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Two distinct objectives, (A) and (B), characterize this project of flux quantization and particle physics.
(A) proposes that, instead of starting with electric point charges to derive magnetic and other
properties of (elementary) particles, one may consider spinning, closed loops of quantized flux
@, = hc/e as the elementary constituents (“elementary loops”) from which electric and other
properties of particles are derived. The manifold of alternative forms of one single loop (which follow
“fibrations” of ordinary space) represents a lepton. In terms of a heuristic model, the consistency of
this program had been shown, and shown to imply the derivation of the electromagnetic coupling
constant e?/%c. (B) relates the classification of particles and their conservation laws to the topology of
flux loops and of their interlinkage. A magnetic field formed from nonintersecting “loopforms” implies
topologically the forms of torus knots. The toroidal fibrations of ordinary three-space by two and three
coaxially interlinked quarkloops represent mesons and baryons. The loops may independently spin about
their common central symmetry axis and “whirl” about their common circular torus midline; effective
spin (versus flux) orientation determines their equivalent electric charges. :, ®, and A quarks
correspond to fibrations of space in terms of loops of “winding numbers” (2, 1), (3, 1), and (3, 2),
respectively; loops (3, £2) have “unknotting numbers” F1 corresponding to strangeness ¥ 1.
Electromagnetic interactions are, in the conventional way, understood as interactions of distant loops
through their electromagnetic field, strong interactions as merging or creation of loop-antiloop pairs,
as well as the various different types of exchanges of quark loops between the interacting particles,
and weak interactions as crossing of loops over themselves or over those they interact with. This
implies that strangeness-violating interactions are weak and parity-violating. The present objective (C) is
to consider the existence of the two different types of spin-whirl motion, one of which has the same
handedness as that of the fibration, in which case the effective motion of loopforms is subtractively
composed of spin and whirl; such was assumed in (B) to characterize quarks. In the other type, i.e.,
opposite handedness of fibration and of spin-whirl motions, these motions contribute additively to
effective motion of torus knots; loops of winding numbers (2, 1) then characterize electrons and muons.
The riddle of fractional charges of quarks disappears in this theory. So, also, does the riddle of quark
statistics (symmetric spin-isospin functions of baryons) because their linkage makes quark loops localized
objects. The flux loops may properly be called “elementary loops.” The next objective (D) concerns the
probability amplitudes which characterize the distribution of the forms of a torus-knot flux loop. They
are shown to be specified by an SO(4)-invariant formulation. To know which group representations to
choose from is a prerequisite to a completion of objective (A), and to a quantitative specification of (B).

I. INTRODUCTION

The aim of this paper is to show that an electron
as well as a quark may be considered as a super-
position of a continuous manifold of “loopforms,”
i.e., of alternative forms which one quantized
magnetic flux loop, an “elementary loop,” may
adopt. An analysis of the types of flux loops and
of their modes of spinning and whirling gives a
clue to the understanding of the relationship be-
tween a loop of an integer-charge lepton and a
loop of a fractional-charge quark. It is shown that
a consistent model exists which substantiates the
claim that these elementary loops are the basic
units of particle physics. Simple topological prop-
erties of various types of loops, and of linked
pairs and triplets of loops, are shown to charac-
terize leptons, and mesons and baryons. It is
pointed out that the difference between electro-
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magnetic, strong, and weak interactions is es-
sentially one of the topology of interaction of flux
loops.

A review of magnetic and electric properties of
moving flux loops is given in Sec. II. We specify
there the basic assumptions of the heuristic model
of the electron and muon in terms of those flux
loops. (These assumptions carry over to the
simple quantum-mechanical model of a subsequent
paper D.) Section II starts with the point-source
model discussion which shows, for a muon and
electron, the same Coulomb-type field arising as
a consequence of their magnetic dipole fields, and
proves the isotropy of that electric field. It then
discusses the quasinonlocal effects implied by
the Zitterbewegung and its implications for the
model. This review of A (Ref. 1) [and B (Ref. 1)]
is given in the context of the present new model
for charged leptons shown in Fig. 3(d), which is
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to be superposed with its mirror image; this
superposition coincides with the quasinonlocal
dipole model of A and B, cf. Figs. 3(e).

Section III, which deals with the main topic of
this paper, shows the motion of magnetic flux
loops as implying electric fields of integer and of
fractional charge, exactly the fields required for
leptons and quarks, respectively.

Section IV goes into detailed discussions of the
forms and motions of loops.

Section V recapitulates the all-important issue
of A, i.e., the question of the electromagnetic
coupling constant ¢2/fic, in the context of the pres-
ent lepton model.

Section VI presents the interesting results about
magnetic moments of hadrons. Not only is the
dilemma of quark statistics disappearing in the
loop model (because quark loops are localized
objects, unlike quark particles), but also the size
of the magnetic moments of quarks (and of had-
rons) is directly determined.

Section VII discusses the angular velocities of
spin and whirl, and it discusses the frequencies
of the probability amplitudes (¢ functions) of
mesons and baryons.

Section VIII presents some remarks on charge
conservation.

Section IX indicates the group-theoretical clas-
sifications of loopform distributions which will be
the subject matter of a later paper D.

II. REVIEW
A. Definition of the magnetic field

The Maxwell-Lorentz equations, which are
assumed to form the background frame of the
present theory, permit gauge and pseudogauge
transformations, an expression of the charge con-
servation law. Whereas an ordinary gauge trans-
formation is defined with the use of a single-valued
gauge variable [denoted by ¢(x, v, z, ct) in A] and
does not imply a physical change in the system
under consideration, a pseudogauge transforma-
tion is defined through a gauge variable [denoted
by 9(x, y, 2, ct) in A and B] which is single-valued
only modulo 27 and multiples of it. exp(i9) and
9,9 are single-valued functions of space and time.
The latter gauge variable defines, through the
singularity line of gradd, a quantized flux

®,=hc/e. (1)
The defining equation is
A, -(fic/e)s,9=@,=0, (2)

i.e., the electromagnetic potentials A, are defined
by postulating the pseudogauge-invariant @, to
be equal to zero, the simplest assumption indeed.’

All magnetic flux is considered to arise from
quantized flux.

Instead of introducing magnetic monopoles
through such a pseudogauge transformation,? we
proceed in a more conservative manner by intro-
ducing closed quantized flux loops only.

As regards the form of those quantized flux
loops, one might perhaps be inclined to think of
wide varieties of forms and introduce functionals
to express their probability amplitude distribu-
tion. Instead, we shall postulate standardized
forms, e.g., as a first try, the forms of a mag-
netic field line of a point dipole source and use its
parameters, i.e., its flux orientation axis ¢ (cf.
Fig. 2, and A), its azimuth «, and its size o,
essentially, to describe the manifold of loopforms.
That these loopforms pass through the point which
marks the “position” of the source, as if attached
to it, is an assumption equivalent to the postulate
of a point-dipole-source lepton whose magnetic
field satisfies the Maxwell-Lorentz equations.

One might try to understand the magnetic field
of a dipole source to arise from a distribution of
probabilities of alternative forms which one quan-
tized flux loop may adopt. Not only would such a
procedure contradict certain principles of quantum
mechanics, it would also imply the failure of a
consistent program of representing the field of
leptons in terms of quantized flux. It was rec-
ognized, however (see A), that a superposition of
alternative forms (which a quantized flux loop
may adopt) with complex probability amplitudes
leads to a consistent heuristic theory. In a certain
way such superposition is analogous to the con-
struction of a quantum-mechanical path from al-
ternative path histories, each characterized by a
complex probability amplitude, in Feynman’s
space-time approach to quantum mechanics.® The
recipe for obtaining these probability amplitudes
is very different in our case of magnetic field
from that of the case of quantum-mechanical paths.

What does “consistency” of the theory imply?

It demands in the present context the possibility

of describing a space-time Structure of an electro-
magnelic field (consideved as the “observable”)

in terms of a probability -amplitude field which is
the quantum -mechanical spinov field of that in-
ternal structure. To be consistent, the probabil-
ity-amplitude field should permit us to calculate
the magnetic field and thus the equivalent electric
field from quantized flux and satisfy the compati-
bility conditions that mc? is equal to the electro-
magnetic energy and that 3% is equal to the elec-
tromagnetic angular momentum. Consistency
obviously demands other points, too, matters to
which we shall refer below. The phases of the
probability amplitudes of the loopforms of a source
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lepton have nothing to do with the pseudogauge field tion, the choice of probability amplitudes is, how-

9 whose V3 singularities define the quantized flux. ever, not yet determinate, in particular as we
There is a continuous manifold of quantized flux have not yet specified their phases.
loopforms, each with its defining 9 field, and each L ] )
represented by a complex probability amplitude. B. Electric field from moving quantized flux

The construction of a point-source dipole field We take special relativistic covariance of Eq.
(which satisfies the Maxwell-Lorentz equations), (2) seriously. The basic definition of the po-
from probability amplitudes of flux loopforms, is tentials through (2), formed with relativistic four-
in a certain sense trivial; the probability ampli- vectors, necessarily implies, without further
tudes have simply to be chosen so that the squares assumptions, that along with quantized flux there
of their moduli correspond appropriately to the exists also an electric potential, provided the
magnetic field intensities at the locations of the quantized flux loop moves. As explained in A and
respective loopforms. Without further specifica- B and in Fig. 1 a magnetic field caused by a Bohr

a
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FIG. 1. (a) Illustration of the multivalued (single-valued modulo 27) pseudogauge variable ¢ which defines a flux loop
(heavily drawn, solid line above the equatorial plane, dotted line beneath it). In the equatorial plane a kind of Riemann-
ian surface is illustrated, on which (not a complex variable but) the pseudogauge variable (phase function) ¥ is plotted.
While the loop spins, the entire ¢ field has to spin along with it, one may represent this by plotting the equatorial ¢
values on the sheets of this surface (we have drawn only four of the infinitely many sheets) and by considering these
sheets to spin with the flux loop, about the flux orientation axis (:=£). Accordingly, a point P in the equatorial plane,
if P lies inside the flux-loop’s “aphelion” (i.e., is linked with the flux loop), may leave a (dotted line) trace on these
multivalued sheets, the trace moving from one level of the sheets to the next each revolution of the sheets. This point
P experiences thus a unidirectional rate of change of #. The spinning loop therefore contributes toward the electric po-
tential at points P which are linked with the loop. A point @, however, which lies outside the loop’s aphelion, leaves a
trace on one sheet on which it stays while the loop with the sheets spins. Q thus does not experience a cumulative change
of the ¢ with time, and thus no contribution to the electric potential from that loopform. (b), (c), and (d) illustrate the
spinning of the loop which is shown only above the equatorial plane; the —««+ — line on the equatorial plane indicates the
locus 6 =—3x; The —- — line, the locus § =—3; the shaded plane represents 8 =0 outside the loop and 6 = — -%- m inside
the loop. The two little circular arrows around the loop indicate the gradient of 4.
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or a muon magneton, and spinning about its “flux
orientation axis” (axis of magnetic moment) with
angular velocity 2m,c*/h or 2m,c® /i, respectively,
implies a potential + e /7, its sign depending on
parallelism or antiparallelism of spin and mag-
netic moment. This statement refers to an over-
simplified model of the dipole flux-loop model
(Fig. 1), a model in which all flux loopforms

have one common flux orientation axis which then
is also the magnetic-moment axis and spin axis.
Moreover, that value +e/7 is the electric potential
calculated in the equatorial plane only (for the
more complete calculation, cf. Sec. II C and Ap-
pendix A of the present paper).

