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We present a detailed analysis of the skeleton ladder graphs for ¢ theory in six dimensions. The
ladder graphs are dominated by an energy-independent branch point in the angular momentum plane
reminiscent of similar results in ¢* theory. This model then serves as a prototype for models in other
exactly renormalizable field theories. These branch points are contained explicitly in the anomalous
dimensions of the local operators that occur in the Wilson expansion. We contrast our results with
some previous results for all internal particles of zero mass. A general renormalization-group-type
argument is advanced to determine the conditions for which the complete theory would contain these

fixed cuts.

I. INTRODUCTION

For quite some time there has been a great deal
of interest in the high-energy behavior of the scat-
tering amplitude deduced from quntum field theory
in various asymptotic regions. In the beginning
of the 1960’s, most studies of this problem con-
sisted of using Feynman-diagram models as a
guide to the type of J-plane singularities one
might expect for the on-shell physical amplitude.*

Further interest in Feynman-diagram-model
studies was stimulated in the late 1960’s by the
suggestion of Bjorken scaling which was approxi-
mately confirmed experimentally. The literature
in this area is quite rich with the development of
the full apparatus of the renormalization-group
and Callan-Symanzik approach to the small-dis-
tance behavior of field theory.2 In addition, at
large values of the scaling variable both the Regge
and Bjorken regions become intertwined, and
there has been extensive research both phenom-
enological and field theoretical® on the connection
between these limits.

In this paper we investigate this question in a
particular model, namely ¢* theory in six di-
mensions. In particular, the model consists of
the iteration of /-channel ladders using the Bethe-
Salpeter equation in a skeleton approximation
(bare propagators and point vertices). This model
can be solved exactly at forward scattering for
zero-mass exchanged particles in the ¢ channel.
We give in detail the Regge and Bjorken limits.
This analysis is a prototype for other models in
exactly renormalizable theories, for example,
the bubble iterations in ¢* theory. In addition,
the ¢* theory in six dimensions is endowed with
the property of asymptotic freedom. Therefore,
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it is quite possible that the results of the skeleton
ladder model bear some resemblance to the com-
plete theory since the propagators and vertices
are modified by mild logarithmic factors in their
asymptotic behaviors.

A general feature of all of these studies in ex-
actly renormalizable theories is that the leading
J-plane singularity is a fixed (¢-independent)
cut. While this fact has been known for some
time*™® the results on ¢°® theory are to our knowl-
edge new. These fixed J-plane cuts are a con-
sequence of the singular small-distance (non-
Fredholm) behavior of the Bethe-Salpeter kernel.
A consequence of this singular behavior of the
Bethe-Salpeter kernel is that the small-distance
behavior of the Bethe-Salpeter wave function is
controlled by a nontrivial anomalous dimension.
This anomalous dimension contains the fixed
angular momentum branch points explicitly, as
has been pointed out by Kugler and Nussinov,®
Gatto and Menotti,® and Lovelace.® In these ex-
amples the anomalous dimension controls the
asymptotic behavior of the amplitude in the
Bjorken limit and its associated fixed cut controls
the asymptotic behavior in the Regge limit.

The organization of this paper is as follows:
Sec. II deals with an elementary diagonalization
of the Bethe-Salpeter equation at forward scatter-
ing and a solution of a prototype equation we en-
counter in both the ¢* and ¢* models. We calculate
the moments or partial-wave amplitudes and the
asymptotic behavior of the scattering amplitude
in both the Regge and Bjorken limits. We also
contrast our results with those of some model
calculations where all internal particles have
zero mass.*>° In Sec. IIl we make some comments
and speculation on the general implications of this
work for the complete field theory.
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II. MODEL CALCULATIONS

A. Diagonalization

The Bethe-Salpeter equation and its subsequent
diagonalization are by now well known and we
present a very brief outline of the procedure here.
A prototype equation is provided by the ¢3 model
and is simply

. dSk 2
T(p, ) =K (b, ) =i [ G5 K(p, NID(RFT(k,q).
(2.1)

The equation is explicitly written down for for-
ward scattering; K(p, k) and D(k) are, respective-
ly, the two-particle irreducible kernel and the
one-particle propagator. The extension to other
field theories and other dimensions of space-time
is straightforward.

