
PHYSICAL REVIEW D UOLUME 11, NUMBER 8 15 APR IL 197 5

Modified field theory for quark binding*f
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We have investigated the structure of modified field theories. Higher derivatives are introduced into
the Lagrangian in such a way that the bare propagator becomes q

' rather than q '. A modification
of this type to the gluon propagator in a quark-gluon model gives the possibility of permanent quark
binding. We find that such a model has difficulties with unitarity and with infrared divergences when

treated in naive perturbation theory. If the problems associated with going beyond perturbation theory
can be overcome, these difficulties may be eliminated.

INT ROD UCTIOitI

Although the quark-parton model has had some
impressive successes, ' no particles which can be
identified as the hadronic constituents have been
observed. One reaction to this frustrating situa-
tion has been to speculate that the constituents are
permanently bound into the observed hadrons and

cannot be separated by even arbitrarily large
energies. In this paper, we will study some prop-
erties of an unconventional field theory model
which is designed to produce this kind of perma-
nent binding. The model involves a q

' bare prop-
agator for the gluon field. The static-limit po-
tential associated with this propagator rises lin-
early with the distance from a point source. Other
approaches to permanent binding have been dis-
cussed by Casher, Kogut, and Susskind, ' Wilson, '
and Chodos, Jaffe, Johnson, Thorn, and Weiss-
kopf. 4

Two —dimensional quantum electrodynamics

We can ease into the subject by briefly discuss-
ing two-dimensional @ED which displays some of
the properties in which we are interested. Al-
though this theory is trivial in the sense that it is
in tl e equivalence class of free fields, it has the
advantage of being completely soluble.

The theory is formulated by writing down the La-
grangian for a spin-& massless fermion interact-
ing with a photon in the usual way. However, the
equations are interpreted in a space of one time
and one space dimension. This theory has been
solved and discussed from several points of view. '
The most interesting discussion for our purposes
has been given by Casher, Kogut, and Susskind. '
They emphasized the novel permanent binding
features of this theory.

The work on this theory has demonstrated that
the photon acquires a mass and that the fermions
cannot exist separately, At an intuitive level, the
impossibility of producing separated fermions
can be understood from looking at the Coulomb

interaction in two dimensions. (In fact, in two
dimensions, the Coulomb interaction is every-
thing since the space does not allow transverse
fields. ) Gauss's Law is

82

, P(t, x) = —ep(t, x) .

A solution for the source

—ep(t, x) =&(x)

1s

This shows that the potential of a point charge
grows linearly with distance from the charge. An

infinite energy would be required to produce an
asymptotically separated fermion pair.

Linearly rising potential in four dimensions

Returning now to four-dimensional Minkowski
space, we wonder whether a linearly growing po-
tential arises in any natural way. In fact, it does.
The function Q solves

v'v'y=-Bxd'(x) .

This Green's function equation could be expected
to arise from the static limit of the Poincare-in-
variant field equation

$2 $2 p j
In momentum space, the propagator for this dif-
ferential equation is k 4.

These considerations suggest the construction
of a quantum field theory in which the hadron con-
stituents interact through the exchange of a gluon
whose field satisfies an equation such as Eq. (1.1).
In constructing a realistic theory, it is necessary
to make a decision as to whether the gluon field
should be scalar, pseudoscalar, Abelian or non-
Abelian gauge vector, etc. The bulk of this paper
will be involved with elucidating the structure of a
quantum field satisfying Eq. (1.1). In order to keep
the discussion as simple as possible, we have con-
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centrated on the scalar case. However, in con-
structing a realistic theory of quark binding, an
Abelian vector or non-Abelian vector field will
probably be needed. The scalar case has the dis-
advantage that like charges attract. The Abelian
vector case may be thought of as QED with the p

'
photon propagator replaced by q' . Here we have
like charges repelling and opposites attracting as
needed. By comparing with QED, we can see that
the theory will have improved ultraviolet behavior,
which will relate favorably to the Bjorken scaling
phenomenon. The infrared behavior will be much
worse and will result in permanent quark binding
if the heuristic arguments concerning the potential
can be carried through in a complete theory. A
more complicated theory' involving colored quarks
would employ a non-Abelian vector gluon.

This is not the first appearance of field theories
involving higher derivatives. For early work one
should refer to the paper of Pais and Uhlenbeck. '
Much more recently, Kauffmann' has independently
discussed ideas very similar to those appearing
here. His work contains a clear discussion of the
advantages of the non-Abelian vector-gluon version.
He emphasizes that the self-coupling of the gluons
in this theory could prevent the appearance of
these unusual particles in the scattering states.
Another independent approach has been developed
by Blaha. ' He modified the usual quantization
procedure to get a gluon propagator

4(x) 0'(x)

and give

to get

) = 0 (*) f~ 3 + (*'—7)IP(P) .

The crucial matrix element

(quark q ~ I(0) ]quark q'&

then contains the term

(1.2)

The retarded propagator satisfies

S'O'Ds(x} = &'(x)

and is given by
-fy-xe

Ds(x)
(2 )4

d k 2 o

Expression (1.2) becomes

To get an expression for (t} in terms of g, we can
solve the gluon field equation

with

rather than the more conventional

1j(k'+i@)'

propagator that we w ill be u sing.

Since the imaginary part of the propagator goes
like

Bllldlng

We have seen that the classical potential that
results from a field equation such as Eq. (1.1) is
linearly rising and suggests permanent quark
binding. It is an open question mhether or not this
result will obtain in the quantum field theory. As
an indication pf what may happen, we can consider
the wprk pf Jphnspn and Wilson lo

Johnson considered a field theory with a dif-
ferential equation for the quark field g of the form

(s'+m'} g(x) =I(x) (C(x) .

He observes that if the quark-quark matrix ele-
ments of I(x) are sufficiently singular, permanent
quark binding could result. Without going into the
details of his development, we will simply check
our theory for the required type of singularity.

In a simple scalar version of the theory the in-
teraction could be

the matrix element contains a singularity of the
type that Johnson argued will result in quark bind-
ing. A. more detailed analysis of our model from
this approach would be worthwhile.

For another indication of whether or not the
quantum field theory will result in quark binding,
we will consider the ideas of Wilson. Although
the specific mechanism he was interested in is
not related to our model, his introductory dis-
cussion was more general. He discusses the ma-
trix element

(1 3)

from the Feynman path approach. After all gluon
field configurations are summed over, the con-
tribution of a particular quark path to expression
(1.3) depends on

P

exp -g' ds~ ds" D»„(x—x')
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D~ is the free propagator for an Abelian gauge
field coupled with strength g to the quarks. The
integrals are over the quark path being considered.
The observation which he makes is that quark bind-
ing results from the important distinction between
the usual propagator

1
(x- x')'

and the

ln(x —x')'

which appears in two-dimensional @ED. As we
will see later, the coordinate-space counterpart
of our q ' propagator is

lnx

So, again, we are encouraged in the hope that a
complete analysis of the type of model we are
interested in will show that permanent quark bind-
ing results.

Such a complete analysis is, as in any nontrivial
field theory, very difficult. In this paper, we will
content ourselves with developing the formal struc-
ture of the model. Attempts at results which go
beyond the usual perturbation approach to field
theory will be left for later work. Section II is
concerned with the formal development of the
quantum field theory. The usual canonical quan-
tization prescription cannot be applied in a direct
and unambiguous way to theories with higher deriv-
atives. The method we will use seems to be equiv-
alent to the old method of Peierls" and (at least
for the case under consideration) to a method re-
cently proposed by Durr. " An alternative quan-
tization method involving a dummy field rather
than higher derivatives is discussed in the Ap-
pendix. Although our methods are somewhat dif-
ferent from those of earlier workers, most of the
general results of Sec. II have been obtained pre-
viously. Pais and Uhlenbeck' concentrated on the
problem with negative energies and referred to
Matthews, "who discussed indefinite-metric prob-
lems. Nagy" has given a nice discussion of indef-
inite-metric state spaces. General higher-deriva-
tive Lagrangians have been treated more formally
by Barut and Mullen, "and by Cukierda and Lu-
keirski. " Section III develops the interacting field
and perturbation theory. It is worth noting that
simple interactions involve the introduction of a
fundamental scale by way of the coupling constant.
Section IV contains our speculations on what may
happen if one can transcend the difficulties of going
beyond perturbation theory.