Several short comments are appropriate here.
The Zillevbewegung motion may be considered as
a spinning motion, a neat model calculation by
Huang® illustrates that analogy. There is no issue
about the magnitude of the angular velocity, Q
=2mc? /I, which is obviously implied by a spinor
eigenfunction proportional to expli(+ 3 @ — wt)];
cf. A, Eq. (8.22) and what follows.

To calculate the electric potential from the basic
equation (2) is straightforward and simple. One
uses the laboratory rest system (about which we
shall comment in more detail below), and one
considers the pseudogauge function 9 connected
with each flux loopform, 9(x, v, z,ct). as a func-
tion of time; this is time-independent if plotted
in a coordinate system which participates in the
spinning motion of the flux loopform, as illus-
trated in Fig. 1. One does not make a Lorentz
transformation to calculate the electric from the
magnetic field. By the way, the spinning motion
is a rotational motion and it also implies linear
velocities > c.

For a loopform the function 3(x, y, 2z, ¢t) | which
determines the electric potential V = (fic/e)89/8ct |
is to be considered a many-valued function of
space because A =—(iic 'e)V9 has a singularity at
the location of the flux loop. Figure 1 shows that
loopform when its magnetic flux orientation points
downwards and its spin upwards. That loopform
is shown as a heavily drawn line, solid above the
equatorial plane, dashed below it. The value of
the function 9 on the equatorial plane of the loop-
form may be plotted on an infinite set of sheets
(like Riemannian sheets) which spin about the
vertical axis together with the flux loop. If the 9
values are fixedly marked on the sheets (changing
by + 27 from sheet to sheet), the spinning of the
sheets indicates the time dependence 89/3dct of 9
at any space-fixed (not sheet-fixed) point on the
equatorial plane. For a space-fixed point @ which
traces a circle on one of these sheets, 9 does not
change in the time average. For a space-fixed
point P, however, the function 9 changes by + 27

for each period 27/ of spinning because P leaves
a trace climbing throughout the (infinite) stack of
sheets. Such is the situation of that loopform if
that loopform would carry the entire quantized
flux &, =2n/ic/e. If we consider a point P in the
equatorial plane (Fig. 1), the fraction F of the flux
&, which is linked with P is, for the point-source
model, equal to F=(e*/2mc?)/r because the ef-
fective magnetic dipole field implies

f By 2nrdr =(eli/2me)2n /v .

As the phase 9 changes by + 27 for each passage
of flux of the amount &, we have

Ve = (Tic /€)(89 /8¢t ) o
=(hic/e)(1/c)(x 2mF(Q/2m)
=te/v. (3)

It is interesting to note that in the calculation of
the electric potential, the product of magnetic
moment ez /2mc and angular velocity 2 mc*/l
enters. The mass cancels out, and that is a rig-
orous cancellation (as shown in A, Sec. V B).
Muon and electron have thus the same electric
field if they have similar structure. We will have
to postpone the discussion of their mass ratio to
the next article.

We proceed here in a way which is somehow the
reverse of the usual way. In the latter one, the
start is made with the Coulomb potential, an
assumption of minimal coupling; one arrives there-
by at the Bohr magneton in Dirac’s theory of the
electron. The present, reverse procedure seems,
at a first glance, to be not as natural as the usual
procedure, excep! if the above taken starting point
of assuming a Bohr or muon magneton can be re-
placed by starting with the quantized flux ,=hc/e,
in which case the Bohr magneton is calculated
from @,. It is indeed the point of our heuristic
model (see A) that this can be done and that along
with it the electromagnetic coupling constant
(Sommerfeld’s fine-structure constant) may be
determined. We shall come back to this point be-
low, but before that we have shortly to digress on
angular distribution of flux orientation axes, and
on quasinonlocality.

C. Angular distribution of flux orientation, isotropy
of electric potential

It would be highly artificial if we would attempt
to represent a pure quantum state of an electron
(e.g., spin in +z direction) by a manifold of loop-
forms, all of which have their “flux orientation
axes” pointing in the + z direction exactly, while
azimuth and size are distributed over the entire
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accessible ranges. Also, of course, the electric
potential would not be isotropic.

We therefore made the assumption that different
flux orientation axes { are represented by proba-
bility amplitudes proportional to [1 + cos(Z, 2)] /2
=(1+&,)"?; probabilities are then understood as
per unit solid angle of ¢ directions [Fig. 2(b)]. It
was then shown in A, Sec. IV, Egs. (4.11) to
(4.19), that a spinning flux loopform distribution
which corresponds to a magnetic-moment-up state,
i.e., whose resultant magnetic moment points
in the + 2z direction, has an isofropic electric po-
tential. That potential is + 5e /7, cf. Eq. (6).

The task was (cf. A), to find the effective value
Vo =(ic/e)(89/act ), for a distribution of loop-
form orientations ¢ [with probabilities 3(1+¢,)d¢, |
when the total effective magnetic moment (in the
z direction) is =e#i/2mc, and when each loopform
spins about its axis ¢ with angular velocity
=2mc%/ 7. The choice of

Sue(1+¢,)dg, , with p,=eli/2me (4)

as the contribution (per sheaf) of the loopforms,
towards the effective magnetic moment (in the 2
direction), leads to a total magnetic moment of the
required amount eZ/2mc (cf. Appendix A).

In order to calculate the electric potential in
this general case, we calculate the magnetic flux
linked (because of the spinning) with an arbitrary
fixed point P(r) [laid in the (-y, + z) plane of
Fig. 2(a)], the flux arising from one of the sheaves
of loopforms of given flux orientation { (=) and
magnetic moment i, (cf. Appendix A). Relevant
is the flux through the entire region outside the
circle which passes through P(T) and which is
centered on the ¢ axis; the circle’s radius is
7 sin(r, £). We find

ffﬁ-d§= }{,A’-d?
- T
T
=—u§(2n/r)sin2(;, 2).

The ratio of flux linked with the loopforms to
quantized flux is

ff'é-dfq/«pq
T

so that for a dipole field of moment 1, an ele-
mentary calculation gives

(859) ¢ = F(27/c) ( fwf B-d§/®, >Q/217

T

=+ (21/c)p (27/c)sin?(r, £)/(2nhc /e))
X (2mc? /2n7) (5)

cf. Fig. 2(a). The expression sin(r, {) occurs be-
cause we postulated that spinning & and flux orien-
tation { are parallel or antiparallel. The averag-
ing of this expression is obtained by the multi-
plication with

-(1+ ¢ )(zdg,)(aB/2n)(da /2m)

and integration. With sin®(r, {) taken as integrand,
one obtains the isotropic value % so that we are
led to the result (cf. Appendix A)

Ve=%35e/r (6)

el

for Q =2mc®/I. The details of the calculation, in
A [Eq. (4.18)], make it obvious that the result of
isotropy depended entirely on the assumption of
(4) and of coaxiality of flux orientation and spin.
And, as we pointed out previously, it is this as-
sumption too which permits the independent spinn-
ing of 2 or 3 quarks in a hadron.

From Eqgs. (5.17) and (5.18) of A it is seen that
an extended-source model presents the same fac-
tor sinz(;, Z) to be averaged. Accordingly, the
result of isotropy of V. holds there too; the »

eff
dependence of Vi is different, of course.

D. Quasinonlocality of the source

The point-source model which we so far dis-
cussed has the difficulty (1) that any idea of dis-
tributing the amount of quantized flux over al-
ternative loopforms implies a zero magnetic dipole
moment. Even more serious is (2) the impossibil-
ity of combining a point-source model with any
(not grossly singular) topological structural prop-
erties of magnetic flux loopforms. Both the con-
cept of relating quantized flux kc/e to magnetic
moment and the concept of topological structure of
loops are the cardinal issues of the present theory.

The striking results of quantum electrodynamics
have been obtained on the basis of an electron
considered as a particle located at a point. As we
are here to attempt to describe a sfationary single
particle, we may consider its mean position as
determinate, whereas the position, related to it
by the Pryce-Foldy-Wouthuysen-Tani transfor-
mation,* shows the features of a Zillerbewegung
of the type of an angular velocity 2mc?/Ii of spinn-
ing, and of a linear extension of the order of
Ii/mc. This indeterminacy of the source's position
implies a corresponding indeterminacy of the field
lines, and may therefore be interpreted as quasi-
size 7i/mc of the core. This transformation is,
however, not a point transformation. It is there-
fore a very daring attempt which needs to be in-
terpreted with great caution when we make a mod-
el of a distribution of quantized flux loops as if
they corresponded to an extended source. One
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FIG. 2. (a) Diagram specifying the Euler angles 3, 8, @ which we used in denoting loopforms and their probability am-
plitudes. The Euler angles 3, 6 characterize a sheaf of loopforms of flux orientation £ , in relation to a field point P(T).
(b) As examples, three sheaves of flux loopforms are illustrated as contributors to the resulting magnetic field of the
dipole whose moment /& is oriented in the Z direction. (c) The strength of the arrows { represent the square of the re-
spective probability amplitudes at each orientation, i.e., [1 +cos(¢, Z)}; the contributing loopform sheaves are generated
by rotation of field lines associated with these orientations (three of those field lines are drawn to represent the gener-
ators of each sheaf). (d) A “sheaf” of loopforms of a magnetic dipole point source is shown here, for various inclina-
tions of the flux orientation (symmetry) axis; this picture refers to loopforms of just one size o; these figures have been
given by Malcolm Correll [Am. J. Phys. 27, 588 (1959)]. (e) Different flux orientation axes, characterizing different
bundles, are shown in three-dimensional view by the arrows. The ‘“bundling” of loopforms into 20 bundles as regards
different flux orientations Z is illustrated here in terms of the 20 sides of an icosahedron. The (square of the) magni-
tudes of the probability amplitudes are, as in Fig. 2(c), indicated by the strengths of the 20 arrows of flux orientation.
The phases of the probability amplitudes are closely interrelated for loopforms which are close neighbors; this phase
relationship was assumed to cease to exist for loopforms which have flux orientations £ or azimuths a which differ by
more than a radian. Accordingly, we collect loopforms together into phase-related bundles. The grouping according to
the 20 sides of an icosahedron in the space of flux orientation axes may be considered as a convenient way to illustrate
that bundling: Indeed, the vectors corresponding to neighboring icosahedron surfaces are 0.976 rad, i.e., just about one
radian apart. The z axis points in a direction perpendicular to the paper plane. This concept of a bundle is different

from that used in fiber space topology.

should in this context also be reminded of the im-
portant recognition® that there is an equivalence
between a local interaction plus an indefinite
metric and a nonlocal interaction with a positive-
definite metric, the latter one applying to our
model. With this in mind, it would therefore seem
difficult to precisely formulate the space-time
structural and topological properties of loopforms
without taking recourse to yet unfamiliar new
mathematical techniques. We therefore investigate
what such a “quasinonlocal,” quasi-extended-
source model has to say. Indeed, it is suggested
that those quasinonlocal features are not only a
matter pertaining to hadronic structure, but to
leptonic structure, too. In order to determine the
probability (amplitude) distribution for loopforms,
we assumed the Maxwell-Lorentz equations to
hold for empty space with a singularity at the lo-
cation of the point source. When quasinonlocality
is now expressed in terms of a quasiextended
source, it will be assumed that this source dis-
tribution corresponds to the torus-knot loopform

fields, the connection being given by the Maxwell -
Lorentz equations, cf. Appendix D.

