in the vacuum expectation
values, the representations that survive in &„, are
(1, 1), (1, 15)+(15,1}, (15, 15), and (84, 1) +(1, 84).
The other representations contained in this product
are (1, 20")+ (20", 1) and (1,45) + (45, 1), which, of
course, have zero vacuum expectation value. On
the other hand, I, U„U„and U» belong to the

(1, 1) and (4, 4*)+(4*,4} representations of
SU{4)x SU(4).

Notice, first of all, that if SU(4) X SU(4) mere an
exact symmetry of the Hamiltonian (not necessar-
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ily preserved by the vacuum), then the operator-
product expansion (OPE) would have to preserve
this symmetry and therefore U„U„and U15
would never appear in the OPE. Then the differ-
ence of any two 4's would go asymptotically faster
than 1/q"' and one would obtain the first and sec-
ond spectral sum rules for all of them. SU{4)
&SU(4) is, however, not a symmetry of the strong-
interaction Hamiltonian, and is broken by quark
mass terms, which transform like (4, 4*) +(4*,4)
under it, i.e. ,

(a) (b)

FIG. 1. Lowest-order diagrams contributing to the
leading singularity of H. The crosses stand for the
mass operators.

+Iiiv + ~OUO+ ~8 8+ ~15U15 +tnv + q +q ~ {5) b, '„","(q;A} ~ K&', (q) Tr(X; SIIX, II}
q2~ 00

Therefore, to get the singularity of the H„„'s, we
must do a spurion analysis in the manner of Wil-
son. (qDRq denotes the quark mass term. )

A. First sum rules

Note that since currents have dimension three
and U's have dimension three in asymptotically
free theories for small x', H&'„(i =1,2, 3) have
singularity x ' and therefore their contribution to
&'s is convergent enough to yield the first sum
rule. (Their contribution to &'s goes like q '.)

We will therefore concentrate our attention on

H„„(x) to see which of the first sum rules are con-
vergent and which are not. H„,(x) is the coefficient
of I in the OPE and therefore for a linear combina-
tion of 4's which transforms like (15, 1)+(1, 15)
or (15, 15) under SU(4) && SU(4) [denoted by
6„",'"(q, V)] one must take the mass operator
twice along with the currents. Therefore, to iso-
late the "geometrical" structure of the singularity
we have to look at the diagrams listed in Figs. 1
and 2, and we find

&t'„'"(q'; V) ~ K'„(q) Tr(X, 5)tz, 5)I)
q2~ oo

+K'„'„(q) Tr(). , 3)I'A, )

+K'„(q) Tr(P. ,X,. 5)t'}

+ L'„,(q) 6„Tr(Z.II')
+ L'„",6,,Tr(X, 3}I'),

+K'„",(q) Tr(X; 5R'X, )

+Z~„;&{q)Tr{~,~, gg2)

+ d„(q)5,,Tr(~, 5)I'}

+ L'„",, 5„.,Tr(Z,.II'),

where q%q=e, U +e,U, +e„U„.
K'' (q) are polynomials in lnq' and denote the

contributions of diagrams (a), (b), and (c) of Fig.
1. Only the lowest-order diagrams are listed and
one must include all the radiative corrections (see
Fig. 2 for some typical low-order graphs). It is
easy to see that since radiative correction involves
only the "color" direction, they do not alter the
geometric structure of the graphs. The I.„',
terms, which have different geometric structure
than the K „'„ terms, arise purely as a result of
radiative correction [see Fig. 2(c)] and therefore
vanish as I/(Inq')' as q' -~. These terms,
therefore, do not affect the first sum rules
written below. The lnq' dependence comes from
the radiative correction after renormalization.
Equation (6) therefore clearly displays the group
structures associated with A„„and will have to be
analyzed so we can see which of the first sum
rules can be derived. Without any further assump-
tions, we can derive only the following sum rules:

p,""(m', V) —p,"(m', V)/W3
yl 2 nz

p88(~2 V) pl5 ~ 15{ypg 2 P) + ~2 p8 ~ 15{ypg2 V) ~3 p0 ~15(~2 P)2 7
~

2 t
m2 (vb)

We also have two more equations by replacing
V and A in Eqs. (7a) and (7b). If we assume
that chiral SU(2)x SU(2) is an exact symmetry of
strong interactions, then we have for the quark
mass matrix