II. FORMAL DEVELOPMENT

Euler - Lagrange equations

In this section we will lay out the derivation of
the Euler-Lagrange equations from a Lagrangian
in which higher-than-first derivatives of the fields
appear. The fields which appear will be denoted
p;(x). The usual notation

8
8

8x

will be used. " The Lagrangian will be a function
of (I);, 8„P&, 8„8,Q&, . . . . The action is given by

The first thing to notice is that

8„8,y,. =8,8„y, ,

so these quantities should not be varied indepen-
dently. We now proceed with the variation of A

in the usual way. Using the relationships

58„y,=8„5y, ,

58~ 8 Q ~ = 8~8 5f ~

partially integrating, and taking

0=5/; =8„5$;=8„95Q

on the surface, we get

5g 5g 5g

(2.1)
We have taken care in restricting ourselves to

the independent quantities

8„8,$, with v» p, .

In this context, when the Lagrangian contains a
term such as S~&,p; F"", the variation &/ae„a„y;
will give F"" if p, = v and F""+F'"'when p. & v.
This bit of inelegance can be eliminated by ob-
serving that

Q Q s„s,[F""' +(1 —&„")F'"'
j = s„s,F""

V~}1

with the usual summation convention operating on
the right-hand side. If we then interpret

Ftx8 j
58~ 8vg ~

the Euler-Lagrange equation becomes

5g 5g—8 +8 8v 22
5y,. }' 58„y,. I' ' 58„8,y,.
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Conserved currents

In order to keep the indices under control, we
will restrict ourselves to Lagrangians which con-
tain, at most, second derivatives of the fields.
The stress-energy tensor is found by applying
translation invariance in the usual way:

sg s (+PS g +P 8g) I 8

5g 8 5g
if Qf +

g~ ~if

5g
598$v i

(2 4)

T,"'(x) = s"y, +, a"a, y, 5g 6g
p4i

&„T,""(x)=0 .

The momentum is

(2.3)
Sine e Lor entz invar iance is assumed, we infer

d'xzo~ x .

The subscript c is for canonical.
To study the effects of Lorentz invariance, con-

sider a variation of the fields

~ 8y,. = (x"a' x8s")-y, +Z;

The change in Z is found to be

Translation invariance

~Z ~Z
&p fi+ 8p ~vfi + ~p ~v~

5y] & ' vb, y; " ' ' 59,8
(2 5)

was used in deriving this expression for &Z. The
equations of motion were not used.

When the equations of motion are used to com-
pute &Z, we get

gag g g&8~ g gaB~ g ~n8~
Og 5g 6Z' ee, a.y,.

' ee, a,y,

The difference of these two expressions for &2 is then

K,' 8(x) =x T,'8 —x T' + —s Zp, p, +& [Z;", s„p,+(g, & -g s™)Qj
5Z

(2 6)

K p 8(x) is conserved,

S,3(lP"'(x) =O,

and the angular momentum is

M 8= d'xSR,' 8 x .

Symmetrization of T""

We have seen that

ggP~~=„T» &BTP +gP~B
C C C

with

x"'=-z pa

Set

T""= T" —'s (KP" -K"P -K'P")S C 2 P

Similarly, a little work will show that the differ-
ence between R, and %, is a term which does not
contribute to the angular momentum. Thus, T,
and It:, can be used to ealeulate P and M as well
as T, and R,. It should be noted, however, that
the local commutators such as

[TP'(x'), y, (x) J

are not the same for T and T .
Now

T Pv Tv)i Tgv Tv/ g ~PPv
S S C C P

When the explicit form of K is used to calculate
the right-hand side of this equation, we find an
expression which is equal to L"'. Since Lorentz
invariance required L to be zero, we conclude
that T, is the symmetric stress-energy tensor.

Commu tation relations

eg Paa &nT Pg &BTPa
S S S (2 7)

Since the difference between T, and T, is the di-
vergence of a term which is antisymmetric in p
and p, , T, and T, will give the same momentum.

In order to avoid as many complications as pos-
sible in understanding the quantum mechanics of
a field which has higher derivatives in the La-
grangian, we begin with a simple case. Consider
a scalar field p with a Lagrangian
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& =-,'(a'(t}) (a'y) .

The equation of motion is

g2g2y 0

In order to quantize this theory, we will propose
a simple expression for

[y(x), y(y)]

which has the general properties usually found in

this commutator. The crucial test will be con-
fronted when the commutators of P and M with Q
which follow from this are evaluated.

Since we are dealing with a free field, we expect
the commutator to be a c number which is Lorentz
invariant and translation invariant. In addition,
it should be a solution to the field equation which
is odd in (x —y) and which vanishes for

(x —y)'&0 .

We can satisfy these requirements by taking

8
D(x) =+, (kk(x, m')

Bm2 m2= 0

d'k e(k') 5'(k') e "'
(2 v)'

The important equal-time commutators can now

be calculated. From the expression for D(x —y),
we can prove a general relationship which is use-
ful:

d'k e(k') ti(k' -m') e "* '1
am' (2w)' ff32= 0

d3k
~, [[1+i(P(»'—y')]e "'*"—c.c. ),

(2.10)

[a." 4(x), . A(y)]=-[a." '0(»), a."'4(y)] (2.9)

To calculate an equal-time commutator we proceed
as follows.

[y(»), y(y)]

[Q(x), P(y)]=, d'k e(k') 5'(k') e "'t* "'—1

(2.S)
To check that the commutator vanishes for (x- y)'

&0, we can use its manifest Poincare invariance
to choose a frame where

y =0 and @0=0 .
Then

[k((},x}, k((}}]=,fk kk(k''} k'(k'}

=0

By the same method, we can get

[j(t, x), y(t, y)] = [y (t, x), y(t, y)]

=[(t}""'(t,x), Q(t, y)]
=0

[ 0 (t, ) 4(t, y)] = 't)'(x- y),
[(t}'"}(t,x), y(t, y)] =2iV'(P(x —y) .

(2.11)

=0

Thus,

[(t}(x),(t}(y)]=0 for (x- y)' &0

Since

k2$ '(k2) = ()(k2)

it is easy to verify

We should note at this point that we could have

added to the commutator a piece proportional to
A(x —y)." However, since the Lagrangian tells
us that f is dimensionless, this would require in-
troducing a dimensional constant. This seems
unnatural.

For the well-known singular functions of field
theory, we will use the b notation of Bjorken and

Drell. " For the singular functions associated with

the ~'8' operator, we will use a D notation. Thus,

The stress-energy tensor which results from
the Lagrangian is"
T ("=(a'(t ) (a('a"y) ( a] ya) (a'y) —,'g]"(a'—(I})(a'y) .

(2.12)

The commutation relations give

[T,"'(t, x'), (t}(t, x)] = —i g'" 0'(x' —x) a"y(t, x'),
so that

i[&~, y(»)] = a~ y(

A little work gives

i[M"', (t}(x)]=x a'((}(x) —x'a y(x),
i[M', a" y(x)] =(x"a' —x'a ) a" y(x)

+(g "g.'-g'"a, ) ~"4(~),

etc. The conclusionis that the operators P and

M are a representation of the Poincare group
which is carried by the field Q. Thus, our quan-
tization of the field has passed a crucial test.

Particle content

and

[y(x), e(y)]=iD(»-y),
We now have a quantum field theory for the field

In order to find out what physical interpretation
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can be attached to the field, we will go over to
momentum space. As is usually done, we will
look for the particle content of the theory. The
procedure will be to expand P in momentum space
and demand that the commutation relations of the
Fourier components be arranged to give back the
correct commutation relations in coordinate space.

The expansion of P will be

p(x)=fd k'B(k'}5'(0')[P(l]e "* H. c.]
When the relation

k'5'(k') = —5(k')

(2.13)

is used, it is easy to see that this expression for
(t) satisfies the field equation. The k' integration
is done by pulling out the mass derivative:

4[(x) =—,d'k e(k') 5(k' -m') [4[(k) e "'*+H.c.]am2
tll = 0

d3k- .{[X(k)+ill I x'4 (k)] e "'+H c.},
with k' =

~
k

~
. We have defined

x(k) -=4 (k) —O(k),

p(k) =-k'
0 ]f[(k)

Since 4](k) appears only with ko =
~ k~, t[](k) is independent of 4](k).

If we assume that

[4(k) 0(k')] =[4(k) [J(k')]

=[4'(», ~'(k )]

=[et(k), 0 (k')1

we find that
3 3

[4(x), 4(X)]= -, -, , {[)((k)+i(l (x'y(k), )f'(k') —i(k'(y Op (k')]e '' e '' ' —H. c.} .

