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A semiclassical description allows a simple geometrical interpretation of the condition (g = 2) found
by Weinberg, generalizing earlier results of Cheng and Wu, and Meng, for “exponentiation” of the
scattering amplitude for high-energy particles by external electromagnetic fields. The same argument
shows that the presence of any nonzero electric dipole moment is inimical to exponentiation. Similar
discussion of scattering of isospin-bearing particles by a given Yang-Mills field leads to the conclusion
that exponentiation cannot be expected to occur for that case.

I. INTRODUCTION

Scattering of high-energy particles in external
electromagnetic fields has recently received con-
siderable attention'™® as a calculable model in
which one may test the validity of the eikonal ap-
proximation. Following earlier work by Pauli*
and Moliére,’ it was noted by Cheng and Wu® that
the scattering of an electron (obeying the Dirac
equation) by a given slowly varying electromag-
netic field may be well described by the eikonal
approximation in the high-energy limit, in which
case the scattering assumes a simple exponential
form. It was subsequently remarked' that this
property is lost if the “electron” is allowed to
possess an anomalous (Pauli) magnetic moment
while for a spin-1 particle, exponentiation does
not occur for the “normal” magnetic moment,?
corresponding to g=1, but only if the particle
possesses an additional “anomalous” moment?® of
equal magnitude. Weinberg® combined and extend-
ed these results by showing that, for particles
possessing no other internal degrees of freedom
than the spin, exponentiation always occurs (for
any spin value) if the gyromagnetic ratio assumes
the particular value g=2. In this paper we argue
that decoupling of various spin channels, and
hence “exponentiation,” can be simply seen from
a semiclassical treatment of spin motion in an
external field, for which the relevant formulas
have been derived a long time ago.”?®

This paper is organized as follows. In Sec. II, a
semiclassical criterion for “exponentiation” is
developed employing the approach of Refs. 7 and 8.
This criterion is applied to the case of homogene-
ous external electromagnetic fields, and the condi-
tion (g=2) for decoupling of spin channels is ob-
tained for particles with arbitrary spin. It is also
argued that when the particle possesses (besides
the magnetic) an electric dipole moment, such a
decoupling (“exponentiation”) is impossible. Sec-
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tion III treats the case of scattering by an external
non-Abelian (Yang-Mills) gauge field. Both the
spin and isospin precessions are discussed. Our
conclusions are summarized in Sec. IV.

II. EXTERNAL ELECTROMAGNETIC FIELD

First, let us recall some of the results of Ref. 7
using the same notation. These authors show that
one can derive an “equation of motion” for the
spin polarization vector when the particle moves
in a given manner along a classical trajectory.
Since one gets the classical trajectory in the limit
% =0 and the spin effects appear in the next ap-
proximation with respect to #Z, we can see that in
such a quasiclassical description the spin motion
does not feed back into the trajectory equation. It
therefore makes sense to ask the question of how
the spin behaves when the particle follows a given
quasiclassical trajectory in an external field.

Our further discussion is based on the conjecture
that such a quasiclassical description may be used
to furnish criteria for the occurrence of “exponen-
tiation” in the high-enevrgy limit when the wave-
lengths associated with the particle motion are
very short and the conditions of applicability for
such a quasiclassical description are satisfied.

Following Refs. 7 and 8, the axial four-vector
s=(s,,8) representing the polarization of a particle
with charge e, mass m, and magnetic and electric
dipole moments ge/2m and g'e/2m (with units
fi=c=1), respectivel_y,__moving in a homogeneous
external field F = — (E,H) satisfies the equation

ds e

T {lbgF-s+ig-2)s Fruul

-8/ [F* s+ (s- F*-u)ul} (1)

where 7 is the proper time and u =(y,y V) is the
four -velocity [with y=(1 —v?)7!2]. F* is the dual
of F: F*=(-H, E). In obtaining (1), we made use’
of the classical equation of motion for the orbit
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du e

Z-ZF. 2

dr -, (2)
which, together with Eq. (1), implies that s+« and
s+s are constants. In the particle’s instantaneous
rest frame (R), Eq. (1) reduces to

ds e -

T {g(3xH]+g 3xEN} &) @)
and

ds, - dvV

a3 R, )

Equation (3) is the standard nonrelativistic equa-
tion of motion for the spin, while Eq. (4) expresses
the condition assumed in all classical treatments
of spin (see, e.g., Ref. 9, Sec. 5) that the four-
vector s has components (0,3) in the particle’s
rest frame so that in an arbitrary Lorentz frame,
it satisfies the relations s:u=0 or

§:V=s,, (5)

which in turn yields Eq. (4) in the particle’s rest
system R (V=0).