After Wick rotation of the time component of
four-vectors, the momenta are spacelike, which
in our convention (g,, = -g;; =-1) means that ¢°
=um?, p?=vm?, K =wm? with u, v,w >0, and m is
the propagator mass. The equation can then be
diagonalized trivially with the expansion (letting
prq=2)

T(p,q)=T(u, v,2)= Y C32)T,, v), (2.2)

n=0
with its corresponding inversion

T, («, v)

T am+D)(m+3) f_l C2(2)T(u, v, 2)(1 - 22)"2dz |
(2.3)

where C% are Gegenbauer polynomials with the
properties

fl C2(2)C2.(2)(1 - 2%)¥2dz = m(n+3)(n+1) 5

8 nn’
(2.4)
and
[aa) Ca6 MCE (k) =0, 255 C26-a)
(2.5)

where dQ(k) is the appropriate solid-angle ele-
ment.

Use of Egs. (2.2) and (2.5) in Eq. (2.1) yields at
once the diagonalized equation

T, v)=K,(«, v)

1

+ D) fo WPdw K, (u, w)D*w) T, w, v) .

(2.6)

This equation is a one-dimensional integral equa-
tion which is much simpler than the full equation,
Eq. (2.1), and will be solved in a particular model
below. This procedure of diagonalization differs
from the usual diagonalization now in use in which
the Laplace transform is used to diagonalize the
absorptive-part equation.’® The two procedures
give identical results for the absorptive part when
the momenta of the propagators in Eq. (2.1) are
spacelike. The timelike case, which is applicable
to inclusive annihilation, requires a separate pro-
cedure.

B. 62 Model

Next we explicitly solve the Bethe-Salpeter equa-
tion for the skeleton ladders of Fig. 1. By skeleton
we mean bare vertices and propagators. If the
mass of the exchanged particles is zero, we can
solve the equation exactly. We then have

2

K(py 4): (pg_q)z ’ (2.7)
D(k) = k2+1m2 , (2.8)

and from Eq. (2.3)

B gzm-z l:_l_ u_( (nt1)/2 1 u_( (n+3)/2]
Ky, v)= (uv)7? n+1<u>> —n+3(u>> ’
(2.9)

where «_ («,) is the smaller (greater) of %,v, and
g is the coupling constant in a (1/3!)g¢® Lagran-
gian.

Remark. It will be easily recognized that the
kernel, Eq. (2.9), and the diagonalized Bethe-
Salpeter equation (2.6), are identical up to a dis-
placement of z~#n -1 and a factor of (p2q2)~Y2
with the ¢* model with bubble iterations solved
over ten years ago.’'® This problem can be solved
exactly. We outline the details here.

Firstly, we recognize that Eq. (2.6) can be re-
duced to a fourth-order differential equation!!*!?
with the use of the identity

0,2K (4, v)=g3*(n+2)0™%m 726 (u - v) , (2.10)
P q
= +
p q

FIG. 1. Bethe-Salpeter equation in the ladder approxi-
mation.



11 FIXED REGGE SINGULARITY AND SMALL-DISTANCE... 2205

where

_ d \? d n(n+4)
On‘“(ﬁ) BT

Substitution of Eqs. (2.10), (2.9), and (2.8) into
Eq. (2.6) yields the resulting fourth-order differ-
ential equation

2
<O"2 - ﬁu_fl—)_a Tolu, v)=g*(n+2)v™*m 26(u - v) .