The result we want is

d3k
[0( ), 4(3)]= 4(&( 2

{[1+'I)~I( )]
' * " ' '}

(2.14)

(2.15)

It is effected by taking

[y(k), 4'(k')] =0,

[]t[(k), i(]t(k')]=, [)'(k —k'),

[0(k), ~t'(k')]=, . 8'(1 -l').
For later convenience, note that

4)kl'
[x(k), 4'(k')]=-, ). ])'(1 -l'),

[)t(k), t[] (k')] =0,
41k I'
(2w)'

(2.18)

(2.17)

rather tedious. The result is

(2~) f4 ~ &
=& ['0(&) 0'(.&)'0'(&] t](&)'

—(1 —~")0'(k) 4(k)]
(2.18)

The momentum-space commutators are used in
a simple way to verify that P" is self-adjoint. It
is also easy to show that

i [Z", 4(k)] =- ik" 4(k),
and that

i [P",t[](k)] = —ik"[i[(k) +g'" 4](k)] .

These are (as they must be) the correct expres-
sions to give

At this point, the correct interpretation for the
momentum-space operators is not evident. It will
be helpful to write P" in terms of these operators.
The calculation is completely straightforward but

i[I ", (4)x]= sq&(x) .

The next step is to form linear combinations of
4](k) and P(k) which have commutation relations
close to those with which we are familiar from
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conventional theories. For this purpose, set

a = xQ + yP and a ' = x'(t) + y'g

and calculate

[a, a'"] =(xy'+ yx'+yy') [g, g ],
[a, a'] =(2xy+y') [(/, t'],
[a ', a' ] = (2x'y'+ y "}[g, g J

It will be nice to have

[a, a' ]=0.

a, (k) =N[g(k)+rP(k)],

a (k) = N[/(k) —(1 + r) P(k) ]

with

(2 v}3 1 /2

N=
4 If i'(1 ~ 2r) )

These operators satisfy

[a, (k), a, (k')] =[a (k},a (k') J

=[a+(k},a (k')]

(2.19)

(2.20)

If y were zero, that would require x or y' to be
zero. If x were zero, a would be zero. If y' were
zero, we would have

0 ~Q ~

and

=0

[a, (k), a+(k')] =6'(k —k'),

[a (k), a"(k')] = —6'(k —k')

(2.21)

(2.22)

Thus, we assume that y is not zero. We can then
solve for x': Other expressions which will be useful later are

x' = —y'(1+r),
with

r=x/y.
We now have

a, —a =N(1+2r) P,
a++a = N(2$ —P),

1 1
a, +a + (a+ —a )

2N ' 1+2r

(2.23)

a =y[ry+yj,

a'=y'[-(1+r) P+gj,

[a, a' t] =0,

[a, a ] = y'(1 +2r) [g, g ),
[a', a' t

J
= —y"(1+2r) [P, g J

Taking

(1+2r) =0

is ruled out because that would give

a'~a .

1 1

N 1+2r

With a bit of work the momentum can be expressed
in terms of a, and a .

d'kk" a+(k)a+(k} —a (k)a (k)

[,(k) — (k)][,(k) — (k)]
(

.

(2.24)

As usual, we have dropped an infinite c number.
After studying this expression for P" for a mo-
ment, one can see that it will be useful to know
that

The choices

1+2r &0

[a, (k) —a (k), a, (k') —a (k')] =0,

[a,(k)+a (k), a, (k') +a (k')] =0,

[a, (k) + a (k), a+ (k ') —a (k ') ] = 2 5'(k —k '),

(2.25)

1+2r &0

are equivalent. We take

1+2r &0 .

That gives

[a, at] &0

and

[a', a' t] &0 .

Choosing a convenient normalization and renam-
ing a and a' to a, and a, we get

and most importantly,

[a, (k) a, (k) —a (k) a (k),

(at(k') —a (k')){a+(k') —a (k'))] =0 . (2.26)

The a, (k) operators have the same commutation
relations as and appear in the momentum in the
way that is usual for destruction and creation
operators. We will choose a vacuum such that

a, (k) Jo&=0. (2.2'/)

The operators a, (k) and a, (k) will then create and
destroy particles of momentum k in the usual way.
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For the a operators, there are two choices:
(1) We interchange the roles of creation and

destruction by defining

b=a and b =a

a (k)~0& = 0 . (2.28)

The basis states of the theory are then

a+ (k,)"i a"(k, ) & a+ (k, )"& a (k, ) &

(ii f) & I&
(pyg /)& ~~ (//)~ ~~

(7n /)& ~~

It is important to note that states with an odd
number of "-"particles have a negative norm.
For instance,

(a'(k')O]a'(k) ]0& =(0]a (k') a (k)]0&

=&0][a (k &, a'(k)] (0&

= —&'(k —k') .

Another important observation which can easily
be verified is that

—a (k')a (k')[a (k)] ~0&=m[a (k)] ]0&5'(k —k') .

The next step in our program will be to find the
eigenstates of energy and momentum. Since the
energy and momentum operators are just (con-
tinuous) sums of operators for each momentum,
we can simplify matters by working in the sub-
space corresponding to just one momentum k. We
have

d'u p~ a,
with

p(k) = k [a (k) a (k) —a (k) a (k)],
P (k) =h(k) =h (k) +h'(k),

The vacuum is given the property

h(k)
~
0& =0 .

The b operators satisfy

[h(k), ht(k')] =P(k —k') .

The b and b operators will then create and destroy
particles in the usual way. However, they appear
in the momentum as

—6 (k) 5(k) .

The theory then contains states with negative en-
ergy. Worse than that is the appearance of a+b
in the Hamiltonian. This shows that eigenstates
of H will have an infinite number of particles.

Rather than struggle with such difficulties, we
prefer to deal with those which arise from the
second option.

(2) Here, we assume for the vacuum

ho(k) = ]k~[a+(k) a+(k) —a (k) a (k)]

h'(k) = [a+(k) —a (k)][a+(k) —a (k)] .

We have already calculated commutators which
show that

[p, h, ]=[p,h ]=[h„h]=0.
Now, since h, and h' commute and @p and p are

essentially the same, our problem reduces to
finding simultaneous eigenstates of h, and h'.
Since

(a,a, —a a )(a, )"(a ) ~0&=(ii+m)(a, )" (a ) ~0&

all states

So much for the eigenstates of ko.
The next important observation is that h' leaves

the subspace spanned by the

(a, )" '(a )' ]0& i =0, 1, 2, . . . , N, N fixed

invariant. Attention is then restricted to this sub-
space. Because a, —a and a+ —a commute,

(at at)»
~

p& (2.28}

is easily seen to be an eigenstate of h' with eigen-
value zero. Indeed,

h'(at-at)»]0& = (at —at) (a, —a ) (at —at)" ~0&
k

1+2'

(a, —at)(a, -a )"(a, -a ) ~0&

=0

We will now show that there are no other eigen-
states of h'. First, observe that the states

(at-at)» '(a, +a )']0&

also span the subspace characterized by a par-
ticular value of N. The commutation relations
are used to verify that these N+1 states are indeed
linearly independent. Since the subspace is M+1
dimensional they must span it. Next, we verify
by direct calculation that

h '(at - at)» ' (at+ at)' ] 0)

2i (a't at)»-(i-I) (at yat)i-I] P)
ski

1+2r

i&0 .

are eigenstates of h, with non-negative energies.
Linear combinations of these which mix states
with the same n+m are also eigenstates of h, .

N

h, g c(a, )" '(a )']0& =N]k] g c(a+)" '(a )' (0&.
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For i =0, we have already shown that the right-
hand side is zero. Now consider the action of k'
on an arbitrary state. Letting

li) =(at —at)» '(at+at)'lo),
we calculate

»
h'Ig) =h'g c; Ii) = g ic;li —1)

$=0 5=1

If this is to be equal to Xl g&, we must have

Xc~ =0,

Ac~, = ¹~

1 1 2 2

AC0=
1 2

C1

If ~ is not zero, all the c's must be zero. If ~ is
zero, only c, is allowed to be nonzero. This com-
pletes the demonstration.

Let us pause to review what we have discovered
about the structure of the state space. The theory
contains positive- and negative-norm particles.
Because of the negative-norm particles the state
space is not a Hilbert space. And because of this,
although the Hamiltonian is self-adjoint, it cannot
be diagonalized. There is a subspace correspond-
ing to each momentum. These subspaces are
composed of subspaces characterized by specify-
ing the total number of particles in a state. With-
in a subspace where all the states have N par-
ticles, there is only one direction which is an
eigenstate of the Hamiltonian. For instance, cor-
responding to the momentum

for N 40.