E. Relationship of effective (wing)- magnetic moment
to quantized tlux

We have, up to now when we told about the re-
lationship of magnetic moment to electric charge,
performed the calculation by starting with the ef-
fective magnetic flux and (Bohr) magnetic mo-
ment, and therefrom calculated the effective elec-
tric potential. Up to this point of the present ex-
position, we ignored the issue of effective flux
versus quantized flux. That amounts to having
ignored the fact that probability-amplitude super-
position leads to a reduction of quantized flux to
effective wing flux because such a reduction is
caused by probability-amplitude interference. This
issue is the central topic of A.

What is the point of this reduction? If we look
at the order of magnitude of the magnetic moment
of a source of linear extension 7%/mc, carrying a
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total flux of the amount of ®,=hc/e, we find that
magnetic moment to be of the order of (% ‘mc)

X (hc¢/4me), which is a few orders of magnitude

too large to explain a Bohr (or correspondingly

a muon) magneton, (with the respective m, and
my,). It was postulated that this consideration
which was based on probability superposition
(total ®, parceled out over the loopforms), is to
be replaced by the aforementioned probability-
amplitude superposition, which, because of par-
tially destructive interference, reduces &, to the
effective wing flux ®,ing and, correspondingly,

the above magnetic moment to [y, (cf. Appendix
B). In crude, simple terms it was assumed that
flux loopforms have the phases of their probability
amplitudes distributed in such a manner that
neighboring loopforms have similar phases, but
distant loopforms not. We therefore bundled loop-
forms together into neighboring bundles of loop-
forms, some N statistically independent bundles
altogether. Thus, instead of an in-phase super-
position of their amplitudes to a resultant amp-
litude proportional to N-bundle amplitudes, and to
a probability proportional to N?, the interfering
superposition leads to a resultant amplitude pro-
portional to N'/2-bundle amplitudes and a proba-
bility proportional to N. We are coming back to
this issue in Sec. V.

F. Summary of the project

The points about this proposal are the following:

(1) We realized that not only does such an inter-
ference reduction lead from quantized flux to ef-
fective wing flux, butthat the same reductionbrings
the electromagnetic energy to mc® and the electro-
magnetic angular momentum to 3% . This means
that consistency of a purely electromagnetic model
of leptons may be achieved (cf. A).

(2) It was realized that there were no other
choices, neither for ¢, which is hc/e, nor for
the approximate size of the quasinonlocal source,
i.e., I/mc. That necessitated the reduction as-
sumption, which, as pointed out earlier, was in
any case to be anticipated as a necessity because
probability amplitudes, not probabilities, are to
characterize the model.

(3) But, most important, it was recognized
(A, Sec. X) that the possibility of calculating the
reduction factor N gives us the possibility of es-
timating the electromagnetic interaction constant
e?/lic. This point will be restated below in Sec. V
on the basis of the presently proposed loop model
for leptons and on the basis of Appendix B. It
might be noted that the constant e*/7Zic was initially
introduced in this theory as a coupling constant
through Eq. (2), where it indicates the coupling

between the electromagnetic potentials A,, which
characterize the “source” particle, with the
pseudogauge field 9, which is a quantity pertaining
to any “field” particle’s wave function.

(4) We attempted to calculate that reduction fac-
tor and thereby the electromagnetic coupling con-
stant by bundling flux loopforms together so that
different loopform bundles were distinguished by
some unit radian distance in the space of param-
eters: orientation, azimuth, and size of loop-
forms. In Appendix B an extension of those cal-
culations to the present lepton model leads to re-
vised (still very crude) numerical data.

(5) Instead of such rough heuristic counting, one
will have to find a way of counting the number of
participating modes, i.e., of wave modes which
may describe probability-amplitude distributions
for flux loopform parameters. This is the central
job: to determine the lepton’s probability amp-
litude functions, to be able to calculate, rather
than estimate e?/fic, and to find the electron
versus muon characterization of probability-amp-
litude functions (paper D).

That is one part of the project of relating particle
physics to “elementary loops; ” these flux loops
should be considered the truly elementary con-
stituents of matter. The other part is no less
important: It is the study of the topology of the
loopforms, i.e., of the fibrations and their mo-
tions. The different porperties of leptons, quarks,
mesons and baryons are reflected in differences
of topological structure and motion (cf. B and
Refs. 6 and 7). A flux loop, if interlinked with one
or two others, behaves as a quark.

The different types of interactions are to be
found in (1) at-a-distance interaction of electro-
magnetic character caused by flux loops in motion,
(2) crossing of loops over themselves or over
those they interact with (weak interactions) (this
is a matter of cobordism of knots), (3) merging
or pair creation of loops (strong intevactions) as
well as quark loop exchanges between particles.
These imply quark-antiquark annihilation or pair
production when a ¢q meets another g from a
hadron. Baryon number conservation is due to
flux-loop (quark) conservation. Charge conserva-
tion is implicit in the present theory which is
based on gauge invariance (Fig. 3.)

III. INTEGER AND FRACTIONAL CHARGE

Using a heuristic model we discussed leptons®
and hadrons!® in terms of quantized flux. The mod-
el takes advantage of the possibility of constructing
a quantum state from a superposition (with com-
plex probability amplitudes) of alternative forms of
closed loops of quantized flux. In particular, an
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electron’s or a muon’s magnetic dipole field was
constructed from such a superposition of “flux
loopforms” (i.e., from a manifold of orientations,
azimuths, and sizes which a quantized flux loop
may adopt) so as to represent the Faraday dipole
field lines corresponding to a Bohr or a muon
magneton e7Zi/2mc. If this field is assumed to spin
with Zitterbewegung angular velocity 2mc?/%, a
Coulomb-type electric field results.

With the Zitterbewegung the source appears to
have a (“core”) extension %/mc. The heuristic
assumption is made that such a “quasinonlocal
source” might be discussed in terms of an ex-
tended-source model. Accordingly, after having
discussed the properties of point-source models
of the type represented in Figs. 1 and 2, one may
discuss such extended-source models of the type
shown in Figs. 3, 4, and 5. They not only permit
relating quantized flux to effective flux, and thus
effective magnetic moment and electric charge,
they also permit that topological structures of
quantized flux loops occur which have the forms
of torus knots.

1t is the concept of Seifert fibration [H. Seifert,
Acta Math, 60, 147 (1933)] which defines the prop-
erties of fibration of ordinary three-space.

The objective of this paper is to show that the
electric fields + e/r of charged leptons and  e/37,

i
n(z.x) (P()-l)

FIG. 3. (Continued on following page)

etc. of quarks arise from the two possible types
of motion which a quantized flux loop may undergo.
We should recall that it was assumed (see B) that
the loops, i.e., the fibration of space by the mag-
netic lines, spin about the central straight dough-
nut axis with an angular velocity 2mc*/7, and that
they also whirl about the circular doughnut axis
with the same angular velocity. The handedness
of the fibration may be related to the handedness
of the spin-whirl motion so as to bring about an
additive or a subtractive effect on the “effective
spin angular velocity,” resulting in an electric
potential £ e /¥ or +e/3r, respectively. These
electron-muon loops and N quark loops have wind-
ing numbers (2, + 1) (+ depending on their handed-
ness); a loop (2, +1) is represented in Fig. 3(a), a
one-parameter manifold of loopforms (2, +1)
covering a fibration of a torus surface is shown

in perspective in Fig. 3(d).

The present discussion is in terms of a heuristic
model, using classical concepts of closed loops
and bundles of closed loops for a description of
the topology and of the probability-amplitude dis-
tribution of quantized flux. Such a model has three
important functions.

First, it takes advantage of the correspondence
between classical and quantum-mechanical con-
cepts which may be used interchangeably insofar
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(d) (f)

FIG. 3. (a)-(c) Forms of quarks in the spinning-top model; see B. These loops represent quarks only if interlinked
with each other, e.g., in the manner of Fig. 4 for mesons, or Fig. 5 of B for baryons, and if the loops’ spin and whirl
motions contribute subtractively to the electric potential demanded by Eq. (2). The difference in winding numbers about
the two —. — axes, le.,2-1=10Y), 3-1=2¢), 3—-2=1 (A), multiplied with the signature of spin with respect to mag-
netic moment, is proportional to the equivalent electric-charge contribution of the respective quarks. The present
paper assigns loops of the type (a) also to electrons and to muons. In their case, spinning and whirling contribute add-
itively to the electric potential, which is proportional to 2 +1=3 (instead of 2 ~1=1 for N quarks). The central spinning
axis (straight line) is indicated by the vector (0) in the lower pictures and by (®) in the upper ones. The circular whirl
axis (core equatorial line) is indicated by the circle in the upper pictures and, seen sidewise, by the horizontal center
line in the lower pictures; the “core region” is symbolized by a sphere (circles in the pictures). Fig. 3(d) shows, in
perspective, a one parametric (azimuth a) manifold of loop forms of type (2,+1); it corresponds to a particular flux or-
ientation { and particular size o (characterized by the thickness of the torus). If that manifold is repeated, for the whole
range of all sizes o, throughout space, one gets a (left-hand-screw) fibration (a “sheaf of flux loopforms”). A superposi-
tion of that with the corresponding right-handed fibration results in a sheaf of magnetic field lines of an extended source
dipole, as discussed all along in A, and in Sec. II C, Appendix A, and elsewhere in the present paper. (I should like to
thank R. T. Barbee and J. Furlow for illustrations.) (e) For an extended source, the extension (of the order #/mc) is
indicated here by the diameter of the spheres (of the three upper drawings and of the lowest drawing). This diameter is
the same as of the circular doughnut (whirl) axis (fourth drawings from top). The three upper drawings illustrate the
spinning of one flux loopform around its flux orientation axis £. These drawings show how a space-fixed point P which
is linked with the spinning loopform experiences a unidirectional change of ¢ with time, and thus registers a contribut-
tion to the electric potential V. The next, triplet, drawing shows how one meridional loopform of the upper three
drawings may be considered as a superposition of a left~handed torus loop (2,+1), shown at left, and a right-handed
torus loop (2,-1), shown at right, the two torus loops and the resultant meridional loop all shown together in the center
drawing. Both torus loops (loopforms) are spinning the same way about the straight center axis; they whirl in opposite
ways about the circular torus axis. Accordingly, the center figure, and also the ones left and right of it, move as a
whole, as if they were just only spinning, and that with an angular spinning velocity (1+ 3)2mc?/% = }}mc?/h, resulting in
a Coulomb field of charge e or charge ie depending on the relative motion of whirl and spin with respect to the handed-
ness of the loop. The lowest figure represents the resulting meridional field which was discussed in the upper drawings,
but now other loopforms of different sizes are incorporated in that figure, too. (f) Whereas the Figs. 3(a) to 3(e) re-
ferred to a single flux orientation, this figure illustrates again, as in Fig. 2(e), different flux orientations. It shows
one loopform of a particular flux orientation £ (indicated by the arrow), of a particular azimuth @ and a particular size
0. The core of this extended-source model is not specifically drawn, the size of the icosahedron may be considered as

representing the size of the core. The other plane which also passes through the axis £ (arrow), is a reference plane,
defining « as the angle between the two planes.
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as quantum- or wave-mechanical states may be
defined from a superposition of semiclassical
structures by means of complex probability ampli-
tudes. With some caution and experience one can
easily see the limits of such analogies and avoid
hasty conclusions.