(2.11)
This equation can be factorized by the identity
2
0,0, =(1+uf0,?- sing , 2.12)
with
Oy, =(1+u)uj—l; +(3 +2u)(2d;+ 1—_422- - ZL—(%‘I—)
(2.13)
and
v,=1+n+20%+[4(n+2)? +g2/4n% ]2
2
=n+2i(—‘%3—m . (2.14)

The latter expression is valid in the weak-coupling
approximation. Equation (2.11) can then be solved
explicitly in terms of hypergeometric functions,
where we choose the boundary conditions

T u, v)=0 (u>»v),

(2.15)
T, (u, v)—un’2 (uxv).
The solution is
Ty 0) = — 2o [ My (e )Ny (1)
e m2(4v? +a)/2 LYY S
-My, ()N, ()], (2.16)

with v=n+2 a=g2/47° and

Mui(u)=u("'2>/22F1(%(u+ut'— 1), 5(v=-v,-1), 14+v,-u),
(2.17)

FGE+v +VITGw+v,-1)) w-(1v5)/2
T(v+1)L(v,+1)

Nuf(u) =

X GW+v-1), 5(v,-v-1),1+v,, - 1/u),

where the solution has been normalized according

to the discontinuity condition dictated by the dif-

ferential equation, Eq. (2.11),
am AN 1+u

Naw Maim 3

(2.18)

We would like to make the following remarks
about the solution.

(1) One will immediately recognize that the
quantities v,+1 in Eq. (2.14) determine the scale
dimension d(r) of the local operators Py tcedy @
of the Wilson expansion of ¢(x)¢(0) in the following
sense. Following Lovelace,® we have

dn)=2d(¢p)+v_(n)+1, (2.19)

where d(¢) is the dimension of the elementary
field. Using the fact that the energy-momentum
tensor is conserved and has canonical dimension,
we have

d(2)=6=2d(¢p)+v_(2) . (2.20)

It then follows from Eq. (2.19) that
dn)=6-v_(2)+v_(n)

2g° 1 1
~neas [ﬁ - (—————n+1)(n+2)] . (2.21)
This result agrees with the perturbative result
of Mack.”® The apparent poles of the perturbative
results, Eq. (2.21), seem to be a general fea-
ture.®®

(2) These branch-point singularities are {-inde-
pendent even though we have considered only the
t=0 problem in detail. This can be seen from
the fact that the high-momentum behavior of the
kernel at fixed nonzero ¢ is the same as the {=0
kernel. And one can develop an iteration pro-
cedure in the difference between the forward and
nonforward kernels which is a Fredholm problem.
Therefore, this solution contains the same branch
points as the forward-scattering problem.

(3) Our solution also reduces immediately to a
form that agrees with the solution of the corre-
sponding problem in ¢* theory if all internal par-
ticles are of zero mass.>° In the mass-zero limit
the solution, Eqgs. (2.16) and (2.17), reduces to

(@222 T, (b2 %)

_ 2% [qf A S PN 1}
T (@A el (F) v ‘<T> vl

(2.22)

The poles in v, occur because the infrared prob-
lem has been enhanced by taking the mass-zero
limit for all internal particles.

Next we will construct the Regge and Bjorken
limits. Both of these limits are constructed by
using the inversion formula Eq. (2.2) and con-
verting to the familiar Sommerfeld-Watson trans-
formation with appropriate analytic continuation
in z.

In the Regge limit for on-mass-shell external
particles #=v=~1 we have from Eqs. (2.16) and
(2.17)
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B 16g2 1
T(s)—£ 2i sinmv (412 + @)V2 man
X(e™- - i ™) C3(~2) , (2.23)

where for s -« we take

2 Gt

, s\-2 (2.24)

C¥(=2)~ (v - 1)(7—'1—2) .
The physical amplitude is found by taking the
crossing-symmetric combination 7(s) + T(x). The
leading contribution will come from the contour
deformed around the branch point at v = (1 +Va)yz
(see Fig. 2). Letting v =v_+y and noting that

,,_..(2":("22 —1)3:)‘/2

v.2+1
for small y, we then have

dy g3 ve+y) 8
T(s)= f
-y, SiNT(V +y) l4(v, +y)2+a]1/2 m2an

X(ve-1 +y)(m—sz>u- (-2 sinh7v_) .
(2.25)

In Eq. (2.25) a background integral centered at

= -y, parallel to the imaginary axis has been dis-
carded (Fig. 2). We then obtain for the leading
term, which comes from the tip of the cut y =0,