=0 (2.20)

Quantum mechanics of a one-particle subspace

Studying the quantum mechanics of a one-par-
ticle subspace gives some insight into the pecu-
liarities of this theory. We have

I1, o& -=a' lo&,

Io, 1)=-a'Io),

I » =
~2 ( I I, o& +

I o, I&),

I2&=-
~2 (ll, o&- lo, I)),

¹1
subspace is spanned by

a'(k) I o) and a-(k) I 0&

The state

[a, (k) -a"(k)] lo)

is an eigenstate of H with energy lkl. The two-
particle subspace is spanned by

a+(k) a+(k) I 0), a+(k) a (k) I 0), and a (k) a (k) I
0) .

The state

[a, (k) —a'(k)] '
I
0)

has energy 2
I
k

I
. It is easy to continue this for

higher numbers of particles. It should be clear
that the eigenstates of H all have positive energy.

Our final observation will be that, except for
the vacuum, all these eigenstates have zero norm:

&(at-at)»ol(a,'-at)»I0) =(ol(a, —a )"(a, —a )"Io)

=(ol(a,"-a )"(a, -a )"I0)

k=o

there is a one-dimensional subspace which is the
constant multiple of the vacuum. The vacuum is
an eigenstate of H. For

N=1

H =H0+H',

H, =E(a+a, —a a ),
H'=E (a, -a }(a,-a ),1

1+2r
(2.21)

there is a two-dimensional space spanned by

a~+(0) I0) and at(0) I0) .

The direction

[a, (0) —a (0)] I0)

is an eigenstate of H. This is continued for higher
N in an obvious way. Corresponding to some

there is no one-dimensional subspace. The

H'l I& =,
H I2)=o,
(1, 0I1, 0) =1,
(0, 1l0, 1) = —1,
(ill) =(2I2) =o,
&I I2) =1.



MODIFIED FIELD THEORY FOR QUARK BINDING 2187

l= g ln&&nln&&nl . (2.32)

Before solving the Schrodinger equation, it is
important to note the form of the completeness
sum in a theory which contains negative-metric
particles. The more general form also applies
to the usual theories:

with this, we may wonder just exactly what states
or combinations of states are actually physically
relevant. This cannot be answered in the nonin-
teracting theory that we are using. At this point,
we are content to note that completeness guaran-
tees that there is one combination of amplitudes
which is well behaved:

The sum runs over some complete set of states
which satisfy

(n'In& =st)„„

a, (t) a,(t) +a,*(t)a,(t) = Ia, ,(t}I' —Ia, (t) I'

= a,*(0)a, (0) + a,*(0)a, (0)
=

I a, ,(O}I' —
I a, ,(0) I' .

(2.34)
For the special subspace in which we are now

working completeness becomes

l = Il, o&&l, ol- lo, »&0, ll
=

I » &2 I+ I2) &l f
.

To solve the Schrodinger equation we write

I(t(t)& =a, (t) I l&+a, (t)I2& .

The Schrodinger equation

9—
„

I p(t) &
= —t&1(t(t) &

gives

a, =- iEa, ,

2' ~a, = —iE a, +
&

The solution is

a, (t) =a, (0) e 'e',

,(t ) = (a,(0) — zt a, ('0) }1+2K

(2.33)

Here we begin to see that there are going to be
difficulties associated with giving the theory a
physical interpretation. To begin with, there is
an ambiguity in identifying P, (t), the probability
that the system will be in the state I2) at time t.
Should we use

la, (t)l'

The discussion of interactions will determine
whether or not this can be given a physical inter-
pretation.

Remarks

We will close this section with a couple of gen-
eral remarks about theories with negative-metric
particles. We would like to emphasize that there
is nothing inherently wrong with a theory which
contains negative-metric particles. The norm of
a state is not an observable quantity. Only tran-
sition probabilities are observable. The only thing
which is required is that the transition probabil-
ities be non-negative and that probability be con-
served. Thus, it is the form of the interactions
which is important. For instance, there will be no
problems with a theory in which the 8 matrix does
not connect positive- and negative-metric states.
Gupta-Bleuler QED is a more complicated ex-
ample.

Finally, we will bring up a point which, although
it is very simple, was not mentioned in the dis-
cussions of negative-metric theories that we en-
countered. The point is that the diagonal matrix
element of an observable loses its meaning as an
expectation value when negative-metric states are
present. The correct generalization is easily de-
rived. Suppose there exists a complete basis in
which the self-adjoint observable A is diagonal:

A
I n& =A„

I n) with (n I
n'

& = + t)„„.
The probability to observe the value A„in the state

or

i&210(t)&l' = la, (t)l' ' P(A„)= f&nl(f& f' .

When

a, (0) =0

the system has simple behavior which suggests
that we should take

P,(t) =
I a,(t)l' .

However, when a, (0) is not zero, P, grows like
I,
" and certainly cannot be a probability. Faced

The expected value of A. is then

X=+A„f&nl(I ) f'
n

n

n n
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If we define an operator g by

)}ln& =&nln& ln&,

we get

X=&{{lA P (nl n) ln& &nln&&nip&

8
n{&)(x) S 2 +R{A)(x n) )

It is then easy to see that

D„(x}—D„(x)=, [n„(x)—S,(x)]

=&{{IAnl0&

(2.2s)
2 A(x, &n')

am2 m2=Q

=D(x) .
III. INTERACTION S

In this section, we will investigate the properties
of an interacting field theory with higher deriva-
tives in the Lagrangian. Our purpose will be to
continue the formal development of the theory and

to resolve the questions which appeared in the
discussion of the free field.

When the in and out fields are introduced in the
usual way

(x) = P(x)-e d'y DR(x-y) J(y},

y„„,(x) = {{)(x)—e d'y D„(x y) J(y-),

Scattering from a classical current

As a means of easing into our subject, we will
consider the scattering of the field Q from a c-
number source. If an interaction term

2, = —eP(x) J(x)

is added to the free Lagrangian that we have al-
ready studied, the Euler-Lagrange equation be-
comes

s's'y(x) =eJ(x) . (3.2)

S'S'D„(x)= S'(x},

Dn (x) = 0 for x ' & 0,
Dn(x) =0 for 0&x',

The source J'(x) is a given c-number function. We
will assume that its support is restricted to a
bounded region of space-time.

The field equation can be solved by introducing
the Green's functions for the differential operator
a2a2 ~

we find that

P„„,(x) = P,„(x)+e d y D(x —y) J'(y) .

y.„,(I ) = y,„(u)+2&im(u),

g„„,(k}={} (k)+2wieK(k},

where

(2.4)

and

As usual, Q is quantized by assuming it has the
same equal-time commutation relations as the
corresponding free field. By their definitions, we
can see that the in and out fields are free and that
they have the same equal-time commutators as (1}.

The in and out fields are then two copies of the
free field that we have studied in detail. In par-
ticular, they will have the momentum-space struc-
ture of the free field. The relationship between
in and out fields in momentum space is then

S'S'D~(x) = S'(x), K(k) =- ko, J(k)
l~'=l k)

D„(x)= 0 for x' & 0,
D„(x)= 0 for x' & 0 .

These are related to the usual Green's functions
by

We will now use this solution to continue the
discussion of the one-particle subspace that we
began in Sec. II. Suppose that the initial state is
the in vacuum l 0 in&. By using the solution to the
field equation, we can expand the in vacuum in
terms of out states. The result is

loin) = loout)(0 outloin) + l1kout)
N(1+ 2r)

2wi eJ (k) (0out
l
0 in)

+ l2k out) —2wie[2K(k) —J(k)] (0 out
l
0 in)

N

+ ~ ~ ~ (s.s}
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The notation is

I
1k out) = —

I
a„„,(k)+ a,„,(k)]I0out)

I
2 k out ) = ~ [a~„„,(k} —at,„,(k)] I

0 out &

1

(2m}'

4lkl'(1+ 2r}

The dots represent states of other momenta and
more particles. This result shows that the source
can create both Il) and I2) type states. There-
fore, the problems that we touched on in Sec. II
will not be avoided in any simple way.

In that discussion, we also brought up the pos-
sibility of attaching physical significance only to
the well-behaved combination of amplitudes

&al»&2l0&+&ol 2&&lie& .