Second, it permits checking on the consistency
of the theory with itself and with the known data
covering a vast range of particle physics and of
electromagnetic, strong, and weak interactions.

Third, the heuristic model is the most reliable
guide in trying to find a complete quantum-mech-
anical theory, a task which without the model
would be prohibitively difficult.

Referring to the first four sections of B, we
recall the requirement that manifolds of loopforms
should be formed from Seifert fibrations of space,®
i.e., the loops should be of the topological forms
of torus knots, i.e., closed nonintersecting lines
on a toroidal surface, characterized by a pair of
integer winding numbers. This condition restricts
the types of knots to those of winding numbers
[(0,£1)], (1,0), (1,%1), (2, 1), (1,£2), (3,<1),
(1,+3), (3,+2), (2,+3) and those of higher wind-
ing numbers. The first number tells how often
the loop winds about the circular doughnut axis in
the direction indicated by the flux orientation axis
¢; it is therefore by definition always positive.
The second number tells how often the loop goes
around the central doughnut axis; it is taken as
positive if the resulting loop is left-handed as
shown in Fig. 3, negative for the mirror forms.
We also gave some consideration to the question
of which of those loops may have physical signif-
icance, and we showed why 3, ®, X quarks should
essentially be represented by loops (2, 1), (3, 1)
(3,2), respectively, and the “spinning top” model
be adopted, cf. Appendix F.

The interlinkage of quark loops has been dis-
cussed in B of Ref. 1. We are here simply show-
ing a linked-loop contribution toward a kaon in
Fig. 4. One sees that the possibility exists for
independent spinning of N and X quarks, and, of
course, their magnetic moments are independent
too.

In the earlier papers we assumed an electron
or a muon to be represented by alternative forms
of one closed loop of quantized flux, i.e., loop-
forms of the forms of magnetic dipole field lines
(Fig. 5 in A or Fig. 1 in B), which lines have
winding numbers (1, 0). We are discussing the
variant assumption, i.e., to represent an electron
or a muon by loopforms of winding numbers
(2, +1) plus their mirror forms (2, -1), i.e., both
torus loops. The additive superposition of these
two types of loopforms has the form of ordinary
dipole field lines as in A; cf. Fig. 3(e). Such

additive superposition is nothing different from
the additive superposition, e.g., of loopforms of
different flux orientation whose probability ampli-
tudes are additively superposed too. (This super-
position still counts as only two core traverses;

it should by no means be confused with the struc-
ture of two separate loops of mesons, loops con-
fined to separate toroidal regions.) The handed-
ness of those loops, and the handedness of their
respective simultaneous spinning-whirling motions
are, however, assumed to be related to each other
in such a manner that the resulting motion is
additively composed of the spin and whirl contri-
butions in the case of electrons or muons. As we
assume that the spinning about the central dough-
nut axis and the whirling about the circular dough-
nut axis occur with the same angular velocity (an
assumption always made in B for quarks anyhow),
we recognize that for each spin period 2+1=3
wings pass by a fixed point in space, e.g., on the
doughnut surface on which the loopform is drawn.
This is an obvious simple topological fact which
is easily recognized with the help of torus-loop
models [cf. Fig. 3(d)].

A few more remarks about electrons or muons
follow. The signature of their charge is given by
the relation of magnetic moment to effective spinning
[as it is in the case of quarks, Figs. 3(a)-3(c);
the word “effective spinning” is supposed to indicate
the modified spinning when the effect of whirl motion

FIG. 4. A A (3,2) loop and a ;N (2,-1) loop, contributing
to a kaon. The inside of the doughnut is fibrated in the
manner of a (2,1) loop, the outside as a (3,2) loop. The
kaon is assumed to be a superposition of this fibration
and a fibration in which (2,1) is outside, (3,2) inside;
the superposition is the usual type of quantum-mechanical
probability-amplitude superposition. In order not to
overload the picture, neither the spinning axis nor the whirl
axis are shown here. The core is symbolized by the
sphere shown as a circle. See also Fig. 4 of B.
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on apparent spinning is taken into consideration;
we may ignore that specification “effective” ex-
cept in the case of the alternative assumption
mentioned below]. The mass ratio of electron to
muon will be discussed in a future paper (D).

A field (2, +1) would imply a particle of intrinsic
helicity. As an electron or muon has neither of
these properties, we assumed that they correspond
to equal, additive superpositions from (2, +1) and
(2, =1) loopforms. For a one-electron state these
two types of loopforms have the same spinning but
opposite whirl so as to yield the same additive
effects for generating the electric field. Under a
P transformation, the superposition of these two
moving loopforms goes over into itself.

For 9, ®, A quarks, as was assumed in B, again
with the spinning-top model, the winding numbers
are (2,1), (3,1), (3, 2), respectively, and it was
assumed that their handedness and the relationship
between direction of spin and whirl are such as to
imply a resulting motion which is subtractively
composed of the spinning and the whirling con-
tributions. Accordingly, for each period of spin-
ning or of whirling motion (2-1)=1 9N wing, (3-1)
=2 ® wings, (3-2)=1 X wing pass by a fixed point
on the core equator. Below we shall develop the
details and show the consistency of these remarks
which lead to an understanding of the charges
Fe,Fe; -5 e, +5 e, —3 e of electrons, muons, and
N, ®, x quarks, and to appropriate approximations
of their magnetic moments.

We have shown that + 5 e and + e result without
ad hoc hypotheses, from subtractive and additive
spin-whirl motion of (2, +1) and (2, —1) torus
loops. This resolves one of the major puzzles of
the conventional quark model. We have, however,
not discussed why pairs of (+3 e, -3 e) particles
are not separately produced, but only such pairs
of quark-antiquark loops, each of which inter-
linked with other quark(s) in hadrons. Nor have
we given reasons why (3,1) loops and (3, 2) do not
perform additive spin-whirl motions. This theory
shows how integer-charge leptons and hadrons
arise from quark loops; the restriction to integer
charge has still to be proven.

IV. FORM AND MOTION OF LOOPS:

SPINNING AND WHIRL

The flux quantization model of particle physics
(see B) assumes that flux loopforms should be
closed lines and that those which belong to a
particular orientation ¢ should represent Seifert
fibrations, i.e., be of a torus loopform. The two
“singular” lines of the fibration are, in the case

of the spinning-top model (B)! which we adopted,
the central straight torus (doughnut) axis and the
circular torus axis® indicated by the dash-dot-
dash lines of Fig. 3(d).

The fibrations of winding numbers (2, 1), cf.
Fig. 3, characterize an electron or a muon. We
assumed that the motion consists of spinning and
whirling with angular velocities about the central
and about the circular axes, which are of the same
amount, i.e., 2mc¥¥ (it will be explained below
which mass is to be taken for m and why we as-
sumed just these kinds of motions). As the spin-
ning and whirling are assumed to be in such re-
lation to the handedness of the (2, 1) lepton loop
that spinning and whirling contribute additively to
the effective spinning angular velocity, this effec-
tive velocity will be (1 + 3)=3% times 2mc2/%.

The quarks of a hadron are to be relegated
to different toroidal regions: e.g., ¢ inside a
doughnut, g outside that doughnut, or vice versa
in the case of a meson. Thus their independent
motions are spinning and whirling about those two
singular axes. Because of the form of any single
torus knot, its whirling is equivalent to an add-
itive or subtractive contribution to the spinning
about the central axis, the amount depending on
the ratio of the winding numbers. A loop of wind-
ing numbers (1, 1) would slide along itself with no
physical effect if spinning and whirling contribute
subtractively. For 9, ®, X loops we assumed sub-
tractive contribution of spin and whirl. Their
winding numbers (2, 1), (3, 1), (3, 2) would thus,
because of equality of angular velocity 2mc* 7 of
spin and whirl, behave as if they would only spin
about the central axis with an effective angular
velocity equal to (1-3)=3, (1-3)=%, (1-%)=3%
times 2mc?/k, respectively. The combined spin-
whirl motion, being equivalent to these effective
velocities about the central axis, thus implies a rel-
ative motion of quark loops with respect to each
other, a motion about the central axis which is,
by rotational symmetry, also the “flux orientation”
axis, i.e., the magnetic dipole axis of the quarks
or exactly opposite to it.

Let us consider the spin-whirl motion in the case of
an electron or muon. Does the spinning axis of a sheaf
of lepton loopforms (note that there is no relative
spinning to be considered here as there is only
one loop for a lepton) coincide with the flux orien-
tation axis, i.e., with the central straight axis
of the fibration (again permitting parallelism or
antiparallelism), or not? (The coincidence which
will be shown to be the case is to be understood to
be the relationship between spinning axis and flux
orientation axis of a loopform or of a sheaf of
loopforms. One lepton corresponds to an ampli-
tude superposition of many different sheaves with
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different flux orientations and thus different spin -
ning axes).

The above question had been brought under
scrutiny in A, Eqs. (4.11) to (4.19) (cf. Sec.IIC
of the present paper). That was done for a mag-
netic dipole field [winding numbers (1, 0)]. For
our field of winding numbers (2, 1) that calculation
applies directly, too, because the circular com-
ponent of the magnetic field (winding once around
the central doughnut axis) does not contribute to
the electric field, and the meridional field com-
ponent, winding twice around the circular axis
(2 wings) is assumed to have the same form and
total strength as the dipole field; the superposition
(2, +1) + (2, —1) is that meridional field.

The first result of Eq. (4.18) in A (cf. Sec. IIC)
was the recognition of the isotropy of the resulting
electric field (i.e., the Coulomb field). This re-
sult stemmed from the assumption that magnetic
moment and spinning axes were parallel, i.e., that
the field of quantized flux loops was constructed
from a probability-amplitude superposition of
sheaves of loopforms, each spinning about its
sheaf axis (flux orientation axis), i.e., magnetic
moment parallel or antiparallel to the spinning
axis (as already mentioned above). It was then
seen [Eq. (A7’) or A, Eq. (4.18)] that it is not
reasonable to deviate from the assumptions that
“instantaneous magnetic moment is parallel or
antiparallel to instantaneous spinning axis” be-
cause this only will lead to isotropy of the ensuing
electric field. This is an important result of the
heuristic model of alternative loopforms of an
electron or muon; that result, as it holds in the
heuristic model, will also have its counterpart
in a final full-fledged quantum-mechanical model.
Without that result we might have been at sea in
guessing what relationships should be assumed
between flux orientation and spinning axes.