Wr(v,-1)(g )
T(s)= sinm(v, —1)( Xm ) [6 In(s/m?)]"¥? ,

(2.26)
with b= (Vc4_ 1)/2Vc )

An alternative procedure valid for weak coupling
is obtained by setting v=1+y. Then

221 +y)16
T(s)= f21s1n1r(y 1) [4(1+y)2+a]‘/2

x—— (V" explin(y® - tay2)
man ~ \m? * :

(2.27)

The contribution at y =0 when a is small is

82 RX[In(s/m*))* ( 3 \(_a\'"!
T(s)= Z @) <z+1)<‘2>
_ &% & [iValn(s/m?) ]
s Zg, 1NI+1)! : (2.28)

This expression is easily recognized as a modi-
fied Bessel function of order 1. The result is

&2 LValn(s/m?))
& apyamis/m)) .
T(s)= sV aln(s/m?) (2.29)

S

In the limit of large s we have

y=-y0 ¥=0

FIG. 2. Integration contour in the y plane.

T(s)~%i< )ﬂn(ﬁmi—z)—m, (2.30)

which agrees with Eq. (2.26) in the weak-coupling
limit. Equations (2.29) and (2.30) are useful if
one wants to compare with leading-logarithm cal-
culations in perturbation theory.!*

In the Bjorken limit g2+, s~ w=2p-q/q>
fixed, and p?=-m?. After an elementary rear-
rangement of the inversion formula Eq. (2.2) and
the amplitude Eq. (2.17) the result for ¢g2/m?>1 is

224 1162 0)
_fzﬁ-o d_V E(u)(—w)u-l(v—l) q_z (=1=V_+V)/2
T ie 20 sinmv <m2> ’
(2.31)
where
By — 2 LGw+v. -1)

m?*(dv?+a)V2 TGB+v-v ))T(v_+1)

The quantity 1 +v_- v is the anomalous part of
the dimension of the twist-four operators of the
Wilson expansion. Now, to extract the Bjorken
limit we see that the factor (g2/m?)~(1=V-*¥/2
oscillates rapidly at large ¢g®. Therefore, one
must resort to the method of steepest descents
to estimate the asymptotic behavior for large ¢2
and fixed w. One can rewrite Eq. (2.31) in the
more standard way for the imaginary part of
T(q%, w) with respect to w,

2p.
w m_zq ImT(q? w)

2”‘°dv v-v_-1 g%
_L-im % E(v)exp (Vlnw+ —2———ln m2> .
(2.32)

It is relatively easy to convince oneself that as
In(g?/m?)~= and fixed w, there is a saddle point
at v=v, where
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d Inw

av w-v.) u:uo= éln(qz/mz) ’

The asymptotic behavior in the Bjorken limit is
given by

(2.33)

2wh *
ir::‘;ilmT(qz, w)

< 7E (Vo) vy - 1)w”o g%\ ro=v-trg) =11/2
[-7mn(g?/m?)a@v_(v,)/dv? V2 \m? :

(2.34)

In general, it is very tedious to compute the posi-
tion of the saddle point. However, for large 4?2,
fixed w the saddle point will occur at a large value
of v, and one can use the weak-coupling large v
limit of Eq. (2.14)

a

vovo-lE T

(2.35)

to estimate v, the position of the saddle point. Us-
ing Eq. (2.33) we find

(2.36)

o~ 81nw

B <aln(q2/m2)>"/3
The function E(v) is relatively unimportant at large
v and contributes only a power of v, in Eq. (2.34).
In Eq. (2.34)

E(vy)=~ qzv , (2.37)
0
and
_dv.ly) 3 a
av? 4 vt

For the Regge region in electroproduction w
> q?/m?, we obtain a result completely similar
to Eq. (2.30) in weak coupling. The procedure is
the same as before and we merely state the result
here:

T(g?, w)

2 _ va/2 _ -3/2

~ g (1 \(—wg V2 =24 _
w»q?/m? v —-wq m m

(2.38)

If all internal masses are set equal to zero, the
Regge limit Eq. (2.26) and Eq. (2.38) is changed
owing to the enhancement of infrared logarithms;
the modified formula is

_&% mlwe-1) /s Yo -1 1
T(s)="5 sinﬂ(uc—l)(nﬁ) (w6 In(s/m?)]V?