Let us explore this idea in more detail. The moti-
vation for this suggestion is the need to find an
interpretation of the theory which is consistent
with the conservation of probability. In a Hilbert
space of states, the conservation of probability
follows from the completeness relation for the in
and out states. Consider

&~-s= l&BoutlAin&l'

PP„~= g (A inl Bout&(B out IA in)
B B

=(A inlA in)

In the theory we are dealing with, it is

I»&2I+ l»&ll = ll, o&(1, Ol - IO, 1&&0, ll

which appears in the completeness relation. If we
could find a consistent interpretation of this com-
bination as a transition probability, the conserva-
tion of probability would follow. This, of course,
cannot be done by fiat. One must supply detailed
physical arguments to show why

(tpll, 0&(1, Olp& and (QIO, 1)(0, 1lp)

are not separately observable. Even before doing
that, though, it will be necessary to show that

&y ll &&2ly& +(y I»&ill&

is positive. Let us check this for the case of
scattering from a c-number source. We find that

(Oinll out&(2outlOin) +(Oinl2out&(1 outl0in&

= (2w} e'N'(1+2r}l(Ooutl0 in) I'X,

with

X(k}=J*(k}K(k}+K*(k}T(k}-Z*(k)Z(k} .

Since the coefficient of X is positive, we are in-
terested in whether or not X is positive. Using
the definition of K, we find that

X= k ka (J*(k', k)J(k', k}]

—(Z*(k', k) Z(k', k}]
f O=l&l

To show that this need not be positive, we will
construct a simple counterexample. Suppose
J(t, x} is a product of a function of t and a function
of x. Then J(k, k) will also be a product

J (k, k) = T(k }S(k) .

This gives

x= Is(kll* (IP, &(0') —A(k')
Bk

with

A(k }= I T(k }I

Now assume that the function of time is a good
function. This implies that A(k') is a good func-
tion. In particular,

lim A(ka) =0 .
y0~ ~

A few manipulations show that

implies

A(k'}-~ as ka-~ .

The conclusion is that for scattering from a c-
number source, we cannot guarantee that

(yl 1&(2
I q& +(yl2&(1 I y&

is positive.
This does not bode well for our theory. Our

next task will be to determine whether or not
similar unfortunate results are obtained in a fully
interacting theory.

Perturbation theory in the Heisenberg picture

In this section, we will develop perturbation
theory in the Heisenberg picture for a sample
interacting theory. The goal of the discussion will
be to answer (within the context of perturbation
theory) the questions about physical interpretation
which have come up in earlier sections. We have
chosen to work in the Heisenberg picture so that
our results cannot be questioned on the basis of
certain technical difficulties which appear in the
derivation of the Feynman diagrams. They will
be discussed 1..(,ter.
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Let g be an ordinary scalar field, and consider
the Lagrangian

2=a& Qs'P+-, (s„ps"g-M'g) edt-)(i' .

The field equations are

g2g2Q A/3

(8'+M )g=e'Pg',

with

8 =-38 .
Since our considerations will be restricted to the
lowest order of perturbation theory, we will not
need to know the wave-function renormalization
or the mass shift beyond zeroth order. It will
simplify matters then to set

Z&=Z&=1 and 6M=5M& =0

from the beginning. The in and out fields are then
introduced in the usual way:

follows that

(,„,)(x) =0,
(s'+ M')y (.„„(x)= 0 .

These results are, of course, nothing novel. As
is usually done, we will give the in and out fields
the structure of the free fields that were studied
in detail. The states which are created and de-
stroyed by these fields are identified with the as-
ymptotic scattering states.

The first part of our program will be to calculate
the nature of the Q particles that can be created in
the collision of two |I) particles with momenta p,
and P,. The state of the system is )P,P,in), which
we will expand in terms of the out states to order
e. This state is

IPp.in) =s';. (P, )&' (P, )lo&

The notation for the g field is

(,„,&(x) = P(x) -e d'y D„&„)(x-y)g'(y),

d.(.. )( )=d(*)-e'J d'i n,i*i(*-J)4(J)d'(y) .

By applying the "full" energy-momentum operator
to these expressions we can verify that the in and
out fields are Heisenberg operators:

i[P", y (.„,)( x)]= s"y (.„,)(x),
i[P', 0 (..()(x)] = & "WI;.(..()(x) .

From the properties of the Green's functions it

(u = $'+M')~',

(e)= e, f d'ne(d'-ee')1

x 8(k')[A (k)e "'+H.c.],
A,„(e)=

( )„,f d'*e"'dd}, (*) .

Similar relationships hold for the out field. We
then get

lddin)=
( )e, ( )„,( )e, f d'*, fd'*,e ' ' e ' ' e, 'd, d (*,)d,„(e)))}

To order e the field equations give

Il. (*) d (*l e fd=—'}..n. (* 'e')(n. (e)d '(})--
When this approximation for p, „

is used and the integrations are carried out, we find that

e '2' d 'k A t„,(P —k)

x {yt„,(k)5( lk I+ [(P —k)' M'+]~' —E)

—g'.,(k)&(Ik I+ [(P—k)'+M*]~'-&)

-y', (k) ]h ]()'([h (+ [(0-k)'+M']~*-S)] jo), (3.V)

with

P =p ~
+ p2 and E = 47 j + QJ2
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It is important to notice that even though lpp, in& contains jl) type out states it is nevertheless an eigen-
state of H. This can be verified by direct calculation with

By H,„,(or H ), we mean the Hamiltonian that results from the Lagrangian with the interaction term
dropped. It is a sum of the free Hamiltonians for each field.

Now consider the final states

I1pkout) = ~ ao".gp)[2y,„,(k) —y,„,(k)]IO&,

I2pk out& = u'(p)e.'. (p)4'. (k) I0) .

For simplicity the parameter r has been set to zero. The matrix elements are

ie' 1 1
IPJ'2 &

—
2(2, )2 (~ ~ P2 ( ~+~')~' (41l I')

& [« Ik I+(p+kI')"- &)-2 Ik I&'(Ikj+(p'+~'}~'-E)],

'e'
&2pko«lpp. tn&=-

(
... '" ' ' ')" ( I

I')" ~(p+k-p)«lkl+(p'+~') '-&) .

The two combinations which may have a physical interpretation are

l&2pk out lpp, in& I'

and

( pp, in I2pk out)(lpk out jpAin& + (p p, in llpk out)(2pk out
I pp, in& .

The quantity

I& lpk out
I pp in& I'

is ruled out since we have not been able to define

~'(x)~'(x} .

The expressions for the interesting combinations are
I2

j(2pk out IpAin& I' = (, (, , ~, I„)6'(p+k —p)V(0)
4 2w (g), u)2 (p +M 4 k

and

(pp, in I 2pk out)(lpk out
I pp, in& + (p p, tn llpk out)(2pk out Ipp, in&

I2

, (P(0)(P(p+k —p)s(lk I+(p +Af } —E)22~) u, &2 (p +M 4 k

x[q(lk I+(p'+~')~'- E)-2jkjs'(Ikl+(p'+kI')~'- E)] . (3.10)

Although this last expression is unusual, it leads to a finite cross section when integrated over the ac-
ceptance of the counters. Ne will show how this is done when we discuss unitarity.

The next part of the program is to calculate the e' contribution to the scattering of two g particles. In
fact, we will only be interested in the part of the amplitude which has an imaginary part. To order e, we
have
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C (*) (=(~..I'~ f'd X&'(* 3(-a (1)S l(-&I'e~f d &&'(* &-) d'AD (& -1.((..*(&*)I','(»)

+ e d 'y, 6(x —y, ) IP,.„,(y, ) d 'y, AA(y( —y2) (P,„,(y2)(}I,„('(y2)$,„1(y2)

+ e d'y, &(x —y, )(p,„,(y() p,„((y,) d'y2AA(y, —y, ) Ip,„((y2)y.„,'(y2) .

This is substituted into the expression for the initial state ip p2in) in terms of p that we used before.
The computations which follow are complicated and boring. The result is

"[«e'DA(y - y2}&-(y - y2)+«D. (y - y2}~A(y - y2)].