Although that calculation is, without further dis-
cussion, directly referring to electron and muon
loops only, we may do well to assume it to hold
for linked quark loops too.

The second result of Eqs. (6) and (A7) is that
for a simple dipole field from loopforms (1, 0) of
magnetic moment e7%/2mc and spinning angular
velocity 2mc*/%, an electric potential V,; =+ 3e/r
arises. (That electric potential is a direct con-
sequence of the basic equation which defines flux
quantization, for spinning dipole field loopforms.)
Now replacing this angular velocity 2mc?/% by the
effective angular velocities, which are, for
charged leptons and for M, @, A quarks, equal to
$X 2Myepion €/ and (3, 5, 5)X 2Myagron /7 (cf. Sec.
VII of the present paper), and replacing the mag-
netic moment e7%/2mc by the magnetic moment per
wing, i.e., 3e#i/2mc times the number of wings,

ie., % el/2Mgpop € and (2,+3, =3) X el1/2Mypgp0n €
(cf. Sec. VI of the present paper), we get the
effective electric charges:

IXx@F)xEe=7Fe
and

tx(-%)xte=-1e, (7

The justification for this calculation will be de-
veloped in the subsequent paragraphs and sections.
We note again the cancellation of the mass m in
the calculation of the electric field.

With the general assumption of coincidence of
spinning and flux orientation axes we may then
represent all loopforms (lepton or hadron loop-
forms) by their flux orientation axis §, their
azimuths o, a,, their size o, and of course their
winding numbers, unknotting numbers, handed-
ness of the loop, handedness of whirling with re-
spect to spinning, and parallelism or antiparallel-
ism of magnetic moment to spinning.

Here we have to insert an important remark
about handedness of a torus-loop fibration. Con-
sider the regions of fibration adjacent to the cen-
tral straight axis and to the circular torus axis.

A little model shows that the fibration is either

of the type of a right-handed screw relative to both
axes or of the type of a left-handed screw. In

Fig. 2 of B (Ref. 1) [which shows the same tre-
foil (3, +2) as that of Fig. 3(c) of the present pa-
per], we pictured the neutrino and the quark loop
as such left-handed torus knots (and antiquarks as
right-handed ones). Those neutrino pictures

(3, +2) of B show, however, that the outer parts of
the wings slide through space (like a coasting
three-bladed propeller) in a »ight-hand helical
manner. The trefoil picture for the neutrino was
therefore wrongly assigned; it represents an
antineutrino, not a neutrino. The effective spin-
ning motion of this trefoil of the antineutrino is a
right-handed-screw helical motion with the effect
that the propeller slices through space, producing
no electric field whatever. As the handedness of
the trefoil is invariant with respect to Lorentz
transformations of any velocity < ¢, the helicity

is invariant, too; i.e., the neutrino has no rest
system and no rest mass. Apart from the trans-
lational motion, the neutrino’s motion might be
considered like other leptons’ motion to have ad-
ditive contributions of spin and whirl motion.

(See Fig. 5 for illustrations of a trefoil and a lively
picture of the electron flux loop.)

A loop has the alternative of being left-handed
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FIG. 5. Pictures from The Graphic Works of M. C. Escher as illustrations of a trefoil and a lively picture of the
electron flux loop. We are grateful for permission to produce these figures to Koninklijke Uitgeverij. Erven J. J. Tijl
N. V., Zwolle, Holland, and Ballantine Books, N.Y., The Graphic Works of M. C. Escher.
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or right-handed, which in topological language is
defined as the character of the fibration next to
the singularity lines. This alternative relates
even to loops (2,+ 1) or (3,+ 1) which are not
knotted. Trefoils (3,+2) are of course also either
left- (3, +2) or right- (3, -2) handed torus knots;
as they are knotted, they have the “unknotting
number” -1 or +1, respectively, designating
strangeness -1 or +1 of the X or X quark, re-
spectively.

As already mentioned, there is not only the al-
ternative of right-handedness or left-handedness
of fibration, but also the alternative of right-
handedness or left-handedness of the spinning-
whirling motion. If both are right-handed or both
left-handed, spinning and whirling contribute sub-
tractively to the effective spinning motion
(quarks); if one is right-handed, the other left-
handed, the contributions are additive (electron or
muon). Magnetic moment parallel or antiparallel
to effective spin implies positive or negative elec-
tric charge.

Loops of winding numbers (4, 1), (4, 3), (5, 1),
(5,2), (5, 3), (5, 4), and higher ones whose winding
numbers are also prime with respect to each
other, can form Seifert fibrations, too. They
might perhaps actually exist, perhaps superposed
with the previously discussed loop alternatives.
Without going into such speculative details, it
should, however, be remarked that, apart from
signatures, their properties (when spin and whirl
contribute subtractively) may be characterized in
Table I. It is of interest to note that charge again
occurs in multiples of 5 e.

The assignment of handedness to A quarks has
been made the same as that to v in order to make
the reaction K~ - p‘iu plausible, v having been
assigned (3, +2), i.e., left-handedness, to account
for its right-handed intrinsic helicity.

Alternative assumption aboul loops. We may
ask whether loops of winding numbers (1, 2), (1, 3),
(2, 3) may have a special significance. For the
symmetric-axes model (B, Figs. 6 ff.), loops
(2,1), (3,1),(3,2) on one axis are loops like (1, 2),
(1, 3), (2, 3) on the other axis. For the spinning-
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top model the present alternative choice is dis-
tinctly different from the (2, 1), (3, 1), (8, 2) choice.
But it is good to note the properties of that al-
ternative loop choice. Even though we do not use
the symmetric-axes model, the pictures of it in
B illustrate the topological circumstances: The
unwinding numbers and the handedness are not
changed by going over to this alternative choice
through reversal of winding numbers, we might
thus associate the above winding numbers with
N, @, x quarks. But this alternative is only a
curiosity.

If the assumption is made that the magnetic
moment still is proportional to the number of
“wings” (i.e., core traverses) for this alternative
model, we should then assume the magnetic mo-
ments of the quarks M(1,+2),®(1,+3), x(2,%3),
related to spin direction, to be given by -1, +1,
-2 (which is not very encouraging). As we again
suppose subtractive contributions from whirl and
spin towards effective spinning, we find the effective
spin angular velocities to be proportional to
(3-1)=+1, (3-1)=+2, (3-1)=+3. The product
of those two quantities is proportional to the ef-
fective electric charge, i.e., (=1)(+1)=-1,
(+1)(+2)=+2, (=2)(+3)=-1. In other words, we
get the same charge ratios for the quarks as in
the regular model, but neither do the muon or
electron fit in that alternative model, nor do we
get appropriate magnetic moments.

We may also perform the counting of electric
charge by noting, in a manner analogous to that
indicated in the latter parts of Sec. IlI, that for
each period of the spinning (not the effective spin-
ning) or of the whirling motion 2-1=1 N wing,
3-1=2 @® wings, 3-2=1 X wing pass by a fixed
point on the equator of the core. To get the elec-
tric field, these numbers have to be multiplied
by the signatures of the magnetic field lines, i.e.,
-1, +1, -1, respectively.

V. ELECTROMAGNETIC COUPLING CONSTANT

We define intrinsic magnetic moment as propor-
tional to the number of core traverses of aloop, which

TABLE I. Properties of some loops.

Winding numbers

(4,1)

4,3) (5,1) (5,2) (5,3) (5,4)

Effective spin angular velocity in units
of 2mc¥ i

Magnetic moment in units of e#Z/2mc

Effective charge in units of e

Unwinding number (strangeness)
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is equal to its number of wings. We thereby as-
sume that the magnetic field of a loop or of a

sheaf of loopforms has a meridional component
(component in planes which pass through the flux
orientation axis E, i.e., the central symmetry axis
of the torus loop which represents a loopform),
equal to the magnetic field of a dipole of orienta-
tion ¢ which corresponds to the flux of the loop.
This neglects the inclination of the field lines with
respect to the meridional planes in calculating the
magnetic moment. The circular component (paral-
lel to the circular torus axis) has no effect on the
equivalent electric field under the motions dis-
cussed in Sec. IV of the present paper.

The magnetic moment per wing of an electron or
muon of winding numbers (2, 1) should thereby
be (with the identification of e#%/2mc as intrinsic
magnetic moment of the lepton) equal to
seh/2 Myepion €, Where the lepton mass m=m,q,,,
is the mass of the electron or of the muon, re-
spectively.

The argument of the important Sec. X of A im-
plies the tentative assumption now that the re-
duction of quantized flux to wing flux (because of
random phasedness of the probability amplitudes,
leading to destructive interference) goes by the
same reduction factor in the case of wings of loops
(2, 1) as it went in the case of simple dipole field
loops (1, 0) which have just one wing; cf. Appen-
dix B.

We start with the distribution of the quantized
flux

@, =27kic/e (1)
over N bundles of loopforms. Because there are
now two wings [winding numbers (2, 1)], that mag-
netic flux ¢, is equivalent (after reduction) to the
wing flux &, (cf. Appendix B), i.e., to half of the
flux @, of a muon of a Bohr magneton (e#%/2mc)
=2/, - This effective lepton flux &, i.e., total
effective flux through the core, is then [see A, Eq.
(5.10)]

2% =,

=4n(ef/2mc)/3.17, (8)

where the factor 3.1 results from the elementary
calculation of a Gaussian distribution of equivalent
magnetization (cf. A, Sec. VC). Dividing these
two equations we get (cf. Appendix B)

N2=8,/2&

wing
=P,/ By
=3.1(7ic/e?)[7,/ (it /mc)] . (9)

If we know to calculate the number N of statistical-
ly independent bundles of loopforms, and we may
estimate 7,/(%/mc), which is of the order of mag-

wing
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nitude unity, we may calculate the electromagnetic
coupling constant e?/%c; with our new assumption
about winding numbers (2, 1) instead of (1, 0), this
implies some change in the calculation of N com-
pared to that in A.! We note that the concept of a
bundle [cf. Fig. 2(e)] differs from that used in
fiber space topology.

VI. MAGNETIC MOMENTS OF HADRONS

One might tentatively assume that the reduction
from quantized flux ¢, to wing flux ¢, . a prime
concern of paper A, is a matter pertaining equally
to electron loops, muon loops, and to the (pairs
and triplets) loop manifolds of mesons and of
baryons. Accordingly we may assume that the
reduction factor from quantized flux to the effec-
tive intrinsic wing flux of a quark is the same as
for an electron or muon. It is, however, not a
quark wing or an entire quark whose quantized
flux is to be reduced to effective flux: First the
full pair or triplet of quarks is composed, and
then the entire field is reduced as in the case of
a lepton. As the linear extension of the core of a
hadron (so also its spinning frequency, Sec. VII of
the present paper) is again not a matter of the
individual quark but of the entire hadron, i.e., is
of the order of %7/m,,,.c, the intrinsic magnetic
moment per quark wingis to be assumed as equal
to 3 ef/2my,0nC just as for a lepton wing. This
is an obvious assumption which then yields the
baryon magnetic moments without the necessity of
basing them with respect to each other.