0

mz
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So, clearly, we can obtain [as can be easily
checked using Eq. (6)]

p"(m', V) —p,"(m', 4) „m2 {8a)

and also

p,'4(m', V) —p2~(m', A)
m2 {8b)

We also see that the first sum rule often used in
the literature, '

m2 iJ&

is not valid in asymptotically free theories. '

B. Second sum rule

Now, it is easy to convince oneself without much
difficulty that to obtain the second sum rules one
has to analyze both the sets of diagrams listed in
Figs. 1-4. Figures 1—3 give us the next leading
singularity of H»(x) and Fig. 4 provides us with
the relevant singularity of H„', (x) (1=1,2, 3). It is
easy to convince oneself that the diagrams of Figs.
3 and 4 go asymptotically like (lnq') "/q' and there-
fore if from their geometrical structure we find
that for certain combinations of ~'s the diagrams
of Figs. 3 and 4 give zero then they will certainly
satisfy the second spectral sum rule, i.e.,

FIG. 3. Lowest-order diagrams relevant to the
validity of the second sum rule.

theories, giving us the following sum rule:

However, if we do not ignore Fig. 2(c), Eq. (lla)
will not be valid.

Similarly, we find that in the exact SU(2) x SU(2)
limit (i.e., m'=m"=0), we obtain the second
Weinberg sum rule, i.e.,

a=F, A
(lib)

We give some examples: If we take' J„'=@~,p„q
and d„'=P'y„d", then it is clear that only Figs. 2(c)
and 4(c) will contribute in giving the leading singu-
larity. If we ignore Fig. 2(c) for a moment, we
find from Fig. 4(c) that it is proportional to the
strong gauge coupling g(q') and therefore vanishes
for large q' as 1/q'(lnq')~ in asymptotically free

C. Sum rules for spectral functions and pseudoscalar densities

The above techniques can of course be applied to
spectral functions for scalar and pseudoscalar

(a)

(a) (b)

(c)

FIG. 2. Examples of diagrams contributing to the
next leading singularity of H. We exhibit only some typ-
ical radiative corrections. The dashed line denotes the
"color" gluon.

{c)

FIG. 4. Lowest-order diagrams giving the leading
singularity of H~p (i =1,2, 3).



2226 T. HAGI%'ARA A ND R. N. MOHA PAT RA

(S or P) densities" defined and given by

A" (q, S) = i e"'d'x(0~ T]U'( x)U'(0))~ 0},
(b)

and similarly for &"(q, P) for P densities V'(x}.
Here, however, more diagrams will contribute,
since U' and V' transform as (4, 4")+ (4*, 4) under
SU(4) & SU(4). The conditions for deriving useful
sum rules in this case are much more stringent,
i.e., the suitable linear combination of ~"'s must
satisfy both the following constraints:

(c) (d)

li m Q C,',5"(q, b) = 0,
Q2~ oo

)}=s,a

(13a) FIG. 5. The lowest-order diagrams contributing to
the leading singularity in Q {q,S) and A '

(q, P).

lim q' Q C, ,a,q(q, b) = 0.
Q2~ on

Ij
5= s,p

{&3b) and

lim q'[& ' '(q, S) —& '' '(q, P)]=0,
q2~ oc

{&4b}

and we find

lim q'[b, "(q, S) —633(q, P}]=0
qQ~ 00

{&4a)

Therefore, one must consider diagrams with one,
two, three, and four mass operators as well as
diagrams of the type shown in Fig. 4, with cur-
rents replaced by densities. It is easy to convince
oneself that, in the exact SU(2)xSU(2) limit,
owing to the special form of the mass operator
one has to consider only the diagrams shown in

Fig. 5 (all other diagrams being zero) if we look
at 6"(q, S or P) and 6 ' '(q, S or P) where

from which we get the sum rules for the corre-
sponding spectral functions.

111. CONCLUSION

In conclusion, we have presented diagram tech-
niques to isolate the "geometrical" coefficients
associated with the leading singularities in the
OPE of current products in asymptotically free
theories. Knowledge of these helps us to choose
the correct linear combination for the spectral
functions and derive sum rules corresponding to
their zeroth and first moments, the so-called
first and second spectral sum rules. We have
illustrated our methods by giving simple examples
and also by pointing out that certain sum rules
widely used in the literature cannot be valid in

asymptotically free theories.
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