In this expression, the momenta of the outgoing g particles are E, and P, with zeroth components 0, and
Q, . The subscript I on the matrix element indicates that we have retained only the terms which contribute
to the imaginary part in the kinematic region for the scattering process. The new singular function is

D, (x)=-, S,(x, m')8

In momentum space this becomes

ie~ 1
(P(P2out~p(p2in)1 = (,2, ,12 5 (p, +p2-P, —P2)2') (+14)20~02)8, 28(-p', -p,'-k')f(((p, +p, +k}'-m') g(p', +p,'+k')5((p, +p, +k)2-M')x

~m k -M —ike k -m —ik~ m2 =Q

(3.11}

To prepare for the discussion of the conservation of probability, the zeroth-order contribution should be
added on:

(P1P2out~pAin) U= 52(p, -p, )5'(p2 —P,}+02(p, —P2)5'(p2 —P,)+(P P,out)p p, in), .
When this is used to calculate the transition probability to order e', we find

(PP,out ) P +2 in) n )
' = 2t%'(0) f('(0)5'(p1 —P,)52(p2 —P,) + 2V(0)t('(0)5'(p, —P, )f(2(p2 —P)

with

/2
+ [fI'(P, —P, )5'(P, —P,) 52(P, —P,)I5'(P, —P, )]5'(0)

(„,~, M,
~1~2 1 2~

(3.12)

8
M =, der 22i[2e(-P', -P2'- k')3((P1+P, + k}2 m2)e(ko) 0-(k2 M2)-

—~(-p', —p,'—k')f((p, +p, +k)2-m2)e(-k')3(k2-M2)] .
This expression for M results from observing that

A change of variables

k —-k —Pi —P2

was also made in the second term. In the frame

P=p, +P2 =0

the k integration is easy. After differentiating with respect to m', setting m' to zero and substituting
back in to the formula for the probability we find that

)(R,P2out)p+2in) U)'=252(0}5'(0)f'I'(p1 —P1)62(p2 —P2) +2f(2(0)62(0)i%2(p1 —P2)52(p2 —P )

+ [~'(P1 —P )~'(P2 —P.)+ f'(5, —P.)d'(P2 —P )]3'(0)
4(24 2n (I(1((12 P P -M (3.13)
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with

P'=(p, +p, )'

Now that the calculations are out of the way, we
can think about the physical interpretation of the
results. To simplify the notation, let P(P, p, k)
stand for whichever expression

A(P, p, k) = ~(2pkout~pp in) ~'

"1"=(pAin ~pAin)

= lim lim (pp2in ~pain)
&z

= lim lim [0'(p, —p()5'(p, —p,')
a, p,'-a2

+ ~'(p, —p.') ~'(p, —pl)]
= t'(0)a'(0) + |'(0)~'(0) .

or

S(P, p, k) —=(p A in ~2pk out)(lpk out )p Ain)

+ (p p, in
~
lpk out)(2pk out

~ p Ain)

The factor of ~ appears to avoid the double count-
ing of states when calculating a total cross sec-
tion that has identical particles in the final state.
After carrying out the p, and p, integrations the
conservation condition becomes

might be used to represent the probability for
production of P particles. In addition, let

E(P, P,P, )
-=((P, P, out( pp, in) U

)' .

The conservation of probability requires that

4( )
e" 1 1 P +M'

4(2w)' &u, &u2 P P -M2

+ d'P d kPPP k (3.14)

P(P-s) .

Assuming that this holds order by order in per-
turbation theory, a condition on the quantities
that we have calculated results:

5'(0)5'(0) + 5'(0)5'(0) = — d 'P, d 'P, E(P, P„P,)1

+ dp dkPPPk

The 5 functions on the left-hand side arise from
the normalization conventions:

This equation shows that we are in trouble al-
ready. The first term is positive, which, if the
condition is satisfied, requires the second term
to be negative. However, the second term is sup-
posed to be a transition probability, which should
be positive. Whether the sign of the first term
can be changed by higher orders of perturbation
theory or by other forms for the interaction is
not known. Since A(P, p, k) is positive, it cannot
possibly satisfy the condition, and there is no
point in integrating it.

The integration of S(P, p, k) is a bit tricky so
we will indicate how it is done. The vector 5

function is used to do the p integration and the k

integration is switched to polar coordinates:

d'p d'kSP, P, k = g3 p
S(2&)' ~ ~ k [(P —fc)'+M'] ' '

X5{k+[(P-k) +M ]~ —E) (5{k+[(P-k) +M ]~ —E)

—2kb'{k+ [(P-k)'+M']~' —E))

The first term is of the usual type and produces
a 5(0) to go with 5'(0). The second term presents
us with the problem of defining an integral of the
form

dx x5gx 5'gx) .

We use the following method:

dxf x ——,'~(g x ~(gx
dg

dxf(x), —[5{g(x))5{g(x))]
1 d

g'(x) dx

dx 5(g(x))5{g(x))—d f(x)
dx g'(x)

= --,5(0) dx 5{g(x))—1 f(x)
dx g'(x)

„~(x-x.) d f(x)
ig'(x, ) ( dx g'(x) '

With this the k integrations can be done (most
easily in the P=o frame) The resu. lt is

d k d PSP, P, k
e'2 1 1 P +M

4(2w)' m, &v2 P P —M
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As expected, this satisfies the condition but has
the wrong sign for a probability.

The conclusion of this section is, then, that the
theory we are using does not allow the usual sort
of probability interpretation. To show that this
unfortunate result holds for all orders of perturba-
tion theory and in all theories with higher deriva-
tives in the Lagrangian will require much theo-
retical labor.

y,„(x)= d k 6'(k )8(k )[(I);„(k)e '"'*+ H.c.] .

Operating with 8', we find a simple result,

which can be inverted in the usual way to get a
formula for 4) (k}:

Diagrammatic approach

In this section, we will discuss the derivation of
the Feynman rules for the sample theory we have
been working with. Ne do not intend to present a
complete detailed derivation. Rather, we will
follow through the treatment in Bjorken and Drell"
and supply the changes that are necessary for the
theory we have.

The first step is the derivation of the reduction
formulas. Recall that the one-particle states are
created by operating on the vacuum:

~lk in) = (~/W) [2q.'(k)+ 4,'„(k)](O),

~2kin) =(X/W)y, '„(k)~O) .

Again we have set r to zero. Recall that the ex-
pansion of the field is

(;„(«)=
( ), f «' "*B,d'(, .„() (3.i5)

To get the formula for 2$(k) —g(k), we combine
and operate until we get

(4s,' —2ts,s' —3e') y,„(x)
d'k
2 k

Q2&(k) —y(k) ] e '"'" + H. c.},
which inverts to

2y(k) —4 (k)

g

(2w}'
d'xe'" *f,[4s,' —2te, s' —3s']y;„(x).

(3.16)
In reducing an in particle of type ~1) from the

initial state, we find a formula like

', f «'*e "*&,(«&,
' —2(~,~' —)8')(&ll«(' (&) 0-(*)«Il«)

which we can write as

~ (lim —lim ), d'xe ' '*()0(4&0' —2tso&' —3&')(A
~ T[(k(x)X] ~

B)
vZ, „,„2)()'

This expression reveals the first difficulty with the derivation. The limits may not exist and the asymp-
totic condition may not be satisfied due to bad behavior at large t. We will simply hope for the best and

proceed. The standard manipulations then reduce this to

, 1
«'*e "'a*( ,*- (ta9a-2a')(

I )l(«, )*xT)(IB)*

For the ~2) particle the corresponding result is

~z 2', J
e-"«'a*a*(

I f (x«)xT)l(. «)

.J
«'* ""()~ 2&&.)~'~'«(IT(((*)«1(1«) (3.17)

(3.18)

When all of the in and out particles have been reduced into the time-ordered product, our attention is
shifted to the 7 functions

7.(x„x„.. .) = (OiT[g(x, )g(x, ) ] io&.

The perturbation expansion for the T functions is developed by introducing the U matrix which has the

property
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with similar expressions for Q, Q, Q, p, and p. The derivation of the properties of U proceeds smoothly.
It is convenient to introduce the operator

U(t, t') = U(t)U-"(t').

No problems are encountered in obtaining the usual expression for U(t, t') in terms of the time-ordered
products of the interaction Hamiltonian. The next step is to use the U matrix to write the ~ functions in
terms of the in fields:

~(x,x, x„)=(O~T[U- (t, )y,„(x,)U(t„t,)(r.(x, ) "U(t„)]~0&

= lim (0~U '(t)T[U(t, t, )&t,„(x,)U(t„t, )(t),„(x,) U(t„,-t)JU(-t)JO).
~ + oo

The U operators outside of the time-ordered product are handled by showing that

»m U(t)~0) =~,~O&.
l. &)o

The second technical difficulty is encountered when we attempt to verify this condition. Following Bjorken
and Drell, we consider an in state which contains a P particle of momentum P plus anything else a. Ob-
serve that

( o I()(&)lo)
~~

o', Jo'xe"'o, ( lo;.(x)oO))lo). (3.19)

The operator 4' is

(48 ' —2xos 9' —38~)(t);„(x) or 9'(t);„(x),

depending upon whether the state contains a ~1) or ~2) type particle. Using the properties of U, calculate

(oolrr((llo)
~o

', Jo'* ""o.
& Io(*')o(*)o-'(*')o(Olo)

', ( o(*') f d ""o,o'*(x) o '(*')oO} 0)

o', Jo'* ""&ol(tr( )o()o- &„)()(()o(x')o()O (* )oO)llo)-.''
Set x =t and let t--~. The first term will contain the quantities

(~IU(-™)[20,.(P) —0,.(P)] I»
or

( IU(--) y,.(P)la&,

which are zero. A little manipulation shows that the matrix element in the second term is

»m (aJ[- t H, (t), C,„(t,x)] U(t)~0),
()o

with

H, (t) = -Z, (y„,)t,„)
= e@,„g,„'.