This counting of wings (or core traverses) brings
us to the intrinsic magnetic moments of M. &, x
quarks, i.e., to the values (-2, +3, =3) times
2eh/2m yon -

These intrinsic magnetic moments may be con-
sidered as determining the electric fields; as we
indicated in Sec. II of the present paper, the elec-
tric fields are determined by the products of the
magnetic moments with the effective spinning fre-
quencies (3, §, §)x 2m,,,,.,c¥/%, yielding the proper
charges ¥3e,+3e,¥5e of M, @, \ quarks, respec-
tively, and, as seen in Sec. IV, ¥ e for electron
or muon (with m,_,, . replaced by the respective
Miepon)- There is in this theory no need for an
ad hoc assumption relating the magnetic moment
to the electric charge of a quark, but the approx-
imate nature of the present theory had to be kept
in mind.

When it comes to the calculation of the magnetic
moments of a meson or of a baryon, we might
naturally proceed in the customary way and as-
sume a symmetric SU(6) function for the low-lying
baryons. Before we justify this assumption by
the calculation of magnetic moments and by cal-
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culating the ratio of proton to neutron magnetic
moment and comparing the results with experi-
mental data, we have to specify what such a sym-
metric SU(6) function means.

Whether we consider the conventional model in
which quarks are considered as mass points,
particles, or partons, or whether we consider our
quark loop model, we should recall some facts
pertinent to both. The quarks of a hadron behave
quite nicely as independent objects, e.g., as re-
gards spin, charge, magnetic moment, strange-
ness; their spin 3 strongly suggests the Pauli ex-
clusion principle to hold. (Nevertheless, a quark,
not being an independent quantum particle, might
differ basically from how otherwise we understand
quantized particles to behave—thus the suggestion
of parastatistics made by other groups, designed
to avoid the following dilemma.)

The conventional SU(6) quark (considered as
particles) model gets, however, into a well-known
dilemma. The experimental data (in particular
the ratio of proton to neutron magnetic moment)
show a symmetric SU(6) function of spin and quark
type to apply to the calculation of magnetic mo-
ments. As a lowest baryon state, e.g., the state
of a proton, should have an S-state orbital wave
function, the Pauli principle is violated by the
symmetric SU(6) function.

The quark loop model is quite different: The
two quarks of a meson or three of a baryon are
localized objects. For a meson there is a region
inside the doughnut and a region outside the dough-
nut (the doughnut surface is a variable surface of
only topological significance, to separate the two
quark regions). For a baryon there are three
regions: inside, in the middle, and outside. It
may be even more adequate to use a formulation
in 6 +1 or 9 +1 dimensional space-time.

In writing down a SU(6) function for three quarks,
consider the first entry, 94, in a triplet W4 4C ¥
as referring to the inner region (next to the circu-
lar axis), the second, @4, in that example to the
middle region, and the third, ®+, to the outer
region (which also is closest to the central straight
axis). A state which is symmetric in the second
and third positions is

6”220V 4P 4 - JUC VP 4 - TUPHP V), (10)
and the state completely symmetric with respect
to exchange of any of the three positions is

18~ 2(29U4@ 40t — TP VP t — TP AP ¥

+ 2P INP 4 — @ AIUCP ¥ - P VIEC 4
+ 2P 4@ A - P VP ATt — PP VYIL) . (11)
As the three entries of each of these nine sum-

mands refer to three distinct spatial regions,
there is no violation of the Pauli principle and thus

no reason to reject this symmetric SU(6) function.

What are the reasons for the choice of the sym-
metric SU(6) function? A simple function, J4®+@+
for example, would be unphysical in that it would
relegate one quark (4) to the inner region ex-
clusively; other, quite different states would then
exist, too, e.g., ®V¥J4P+. An antisymmetric func-
tion for the proton,

[p1) = 6= 12(TUPAC ¥ — NP ¥4 + @ +TUE 4

—PATNP Y + PR VIt — PP AIH),
(12)

yields a magnetic moment (because the wing num-
bers for @, are +3, -2) of
(pH p|pt) =3x E[(-2+3-3)+ (-2-3+3)]
= -2 times ze#/2My, 0. C, (13)

(nt|p|nd)=3x2[(3-2+2)+(3+2-2)]
=+3 times 3 e//2My ., C . (14)
The ratio of p to » magnetic moments would be
-% instead of the observed value —1.47, and the

signatures of the magnetic moments are wrong.
The symmetric SU(6) function, however, yields

(pHIplpt)=3x A[4x(+2+3+3)
+1X(=2-3+3)
+1X(-2+3-3)]

1(32-2-2)

=4.66 times 3 e7/2Myyyon C, (15)

1]

i.e.

(ptiu[pt) =2.33eh/2m ppyonC .

This is not far off from the observed value; it is
interesting to get the numerical factor of the right
order of magnitude. For the neutron we get

(ntiplnt)=3x 5[4x(-3-2-2)
+1x(+3+2-2)
+1x(+3-2+2)]

=2(-28+3+3)
=-3.67 times ze7/2m yenC, (16)
i.e.,

(nt | [n4) ==1.83e%/2M yyyonC -

Thus the ratio of the proton’s to the neutron’s
magnetic moment is =+ 2.33/-1.83 =-1.28 instead
of the observed value —1.47. Let us note the mag-
netic moments of other, strange baryons®:



[A%4) =127 V2@ 44Nt ~ @ ¥TANE — TP ¥4
+ 4@ 424 + perm.),

(A [ |A%)=3x £[(3+2-3)+(-3-2-3)
+(-2-3-3)+(2+3-3)]

=5(+2-8-8+2)

=-3 times zek/2m 0, C,

ie.,
(A% |k |A%) =-1.5ef/2mpc
=-1.26e%/2m,c; (17)

[Z74) =18712(20 4@ A A¥ — P 4@ ¥ 14
-®V¥®42t + perm.),

(Z*4|p|Z*)=3x £[4(3+3+3)+(3-3-3)
+(=3+3-3)]

=2(36+3-3)

=6 times ze//2My,00C >

ie.,
(S| p|Z¥4) =+ 3eli/2mz+c
=+ 2.35¢efi/2myc; (18)

[E74) = 187 2(2904 M4t — AN AY
— 441t + perm.),

(E"t|plE"=3x%[42-3-3)+(-2-3+3)
+(-2+3-3)]

=4(-16-2-2)

=-3.33 times 3ei/2m,,,.C,

i.e.,
E74|p|E74) =-1.6Tel/2mg-c
=-1.19e7/2myc . (19)

These magnetic-moment evaluations result from
the simplest model based on hypotheses as re-
gards quark loop types, their magnetic moments,
and other assumptions. It is premature at this
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time to suggest which of the simplifying assump-
tions of the model need to be modified to get
closer to the observed values of the moments.

In particular, the inclinations of the flux loops
where they traverse the core are of importance
for the magnetic moment which they produce.

There is also the possibility that loops listed in
Table I are admixed in lieu of the ordinary M(2,1),
®(3,1), \(3,2) quark loops.

It might be noted that the simple fact that quark
torus loops are localized objects in the present
theory replaces the hypothesis of color of quarks
when introduced to explain symmetric spin-iso-
spin functions to account for the statistics of
quarks if postulated as particles. Localization
does not imply supernumerary meson or baryon
states.

The magnetic moment of a singlet meson, e.g.,
Ko=2""2(\4R4 - MT+), +perm. (Fig. 4) is, as it
should be, zero because the two terms contribute
(+3+2) plus (-3 —2) core traverses (wings).

VII. SPINNING AND WHIRLING ANGULAR VELOCITIES

Spinning and whirling are assumed to be of equal
angular velocities because there is, on the basis
of topological considerations, a symmetry between
the central and the circular axes even in the spin-
ning-top model.® It would be very queer to make
fundamentally different assumptions about spin
and whirl frequencies. Starting with the consider-
ation of electron or muon, it is difficult to assume
any other but the Zitterbew.:gung frequency for a
spin-3 object (see Huang, Ref. 4).

Spinning and whirling are subject to the funda-
mental assumption (see B) that the regions in
which the different quarks of a hadron spin and
whirl should be coaxial. That assumption is to be
understood to refer to a set of loopforms belonging
to one flux orientation ¢, i.e., to a sheaf, Fig. 2(d).
Other loopforms and sheaves of loopforms have
different flux orientations &.

The question arises as to what are to be the fre-
quencies of the probability-amplitude functions
when two quarks form a meson or three quarks a
baryon.

One single time factor

expl = 1(2Mypegonc¥/7)] Or exp[—i(2m .0, /7))
(20)

was assumed to be attached to the probability am-
plitudes of the 2 or 3 quarks (the same one to
whirling as to spinning) just as one single size
B/M pesonC OF i/my, . c characterizes the inter-
linked torus loops.
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Vill. CHARGE CONSERVATION

Conservation of electric charge is a fundamental
assumption, never violated. Furthermore, elec-
tric charges of particles are integer multiples of
e. It was at the start of the development of the
ordinary SU(3) quark model that it was recognized
that it would be difficult to make assignments
other than ¢gq for mesons (bosons) and gqq for
baryons (fermions). The demand for integral elec-
tric charge means then that different quarks may
differ by 0 or + e in charge (or a quark charge
plus an antiquark charge are to add up to 0 or + ¢)
and the sum of any three quark charges is to be
an integer, too. This led to the assignments —3 e,
+5e, —3e or their negatives unless one postulates
more quarks than needed at that time.

As the theory of flux quantization is based on
gauge invariance, charge conservation is implied
by it. But for the consistency of the theory it had
to be shown how these charges ¥ e, Fe;F5¢,+5 ¢,
¥ 3 e actually arise in the flux quantization model:
A single flux loop (lepton) spins and whirls in an
additive manner, a quark loop of a meson or
baryon spins and whirls subtractively as regards
the effect on the equivalent electric charge. The
integral charge of the particle thus demands that
only those spin-whirl motions of flux loops exist
which satisfy this integer-charge condition. This
means, as regards the simplest types of loops,
there are for electron or muon, those of winding
numbers (2, +1) plus (2, —1) with additive spin-
whirl motion; similarly for neutrinos or anti-
neutrinos, (3, -2) or (3, +2), respectively. For
quarks the winding numbers are (2, 1), (3,+ 1),
(3,+2) with subtractive spin-whirl motion, and
perhaps some additional ones listed in Table I.
Their charges, all multiples of ¢/3, make them
fit into ¢ meson and ggq baryon models.

IX. REMARKS ABOUT GROUP - THEORETICAL
CLASSIFICATION OF LOOPFORMS

In B we gave a most informative discussion of
simple topological issues which are implied in the
use of flux quantization in particle physics. The
group-theoretical aspects of that program are
trivial, such as the discussion of admissibility of
symmetric spin-isospin functions.