(2.39)

In contrast the Bjorken limit (g2 -, w fixed) de-
pends only upon the underlying zero-mass theory.

From Eq. (2.35) only large v is important and both
the zero-mass and finite-mass results, Eqgs. (2.22)
and (2.16), agree in this limit. Also, for the
leading term only the perturbative large v (small
£) limit of the anomalous dimension is important.
This is to be contrasted, however, with the Regge
limit [which depends on the details of the anomal-
ous dimensions v,(v)].

III. DISCUSSION AND SPECULATION

All of the previous considerations and most of
the model calculations in the literature have been
carried out in the approximation of no insertions,
bare propagators, and vertices. At best this can
only be an approximation and may have no re-
semblance to the complete theory. In this section
we speculate under what conditions the full theory
may have some similarities to the model studies
here and elsewhere, at least as far as the ex-
istence of the fixed branch points is concerned.

As we remarked previously, the existence of
the fixed cuts in the model studied is immediately
related to the high off -shell behavior of the
kernel, Eq. (2.9). The kernel has a scale-invari-
ant form and a high-momentum behavior that im-
mediately renders it non-Fredholm in the mathe-
matical sense.

Next we remark that if there exists a fixed ultra-
violet-stable point in the Gell-Mann-Low sense,?
the high off-shell behavior of the kernel will again
be controlled by a scale-invariant form weighted
by a factor of #™*?, where y is the anomalous di-
mension of the elementary field. Renormalization-
group arguments can be used, and the mass can
then be scaled to zero in the Bethe-Salpeter ker-
nel with no difficulty, since it lacks two-particle
intermediate states in the zero-momentum chan-
nel.'’® The propagator contains at high « a factor
of #*Y which in the integral equation (2.7) compen-
sates that of the kernel.'®* Therefore, at high «
and w in Eq. (2.6) the kernel multiplied by propa-
gators has a scale-invariant non-Fredholm form
very much like that of the skeleton-model studies
in the ¢ theory of the previous section. The ¢3
model serves as a prototype for other renormal-
izable theories with decent infrared behavior such
as ¢* or Yukawa theory if there exist small
anomalous dimensions. Therefore, we expect the
branch points of the anomalous dimensions in »
to be a general property of such theories.!” Un-
fortunately, we cannot and will not make any re-
liable calculations of the anomalous dimensions
and more rigorous statements because of lack of
knowledge of detailed analytic structure in 7z of
the completely general Bethe-Salpeter kernel.

In the case of ¢ which is asymptotically free
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the extension to the complete theory involves the
moving coupling constant of the renormalization
group which asymptotically goes to zero, g2(u)
~1nu™'. After the anomalous-dimension factors
between the kernel and propagators are taken into
account, the resulting integral equation is still
singular and non-scale-invariant. Needless to say,
we have not been able to construct the solution to
the equation in general. At large ¢ we have only
been able to construct the perturbative large v
result of Sec. I which is consistent in an asymp-
totically free theory. Although we have not been
able to construct the solution in general we expect
that non-Regge (nonpole) singularities will exist
here also.

Note added in proof. Since this manuscript was
prepared, two other papers by Cardy'® and Love-
lace'® have appeared concerning the question of
the Regge singularity when the asymptotic freedom
of the full ¢2 theory is taken into account. Cardy

argues that the kernel is of the £, class and that
there is a point spectrum for the resolvent kernel
with moving Regge poles. Lovelace, on the other
hand, solves an approximation to the diagonalized
Bethe-Salpeter equation and concludes that there
exists an accumulation of Regge poles near n=~1
and an essential singularity. We believe that more
study is needed to resolve this question and fur-
ther work in this direction is worthwhile. Both
Cardy and Lovelace agree with this work on the
existence of fixed cuts in the full non-asymptoti-
cally-free case with the existence of a renormal-
ization-group fixed point.
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