~ ~ ~

If the original (t) particle was a ~1) type, @~ contains P,„and the commutator is not zero. The only way
around this that we can see is to say that Hz(t) should be interpreted to contain an adiabatic switching factor

e-~l &l

To understand this better, we can use lowest-order perturbation theory to calculate the matrix element
in Eq. (3.19) directly:
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»m & o(1P inlU(t)IO& = lim lim &n1p inlU(t, t')ll))
t~ I

t
—= —i l' ll il in di, ll, (i, ) D)

ao t~ ~~oo t'

= —ie lim lim dt, d'x ~ 2, , (1 —2ilplt, )e'~ *&alp'(x)IO).
i

(2 P-x/2

x — d' ~ x
))2 2w 4 p

&&I 0'(x)IO&- e"*,
the resulting integral will be of the form

t
t

dt, d'x(1 —2tlplt, )e"~ ""e "("q'" =(2n')'t)'(p+q) 1 —2P' o dt, e"
tt BP ti pp

(3.20)

Without a convergence factor, this integral is not defined if we intend to take the limit t - —~ followed by
This shows again the need for the adiabatic switching factor in H~. Including this factor will modify

the integral in Eq. (3.20) to

t
2p0 0

[~+i(P +a )) t j.
BP V=I p I

with t and t going to minus infinity this is certainly zero. The conclusion is that this part of the deriva-
tion of the Feynman rules requires that Hl be interpreted with an adiabatic switching factor.

No further problems are encountered in completing the derivation of the Feynman rules. The only work
which is left for us to do is to examine the properties of the propagator

&OIT[4,„(x)4,„(x')1IO).

For this discussion the designation "in" on the fields will not be indicated.
Using the momentum-space commutation relations, the time-ordered product is easily calculated. Since

it is formed from

&ol4(x)y(x')IO& and &Olp(x')4(x)IO&,

we begin by looking at

(did (c)d(c')I» fi-, f i=-, (nl(fx(» ~ lie(cd(c)I c "'' ~".c ) ((x(c')+ ll'll'd(c')lc ""
H c.l'ln)

d'k d'k'

~

d
~
~

3 4
d
~
k

3
c ~

t
~ I ~ n

~I I ~ I ~ in k ~ ~ ~
in k I 4 ~ I

~

d'k d'k

, -, [x(~) + ilkl ty(&), x'(~') —ilk'I t'y'(t ')) e-"*e'*"*'.

Working out the commutators and using the resulting & function to do the k' integration gives

d'k
&OI+(x)O(x')IO&= „,,-„-,ll+ ilkl(t- t')J e-"'"-*'.

To get &Ol(t)(x')$(x)IO) simply interchange x and x'.
After observing that

&Ol(t)(x)(t)(x')IO) =, a, (x —x', m')

It is no problem to show that

&Ol T[(t)(x)(t)(x')] IO)=, in. (x - x', m')
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This shows that the time-ordered product solves
the differential equation

s's'&0( T[y(x)p(x')] (0& = f &'(x —x').

By direct calculation one can verify that

Thus, the propagator in coordinate space is

&0( T[y(x) y(x')J ~0&=, ln[-(x- x')'+fej+C
4(2 x)'

(3.22}
where C is a (perhaps infinite) constant.

Equation (3.22) should be interpreted with some
care. Considered as an ordinary integral the k
integration diverges at k =0. (This is the same
behavior that is found for the photon propagator
two-dimensional QED. ) Considered as a distribu-
tion the result depends on the method used to reg-
ulate the integral. It is also interesting to note
that although the left-hand side of Eq. (3.22} is for-
mally scale invariant the right-hand side is not.

As an alternate way to calculate the propagator
we can do a (trivial) spectral sum

&0( y(x) y(x )( 0&

d'k 0 Px 1k 2k+ 2k 1k px' 0

A typical matrix element is

(0 ( P(x) ( 1k &
= (0 ] P(0) e ' '*

) 1k )

=&0] p(0) e '"'( lk) e'"'" .

Recall that

H =Ho+H'

and

[H„H'j=0 .

Using

H )2k& =0

we find

&Dl((*&l()&=&ol((0)(l (-)&(2((2a& e-"'

This and similar results for the other matrix ele-
ments combine to give

&Dl((*)((*)(o&=fd ke "'*-" '(o(((0)(I()&&2&I+(2()&((.I)e(0)(o)

fll l(f- I') &01@(0)[2k& &2k ( y(0) [0& (3.23)

When the definitions of the states and the momentum-space commutation relations are used to calculate

&0)P(0) J1k& =, ~, &0( P(0)(2k& =—,~ (I+2r)

Eq. (3.23) becomes

d'k
&O(y(x) y(x')(0& =—, -, e ' 'I' " [1+i [E)(t —()')J

as before.
We now turn to the relationship of the time-ordered product to the normal-ordered product. As usual,

P can be decomposed according to

p(+) + p(-)

with

0"( )I0&=o, &0ly' '( ) =0.
Using the definition of the normal-ordered product we find that

0( ) 4( ') =:0( ) 0(x'):-[0"( ), 0' '( ')]

=:y(x) y(x'):- &0~ y(x) y(x') (0&,
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since the commutator is a c number. With the corresponding expression for P(x')P(x) and the observation
that

:y(x) y(x'):=:y(x') y(x):,
we obtain

T [P(x) y(x')] =:(t((x) 4((x'):+{0
~
T [y(x) P(x')]

~
0) . (3.24)

With the properties of time-ordered product known, we can return to the derivation of the Feynman
rules. Equation (3.24}allows us to prove Wick's theorem. The rest of the derivation presents no difficulties.
The usual rules are modified by replacing the momentum-space scalar propagator 1/k' by 1/k'. The
other modification results from the form of the reduction formulas. The differential operator which
serves to remove the external line propagators becomes S'S' for ]2) type states and —(3+2tS,)S'S' for

~
1)

type states. As an example, we will recalculate the matrix element

(pki]p, p,) .

Use of the reduction formulas gives

(Pkl out ~P,P, in)

i ' i (/~ (2vP /~

(2v)'" (2v) 2(e,2~,2(e, 8!k!'

d'x, d'x, d'x, d'x, e '
& "&e ' &'&e' '3e'"'~ 3+2t~, ~'84' a'+I', ~'+W', a'+I'3

In lowest order the 7. function is

&&(0] T(g(x, ) t{(x,) (!((x,) y(x, )]]0) . (3.25)

v(*,xx, ,)= —'efd'y (olr((( (x)(( (x((,„(x)(,„(s):((y)("(3):]~0)

= —ie3! d'yike(x( —y)ice(x, —y)id'(x, —y){0~ T[(t(,„(x,) (!(,„(y)][0)

Inserting this in Eq. (3.25), letting the differential operators act, and carrying out the x„x„andx, inte-
grations we find that

(2v)'
{Pkl out] P,P, in) = —ie3! (2x) '/'

2(e(2~,2(e, 2x)'

x d ye ' &'~& ~ ' d~xe' '" 3+2x 8 6' x —y (3.25)

After the x integration is done, the y integral we are left with is

d ~y e '( ~'~~ ~~ '(1 —2i I k )
y'} = (2 v)' 5'(p + k —P ) [5( j k

)
+ (p

' +M') ' /' —E) —2
) k )

& '(
( k )

—(p
' +M')' ' —E) ]

When this is substituted in Eq. (3.26) the same expression that we obtained in the Heisenberg picture is re-
produced.

Infrared problems

As we have already seen, the 1/k4 propagator presents some infrared difficulties. From a general point
of view, this is a good feature which may lead to quark binding. However, in terms of perturbation theory
calculations, it is a disaster. The radiative corrections to scattering processes cannot be rendered infra-
red finite as can be done in QED. To give an idea of what can happen we will calculate the order-e' con-
tribution to the fermion self-energy in the Abelian vector-meson version of the theory. By this we mean
a theory like QED except that the 1/k' photon propagator is replaced by I/k~. We choose this model so
that comparison with the familiar results of QED will be facilitated. The coupling constant e then has units
of mass. The gauge properties are not affected. It is interesting to note that because of this the Ward
identity is also not affected.