It is convenient to refer the spin motion to a
(rotating) coordinate system in R. The spin can
be covariantly expressed through

s=f,e,+g,e,+85e,, (6)
where we have defined
e, =y(v,d) (L), (7)

and ? is a spatial unit vector along the direction of
motion in the laboratory frame (L); e, and e, are
a pair of mutually orthogonal spacelike unit vec-
tors, each of which is orthogonal to both ¢, and u.
The three spacelike unit vectors ¢, e,, ¢, form
an orthogonal basis in the rest frame R of the
particle, and the spacelike components g;
(i=1,2,3) of s in this basis form a vector £

which specifies the spin in this coordinate sys-
tem. The rate of transformation of longitudinal
polarization into transverse (and vice versa) as
the particle moves through a homogeneous electro-
magnetic field can be found by substituting Eq. (6)
into Eq. (1) and making some straightforward
manipulations.”® Defining a=3 (g -2), we find

m d Z. X5 FEXD Z,-H
BEs o (Fxo)+hg {-[Exa)+ol, A}

+(5§_au) £ W), (8)

where £, is the component of { orthogonal to 9.
Thus we see that in the high-energy limit (y— ),
the spin polarization preserves its inclination to
the direction of motion if a=g’=0, i.e., g=2 and
g'=0, for an arbitrary homogeneous electro-

magnetic field. In a quantum description this
corresponds to a decoupling of different spin
states in the helicity basis, which is precisely
the condition we require for exponentiation to
occur. Equation (8) therefore provides a semi-
classical criterion for exponentiation, thereby
confirming and extending the result of Weinberg.
Exponentiation is expected in the high-energy
limit only for g =2, independent of the magnitude
of the spin, while the possession of a nonvanish-
ing electric dipole moment, g’'#0, destroys it
immediately. The last property can be checked
rather easily for the case of spin 3 by following
the procedure of Cheng and Wu.

1II. YANG-MILLS FIELD

In view of its intrinsic interest and possible
future importance, we extend our criteria for
the decoupling of spin channels in electrodynamics
to the case of spin- and isospin-bearing particles
interacting with an external c¢-number Yang-Mills
field.!*!! Since they now possess both ordinary
spin and isospin, our particles will now exhibit
two kinds of precession. The spin precession is
quite similar to that which takes place in an elec-
tromagnetic field, which we considered in the last
section. The precession of the isospin is, how-
ever, rather different and we shall discuss it
later.

To write the analog of Eq. (1), one requires the
equation of motion for the spin in the (R) system
and the equation of motion for the classical tra-
jectory of the particle moving through the given
Yang-Mills field. The second equation has already
been given by Wong'!:

&L f, ©)
where G is the coupling constant (analogous to e),
u is the four-velocity as before, and [ is the iso-
spin vector, while

Luv=0,0,-0,b, +Gb,*b,, (10)

where b , is the Yang-Mills field which is a four-
vector in space-time and a three-vector in iso-
spin space. Note that Eq. (9) is identical in form
to Eq. (2) if one identifies

Fef-1=-(&-1,E-1). (an

It remains to derive the equation of motion for the
spin. For a consistent interpretation, the time
component of s must satisfy Eq. (4) as in the pre-
vious case, while the three-vector § presumably
satisfies an equation similar to (3). However, in
contrast to the well-known case of electromagnetic
interactions, we have no way of knowing it except
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from a specific theory. We shall adopt the pro-
cedure, which gives the correct answer in the
electromagnetic case, of finding the equation for
the spin precession in (R) by taking the Dirac equa-
tion for a spin-3 particle and proceeding to the
(spin-dependent) nonrelativistic limit. By analogy
with the electromagnetic case, the resultant equa-
tion will be assumed to be valid for any spin.
We start with the Dirac equation with an external
Yang-Mills field (see, e.g., Ref. 11)
Y e - -
1a—[=[a-(p—Gt_)-£)+Bm+Glio-_1]zp , (12)
which, in the nonrelativistic limit (see, e.g.,
Ref. 8), reduces to the two-component spinor
Schrddinger equation