In the present paper (C) we stayed essentially
within the framework of the heuristic model of A:
The quantum-mechanical probability amplitudes
have been constructed, by amplitude superposi-
tion, from semiclassical concepts of alternative
loopforms. The essential next step (D) (the topic
of the following paper) is to introduce in a straight-
forward way probability-amplitude wave functions

which characterize the loopform distributions.
This may be done if one understands the group
with respect to which that distribution is to be
invariant, which is SO(4).

It is again the simple heuristic® loop model which
permits a direct recognition of the group-theo-
retical aspect of flux quantization in particle
physics. The groups which the model implies
specify the type of probability-amplitude functions
(wave functions)'® appropriate to the respective
particles. The correct knowledge of the probabil-
ity-amplitude waves—which are representations
of the group in question—may, in turn, specify
the exact nature of the spinning and whirling mo-
tions'' and may give a quantitative description of
the various leptonic and hadronic loop motions.
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APPENDIX A: SUPERPOSITION

As the calculation of effective magnetic moment
K. and effective electric potential Vi involves
some quite fundamental assumptions (formulated
in this heuristic model), we may discuss here
those assumptions [even though they had been
stated in A, Sec.IV, and properly carried through
in Egs. (4.1) to (4.19); the Eqgs. (4.20) to (4.25)
should be disregarded].

Let us consider an electron or a muon whose
effective magnetic moment p  =e#/2mc points in
the + z direction; that lepton state may be denoted
by |u}). The alternative loopforms contribute
toward that state with complex probability ampli-
tudes. We bundled the loopforms into a finite
number of bundles () whose corresponding prob-
ability amplitudes | (2)) then are so different that
the addition of those bundle amplitudes results in
a total amplitude as if the different bundle ampli-
tudes were random-phased. Accordingly, when it
comes to probability contributions, the different
bundle probabilities may simply be added; we
desire that resulting probability to be normalized
and that it correspond to a probability-amplitude
distribution proportional to (1 + cos6)/2=(1+ g,)"2.
We consider the number of bundles large enough
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to permit the use of a continuous probability func-
tion of 6 rather than adding bundles discretely
(cf. A, Sec.1V).

We perform the discussion of this appendix in
terms of the simple dipole loop model of winding
numbers (1, 0) in order to clarify the points at
issue in comparing them with A. This is permis-
sible because the superposition of left-handed
loopforms (2, +1) and right-handed ones (2, -1) to
represent a nonhanded electron or muon field re-
sults in an effective field of exactly the type (1, 0)
which we assumed for electrons or muons in A
and B. This is permissible also because we are,
in this appendix, not counting numbers of bundles
of loopforms.

We used the simple assumption for probability
amplitudes of sheaves of loopforms (sets of loop-
forms covering the full range of azimuths @ and
sizes 0)

CREI@)) e (1+ cos)/?=(1+ ¢, V2. (A1)

This is an obvious choice (1) because of analogy to
the same expression representing the probability
amplitude { p} | p3) for finding the magnetic mo-
ment in the Z direction when a measurement on a
pure state |p)) is performed; we shall come back
to this point later in this appendix, and (2) be-
cause that assumption leads to an isotropic po-
tential [cf. A, Eqs. (4.18) and (4.19); cf. (A7)
below].

The probability amplitudes |(£)) of sheaves, or
| (1)) of bundles of loopforms do not form an ortho-
gonal set; they may be normalized by

Z CRAENUD) D =Z<uz’ [N [
3] (¢N)
=6IJ¢'U:' (Az)

If there are altogether ) sheaves () or N bundles
(A)=(¢, a, 0), the summation may be written

Z=j:lfﬂ(%d§,)

@

or (A3)
+ 1
> =f N(zdt,)
o~
and
(pil@)=av2(1+g, )2
or (A4)
(g [ =N"Y2(1 + g,)V2
so that

S <u:l(x))(<x)lu:>=fHN"(H;,)N(édg,):l.

(@] (A5)

Let us review the argument leading to Eqs. (4)
and (A1),

Quantum mechanics states that an experiment
on a lepton whose magnetic moment e7/2mc is
directed in the +z direction, when measurement
in an arbitrary direction ¢ is made, yields the
magnetic moment e7Z/2mc with a probability ampli-
tude (p} |2), i.e., with probability (u} |EX¢|p))
a(1+¢,), i.e., with a positive probability even if
£, is negative, i.e., even if z and £ are in almost
opposite directions.

With this in mind as an analogy, we asked what
reasonable assumptions we could make about
probability-amplitude contributions from loop-
forms of flux orientation ¢, towards the amplitude
|}) of a state of effective magnetic moment
e#/2mc pointing in the Z direction. That super-
position is a concept similar to Feynman’s super-
position to construct a quantum state.®

Both in the quantum-mechanical measurement
issue and in this issue of assignment of probability
amplitudes for alternative, contributing loop-
forms, we refer to a quantum state Ip;‘). In the
measurement issue we ask for the probability
amplitudes for the magnetic moment, pointing in
the various ¢ directions. In the superposition
issue we ask for the amplitudes of the contributing
loopforms, of alternative flux orientations Z. The
two problems are in some way inverse to each
other.

We may correspondingly assume

b = 3 (el/2me) s [N 1)
©
i.e., (AB)

b= [ Cen/2me)1+ £)(de,)

-1
=eli/2mc .

The integrand represents the probability weighted
contribution of sheaves of flux loopforms of orien-
tation ¢, towards p, inthe |u]) state. The
analogy to the quantum-mechanical measurement
situation indeed suggests that even for z and ¢ of
almost opposite direction, there is still a positive
contribution towards p,, of that state. [In A this
assumption was stated after Eq. (4.15) with p,
=eli/2mc.] The inclusion of a further factor ¢,
into the integrand would be contrary to the analogy
between the quantum-mechanical measurement
issue and the probability-amplitude superposition
issue.

Assuming instantaneous spinning and magnetic
moment as parallel [Sec. IIC, Eq. (5)], the ef-
fective electric potential is given by Eq. (4.19) of
A:
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Ve =5 (ic/e)& 2/c) iy (21/7)sin?(x, D), 7'] @ /27X 1f | EN@) 1D

3}

= (ic /e)(x 21/c)(eh/2me) @ /r)e/2nnc)eme?/ann) [ [ [ sin®, £)(1 + £.)(4 de.)(dB/2m)(da /2m)

=zx2e/r.

(A7)

Again, the integrand (with the preceding factqrs) represents the probability weighted contribution of
sheaves of flux loopforms of flux orientation ¢, towards V., in the |p}) state. The evaluation of the in-
tegral [cf. Fig. 2(a)] is obtained with cosb =cosé cosc + sinf sinc cosp,

f ff (1-cos®b)(1+¢,) =f f f (1 - cos?6 cos?c ~ 2 cosb cosc sinf sinc cosp — sin?6 sin®c cos?B)(1+ ¢, )

+1
= f [1 - cos?8cos?c - 3(1 —cos?6)(1-cos?c)] (1 + £,)(3dg,)

-1

+1
- [T g-tg,

A2 /r?)] zdi, + f odd-power integrand

=58, +583+ (6, -3x58 2 /r?]ti=5. (A7)

APPENDIX B: REDUCTION OF QUANTIZED FLUX
TO WING FLUX AND EFFECTIVE FLUX

We recognized that the calculation of the mag-
netic moments e#/2mc of electron or muon (and
accordingly of their electric potentials e¢/7) from
quantized flux &, = hc/e cannot be achieved by
probability superposition of loopforms, because
a total flux &,, connected with a quasinonlocal
source of extension =7%/mc, results in a magnetic
moment which is 2 to 3 orders of magnitude too
large. Superposition with complex probability
amplitudes permits a “reduction” of flux and mag-
netic moment to the correct values e#/2mc; the
different phases of the probability amplitudes of
the loopforms may imply a partially destructive
interference which results in that reduction. Such
a superposition should be understood in terms of
a superposition of modes of probability-amplitude
distributions (wave functions).

Before the appropriate modes—wave functions—
and their superposition formalism are known, it
is useful to develop the heuristic model of A: We
considered neighboring loopforms as having
phase-related probability amplitudes, but con-
sidered loopforms whose flux orientations or
azimuths differ by more than one radian as not
phase related. In other words, we bundled loop-
forms together into some N different bundles
whose probability-amplitude superpositions then
leads to a reduction of effective flux and magnetic
moment by a factor N. Now, however, with the
new proposal of loopforms of type (2, +1) and
(2, -1), new issues arise which we shall discuss
in term of the heuristic model.

Even though the loopforms from which a lepton

—

in a quantum state Iu;’ ) is superposed are objects
[, ay,a,, 0))=|(), we may consider them, for
the purpose of counting manifolds of bundles,
simply as objects [(Z, a, 0)) because a whirl ro-
tation can always be mapped onto a spin rotation
as long as we characterize a flux loopform by
those parameters of a smooth torus loop. Even
statistical fluctuations of the forms of the torus
loops should not invalidate that statement.

The question arises whether a loopform of wind-
ing numbers (2, +1) and of a given set of parame-
ters

r=(,a,0)=(,6,a,0)

and the mirror loopform (2, —1) of same parameter
set A may have different probability amplitudes
and may have unrelated phases of amplitudes. The
answer is no. If they had unrelated amplitudes,
their superposition (which is a permitted opera-
tion) would no longer correspond to a Seifert
fibration; instead, it would correspond to mag-
netic field lines of noninteger winding numbers,
i.e., not to closed loops at all. But the hypothesis
of sheaves of loopforms to represent a Seifert
fibration is a basic assumption of the flux-loop
model because the individual quantized flux loop
without magnetic monopoles is a closed loop.
Consequently, in counting numbers of indepen-
dent loopform bundles, pairs of (2, +1) and (2, -1)
have to be counted as single units. The proposal
of torus loops in the present paper (C) thus im-
plies a different way of counting bundles, of
course, affecting in particular Eq. (10.3) of A.
The corresponding new counting is given in Eq.
(9), Sec.V, and in Egs. (Blla), (B11b), (Bla),
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and (B2) of the present appendix. We suggest that
in order to count the manifold of bundles, the

full range 0 <a <47 should be considered. This
full range takes account of the double-valuedness
of the probability-amplitude wave function over

0 <a <27. Counting bundles as we did in A, this
would amount to about 12 as regards (a), to 20
as regards the orientation (£)=(3, 6), and 1.67

as regards the size (o). Accordingly

N=12X20X1,67=400. (Bla)

(One should also note that it was a too simple
speculative assumption in A to assume N =207,
The relation of 207 to N and thus to % will be
discussed in paper D.) The procedure of obtaining
a value for N in the heuristic model still has to

be questioned; the numbers so obtained are crude
estimates. There are substantial differences be-
tween this heuristic calculation of the reduction
factor N and the calculation based on probability-
amplitude wave functions (in paper D).