The self-energy insertion is
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%'e will regulate this in the infrared region by using the propagator

1
(k' —X' + ie}'

A little y algebra gives

—(ia 4 1 k'+m
4s~ (k2 12+je)2 k2 2k.P

(3.21)

After parametrizing the denominators, shifting the origin in k space, and doing the k integration, Eq. (3.21)
becomes

1 1 1 x, +16m = ——m dx, dx, dx, 5(1 —x, —x, —x,)
(0 0 0

These integrals are elementary. The result is

kk m' . (kk —k')'i' (kk —k')' ' (kk —k')' ')

with

If this expression is carefully expanded in the
k-0 limit we find

P8 Q' 3 K tR&m= ——,4r ng2 2 2 A.
(3.2S)

In normal QED, ~m depends on the ultraviolet cut-
off but not on the photon mass. A mass shift which
depends strongly on X suggests that the observed
fermion mass will depend on the size of the room
in which it is measured. This should serve to
illustrate the infrared problems in perturbation
theory. If, in the full theory, the fermions were
permanently bound into charge-zero particles this
infrared divergence would presumably be mitigated.

ymptotically separated. } These problems are
serious. They indicate a need to go beyond the
unimaginative confines of naive perturbation the-
ory.

We will begin the discussion with some general
remarks" about the charge operator in the Abelian
vector-gluon version of the model that was intro-
duced at the end of the last section. The "electro-
magnetic field" now satisfies a higher-order field
equation

g2g yP

E""is constructed from the vector potential in
the usual way:

v=avAp —~pAv .

In the Lorentz gauge

IV. SPECULATIONS

The presentation of our results is now complete.
However, the task of elucidating the structure of
our model is by no means complete. We will con-
clude the paper by speculating on the sort of in-
teresting possibilities that might be established
in a more ambitious analysis.

The development that we have carried out so
far will be referred to as naive perturbation the-
ory. We have seen that it has some problems.
The conservation of probability is violated by the
production of negative-metric states. In a finite
order, the quark pole will not be eliminated, and
the quarks will not be permanently bound. The
radiative corrections are infrared divergent at
the one-loop level. (Presumably, this is related
to the idea that the quarks actually cannot be as-

the field equation becomes

Q„= da-8'E .
S

This is to be compared with the usual result

(4.1}

(4.2)

This reveals a field equation of the type (although
now for the vector case) that we have studied in
detail.

If Gauss's Law

O'V E =ep

is integrated to get the charge in a volume V with
surface S, we find
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In QED, vacuum polarization effects do not alter
the q

' behavior of the photon propagator at small
q'. The exchange of these massless quanta gives
an electric field which fal1.s as r '. A finite con-
tribution to Eq. (4.2) results even as the surface
is moved to infinity.

In the same way, if the vector propagator in the
model maintains its q

' behavior, we will have

E - r/r, V'E - r/r' .

A finite contribution to Eq. (4.1) will result. On

the other hand, if the electric field goes to zero
as r goes to infinity, there will be no contribution
to Eq. (4.1) as the surface is expanded to infinity.
We then have Q =0, and we must conclude that
only neutral states are allowed. However, the
bare quarks are charged. As a consequence the
physical states must be in the

1
Sr — as P-m,p-m

(4.4)

The renormalized expression for the gluon prop-
agator is

Problems arise immediately when the one-loop
contribution to II(q') is calculated .This is the
same as the usual QED calculation. II(0) is found
to be an infinite constant. The basic structure of
our D~ is then modified to q ' and we see that the
initial q

' guess was a poor one. Naive perturba-
tion theory will be useful only if an infinite class
of graphs can be summed.

Another per turbat ion theory po s sibil ity is to re-
normalize the integral equations in the usual way
and to assume the structure

channel and not in the

channel. (P is the field for the spin-& quark. ) This
is just what we mean by permanent quark binding.
As a reflection of this, the single-particle pole
in the quark propagator should be eliminated.

Now, the long-range structure of the "electric
field" comes from the q 4 singularity in the glupn
propagator. It arises from the exchange of the
unusual massless gluons we studied in Secs. II
and III. If the vacuum polarization modifies the
q' —0 behavipr of the prppagatpr tp q ' or spme
even weaker singularity, E will go to zero at in-
finity and the quarks will be bound.

Now that we have focused on the importance of
the vacuum polarization insertion, we will discuss
various possibilities for its behavior. The first
important point is that the Abelian vector version
of our model has the same structure of coupled
integral equations for the Green's functions as
QED except that the expression for the vector
propagator is

&r»(q) = „,;" . ,
) j

+gauge terms. (4.3)
q 2j q

2 + e 2II jq 2

When we restrict our attention to perturbation
theory, there are two initially reasonable looking
possibilities. In naive perturbation theory, we
assume that we can begin the perturbation expan-
sion with the initial estimates

Sr- ' as P-m,—m

D~„„= ",' ' +gauge terms as q'-0 .

gfl V
&y'p v

=
2 Z 2 2, 2)]

+ gauge terms
q jZ,q +e Iljq

The structure of Eq. (4.4} requires of Z,

Z, e,'II(0) = e'II(0) = 1 . (4.5}

However, when we use this structure to calculate
the one-loop contribution to II(0) we find again that
it is an infinite constant. Equation (4.5) then de-
mands that

e'=0 .

Thus, if the renormalized theory is to be finite,
it must be free. This possibility does not appear
to be productive either.

A need to go beyond this sort of unimaginative
perturbation theory is indicated. All indications
are that the vector propa, gator will not maintain
the q 4 behavior. This means that the quarks will
be permanently bound. This should be reflected
in our estimate for the qua. rk propagator. In par-
ticular, it should not have the (P -m) ' single-par-
ticle pole. We do not know what structure would
be more appropriate as an initial estimate in a
more sophisticated perturbation theory. For the
vacuum polarization which determines the vector
propagator structure, we have already commented
that II(q') - q' as q'-0 seems unlikely. When the
quark propagator is modified, II(q') —constant
might be consistent. This would give a long-range
"electric" field falling like ~ ' and quark binding
as discussed. Another interesting possibility
would be that II(q'} would develop a pole as it does
in two-dimensional QED. The result of that would

be a gluon propagator with no singularity at q'-0
and only a short-range interaction remaining.

It is worth noting that these changes could serve
to cure the unitarity problems of naive perturba-
tion theory. If, for instance, the vacuum polariza-
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tion modified the gluon propagator to q ', a stan-
dard positive-metric particle content would re-
sult.

S'y, =-(1/m)Z,

~ (II), = —m Q2.
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APPENDIX

As we have seen, the field equation

g2$2 y J'

follows from a Lagrangian

~=-'(&'y) (s'y) -&0 . (AI)

They imply that

~'~ Q, =mJ .
The Hamiltonian density is

7t I AI + ~242

which becomes

X=/, Q, +'VQ, VQ, +, m'p-, '+( I/m) Jp, .

Commuting with P, and Q, we find

i [K(t, x), y, ,(t, y)] = j, ,(t, x)tl'(x —y)
This theory has been quantized in a natural way.
The free case

was completely solved in Sec. II ~

It is interesting to note that the same results
can be obtained by introducing an auxiliary field
rather than higher derivatives into the Lagran-
gian. " Consider

y =-(1/m) y, .

We then have

(A4)

as required. This method is, thus, an alternate
formalism for obtaining a field equation of the
type in which we are interested.

It is easy to show that this theory is equivalent
to the one which begins with the Lagrangian in Eq.
(A1) and which we discussed in Sec. II. Introduce

+~, @=,s" y, ,' m'-@,
-' - (1/m) z4, . (A2)

If the canonical quantization method is used, we
find

5Z
I g 2

I

and

P, = —(1/m) &'P,

Q2Q2 y J'
and

5S
2 Qy I

The Lagrangian in Eq. (A2) becomes

(s Q) (s Q) —&Q ~

We then require that

[x, (t, x), y, (t, y)] = [j,(t, x), y, (t, y)] = - t&'(x -y),

[v.(t, x), e.(t, y)] = [i (t, x), 0,(t, y)] = —tt"(x —y),(As)

with all other commutators zero.
The Euler-Lagrange equations are

Substituting in the commutation relations Eq. (A3),
we find that P as given by Eq. (A4) satisfies the
same commutation relations as the P of Eq. (Al)
which was discussed in Sec. II. The fact that the
methods which start from Eq. (Al) and Eq. (A2)
give the same results suggests that we are doing
things correctly.
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