09 _ 1 = ey lo-3F-%
i _Zm(p Gb:IPo+Gby I 9-G ko,
(13)
where the vector
- i . -~ -~ >
=e— (D =Gb+I)X(D - .
k=5 (5-GB-1)x(F-CB- 1)
G - . . .
=— [+ (VXb+GbXb)
2m — - = =
G -
=g-h- 1. (14)

Here fi - I is the analog of the magnetic field in
electrodynamics. It is an axial vector given by
the spatial components of the antisymmetric ten-
sor: h={f,}. From the nonrelativistic Hamil-
tonian (13) and Eq. (14) we obtain the spin equa-
tion of motion in the (R) system;

ds

5 i, 3)=2 xR0 @), (15)

which is the sought-for analog of Eq. (3) with the
“gyromagnetic ratio” equal to 2 (as in the case of
a Dirac particle moving in a given electromagnetic
field).

Since the fourth component of s satisfies Eq. (4)
as before, Eqs. (9) and (15) show that the problem
of spin precession in an external Yang-Mills field
becomes isomorphic with the case of electromag-
netic external fields with g=2 and g’=0. Equa-
tion (15) does not contain any free parameter
(which would correspond in electrodynamics to an
arbitrary magnetic moment or an arbitrary g
factor). Thus, as regards the spin motion, the
conditions for exponentiation would appear to be
exactly satisfied.

On the other hand, the existence of another kind
of precession in the Yang-Mills case makes the
occurrence of exponentiation virtually impossible.

As a result of its interaction with the given Yang-
Mills field, the isospin coordinate of the particle
can vary as it passes through the field. The equa-
tion of motion corresponding to this precession of
the isospin has been derived by Wong'! in the semi
classical limit
‘fi_-f:G(_quXli“). (16)

By analogy with the case of ordinary spin, we
should expect exponentiation when different isospin
channels are decoupled, corresponding to the van-
ishing of charge-exchange scattering. Equation
(16), considered together with Eq. (9) for the tra-
jectory, shows that in general there will not be any
such decoupling between isospin channels for an ar-
bitrary external Yang-Mills field. This is in con-
trast to the case of electromagnetic fields where
exponentiation takes place in the high-energy limit
when the conditions g=2 and g’=0 are satisfied,
for an arbitrary homogeneous external field. The
difference between the two cases arises from the
fact that while the precession of the mechanical
or ordinary spin takes place in the same four-
dimensional space as the motion of the particle
as a whole, so that spin precession may be com-
pensated by orbit deflection, the isospin preces-
sion takes place in a different space. The system
of Egs. (9) and (16) is quite different from that for
the electromagnetic case where the trajectory
equation (2) does not depend at all on the spin
coordinate. Our analysis therefore indicates
that exponentiation should not be expected in the
case of scattering by a Yang-Mills field. Evidence
in this direction has been obtained in field-theo-
retic calculations by Nieh and Yao.? The argu-
ments given above can, of course, be extended to
any other semisimple Lie group.

IV. CONCLUSION

The general condition g=2 given by Weinberg
for exponentiation in the scattering of spinning
particles by a given external electromagnetic
field is nothing but the classical condition that the
spin preserves its orientation relative to the di-
rection of motion. Quantum mechanically, this
corresponds to decoupling of different spin chan-
nels, in the helicity basis, and hence to exponen-
tiation. This interpretation shows that exponen-
tiation is lost not only when the particle possesses
a noncanonical magnetic moment (viz., g#2) but
also whenever it has a nonzero electric dipole mo-
ment. Analogous discussion of scattering by an
external Yang-Mills field shows that while the
spin channels decouple as in the case of electro-
magnetic scattering (with a canonical magnetic
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moment g=2), the isospin channels do not in gen-
eral decouple.

Thus, in both examples, exponentiation of the
scattering amplitude occurs only under rather
special conditions, and is not at all a general fea-
ture of high-energy scattering. It would there-
fore appear that in high-energy scattering of had-
rons, where multiparticle production and the
availability of many channels is the general rule,
it is too much to expect that exponentiation of scat-
tering amplitudes should be a general circum-
stance.
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