In Eq. (9) the ratio of the root mean square 7, of
the Gaussian distribution (of equivalent magnetiza-
tion) to the length %Z/mc was not yet specified. An
elementary calculation [cf. our Fig. 3(e), or A,
Fig. 5], however, has shown

core equatorial radius =1.237,. (B1b)

The core equator is the (topologically) singular
line of the fibrations, i.e., the circular axis of
the “doughnut” (the torus, ring) which, together
with the straight central axis [cf. our Figs. 3(a)-
3(e), Fig. 6, or B, Figs. 3,5] constitute the sin-
gularities of the Seifert fibration.

Considering these topological facts and the basic
assumption of spinning angular velocity @ =2mc?/%
= Zitterbewegung frequency, we may ask: What
reasonable assumption may be made as regards
7,/(fi/mc)? We remember that the outer loop
regions spin with linear velocity > ¢, and, if any
meaning can be attached to linear velocities all
the way inside the core, they may mostly be lower
than ¢. The reasonable assumption may be to
assume that the linear velocity at the circular
singularity line (core equator) is equal to c¢. Ac-
cordingly

(@mc?/m)x 1.237r,=c,

v,/ (h/mc)=1/2.46 .
This yields, by Eq. (9),

e®/hic=~(3.1/2.46)(2/400)~1/160. (B2)

As we want the condition of velocity ¢ at the core
equator to hold for all lepton and quark loops ir-
respective of their winding numbers, we assume

that the intrinsic spinning velocity 2mc?/k (not
the effective velocities, e.g., 3mc?/k) be con-

(Blc)

sidered in Eq. (Blc).

Still open is the question whether the paramet-
rization of loop forms by B, 6, a, 0 provides for a
sufficient characterization. One might have vi-
brations and fluctuations to consider, although it
seems that the simple B, 6, @, 0 characterization
not only avoids more elaborate assumptions, but,
more important still, replaces the much more
difficult characterization of loopforms by func-
tionals. We consider a particle at rest; motions
with constant velocity are simply taken care of
by a Lorentz transformation; accelerated motion
can no longer be handled by this simple loopform
parametrization.

The connection of this model with QED can,
however, only be established on a broader basis
of formulation of loopforms in terms of func-
tionals. That applies in particular to issues of
interaction of leptons and hadrons with photons.

Reduction of quantized flux to effective flux, due
to probability amplitude interference, may be for-
mulated in various ways, cf. also paper D of this
series.

We may now proceed to a reformulation of the
reduction as outlined in A, Sec.IX [Egs. (9.1) to
(9.4) and (9.11) to (9.13) in A are to be changed;
®,,. and (4, , should not have been introduced
there].

The quantized flux @, = c/e and the correspond-
ing magnetic moment u, refer to one of the two
wings [the number of wings equals the number of
core traverses of the flux loop, and is equal to
the first of the two winding numbers (2, +1) or
(2, -1)]. We shall denote the “reduced” values of
®, and of u, by @, and L, , to distinguish them
from the total “effective” values for the electron
or muon, designated by @ =2®,;,, and [ g =2y,
At this time we disregard the inclination of the
core-traversing flux loop with regard to the cen-
tral straight symmetry axis of the toroidal field.
These ¢ and u are then connected by a relation-
ship which for a Gaussian-type extended source
was calculated in A, Eq. (5.10):

o=4mu/3.17,, (B3)

where 7, =root mean square of the Gaussian equiv-
alent magnetization distribution of the source.
How is &, related o the (i |®, |pu”) and
((A)]®, | (x,)) matrix elements and to the matrix
elements of &2, of u,, of y,°, and to the reduced
and effective quantities defined below? In other
words, how is the reduction formulated? For the
basic entities we refer to the Appendix A and to
A, Sec. VIII.
We note that &, was defined as the flux which
would result if the probability amplitudes of all
the flux-loop bundles were in phase. With N de-
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noting the effective total number of bundles, it is
assumed for simplification that on each of the
bundles falls the “bundle flux” N~'@, in that
parcelling-out procedure. This bundle flux, in the
language of Eqs. (B6), (B7), (B10), and (Blla)
[cf. A, Eq. (8.9)], is to be identified with

()], 1 ().

In order to carry through these simple calcu-
lations, we remember the obvious definitions of
probability of a bundle (A) [cf. A, Egs. (8.11),
(9.8), (9.9)],

[Kpilon|2=N"1(1z¢,), (B4)
SNk (il =2/N,
ug

SR OO 1) =By

(&S]
and the summation over () may be written as
+1
= N, (a3)
o~ !
The furthergoing assumption

()2l N =2, 3 ()2 i l(,)  (B6)
He
contains the statements about the above-defined
bundle flux
()2, | (A) =2, 3(2/N)
=®,/N (B7)

and implies the unreduced matrix elements

(pr|e,lpr) =2, Z HupZlan) b
(ApO)ps
XCpi D) [ 2

-1
=2, Oyt dus
w2

:%QGGH:N,. 3y (B8)
where
%Qq =hc/2e . (B9)

Instead of Eqs. (9.1) to (9.5) in A we introduce,
following our Appendix A, for random-phased
amplitudes (/| (A)g) the reduced matrix elements
(subscript R stands for random phased)

(T 008 0 (@o)elu)
(RO R
=3 (el QD& [N k) (B10)
(&)
Thus, by (B7) and (B5)

av
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L -
54) eff = ¢ wing

E(u;ld)q‘ ‘J';>red

=% /N

=()|2 ] )

=bundle flux (Blla)
[which could also have been calculated by integra-
tion from (A3), (B4), and (B7)]. Exactly the same
set of equations (B6) to (B11) hold for the magnetic

moments (assuming disregard of inclinations as
a permissible approximation):

Zhhetr = Hwing
=il o 1) e
=, /N
=) 1ql ()

=bundle moment . (B11b)

Let us now consider the quadratic quantities so
as to be able to estimate the actual, i.e., reduced,
values for electromagnetic energy and electro-
magnetic angular momentum.

(B8) implies

(nel@ gl ne)y =496, . (B12)

We may, with these unreduced matrix elements,

go from (| | ) to (| | ) in the same way as Eq.
(B8) leads to Eq. (B6):

()22 ()
= (@A) el @ 2 ) ] ()

HzHg
=102 (0wl ) (B13)

[ef. A, Eq. (8.92)]. The reduction proceeds as in
Eq. (B10) and we so obtain the square of the wing
flux:

Cul 22 ) e

=302 D0 (e QO 1Dl D] pe)

uz (™)

=18 22/N) D (i @) uy

()

=(1/2N)@ 26 0 (B14)

[one evidently has first to sum over u; in order to
be able to use Eqgs. (B5)].

Equations analogous to (B12), (B13), and (B14)
hold for (pZ|p 2| ), etc., too. These are ef-
fective magnetic moments per wing. As, however,
the two wings or two core traverses of a (2,+1) or
or a (2, -1) loop have strictly one and the same
probability amplitude, we may make an arithmetic
addition of the two wing contributions and get for
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the reduced magnetic moments

I"'cff:zlJ'v«mg ’ (uz)eft'=4(u2)u'nng ) (B15)

i.e., implying the same factor 2 as the unreduced
moments (or magnetic fluxes). As (B11) and (B14)
referred to wing flux, we get

(uz)eﬂ' = 4(“2)\\mg
=4zl e ®l 1D reg

=(2/N)pg . (B16)

This gives us the relationship between (B%),, and
(Beff)zi

(Bz)e(f /(Beﬁ’ )2 = (U-z)erf/(ﬂeﬁ‘)z
=(@2/Nul/@/N3Pus
=3N. (B17)
It is most interesting to note that the reduction
of quantized magnetic flux (or the corresponding
magnetic moment) to the effective values, by Eq.
(9) or (B11b), and the reduction of the quadratic
quantities (B16) goes by the same factor 2/N.
This circumstance assures the consistency of the
flux-quantization model in that we are now able
to calculate the electromagnetic energy and
angular momentum.
In Sec. VI of A we have calculated

/ I J (B2 + (B c0?)8m) a7 ={0.138(08/m ) /7, + 0.365((h/me) /o e meime: (B18)
and ’
I f f f TX (B X By )(4mc) "1d % | = 0.47[(1/m ) /7, )(e?/Hic) 3T . (B19)
0

Using the reduction factor given in (B17) for
(B ity (E?) oy, and (EXB).; and using 7o/ (F/mc)
=1/2.46 from (Blc), we may now complete the
energy and angular momentum calculations in two
ways: (1) We might take N =400 from (Bla) and
e?/hc=1/160 from (B2), i.e., (9), or (2) we might
take N =345 (chosen so as to give the correct
€?/hc from Eq. (9) and take e?/fic =55 .

By the second method we get

electromagnetic energy

=(32)(0.138 X 2.46°+ 0.365% 2.47) (37 ym c?

=172.5(2.06 +0.90) (57 )m ¢

=3.Tmc?, (B20)
electromagnetic angular momentum

= (32)(0.47x 2.46) (7 )7/ 2
=172.5(1.16)(57)%/2
=1.5%/2. (B21)

By procedure (1) we get the same values because
it is Nxe?/lic which determines the results and,
by Eq. (9), that product has the same value for
(1) as for (2).

The discrepancy of 3.7mc? with the required
mc? is considerable. One should, however, be
aware of the fact that most of that 3.7mc? is due
to electromagnetic energy in the core and im-
mediately next to the core. As the heuristic model
is only a very crude approximation in that region,
it would not make much sense to try to refine the
heuristic model to get a closer estimate of the
energy. Rather, one may do that with an adequate

r

formulation of probability amplitudes in terms of
probability-amplitude waves (in the next article),
and may recognize that the present heuristic model
gives the right order of magnitude of electromag-
netic energy and angular momentum, a certainly
not obvious result. [If, e.g., one would introduce
instead of 7,/(%/mc)= % any other assumption for
7, this would not only fail to be theoretically
justifiable, it would also have the consequence
that neither the electromagnetic energy nor the
electromagnetic angular momentum would come
close in any way to m ¢ or to %h’, respectively].
An explanatory note may be in order here to
clarify what we mean by “calculation of electro-
magnetic energy and angular momentum.” The
Eqgs. (B18) and (B19) show on their left-hand sides
[after they are multiplied with (B?) /(B.q)? in
Eq. (B17)] the electromagnetic energy and electro-
magnetic angular momentum. The right-hand
sides of (B18) and (B19) [again after multiplication
with 3N, Eq. (B17)] express these quantities in
terms of mc? and 37, respectively. The theory is
consistent if the factors multiplying mc? and 3%
respectively are one or at least of the order of
magnitude unity.

APPENDIX C: STRONG INTERACTIONS AND“STRINGS”
OF ALTERNATIVE LOOPFORMS

We have seen that some of the most troublesome
difficulties of the conventional quark model of
hadrons disappear if a quark is represented in
terms of a closed quantized flux loop rather than
in terms of a particle (e.g., a magnetic monopole).
Strong interactions occur if such a quark loop
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merges with an antiquark loop or if they are cre-
ated in pairs together. Such a reaction is a fast,
i.e., really a strong, interaction, if these loops
do not have to cut across each other or over
themselves in that process. Otherwise the pro-
cess is slow, a weak-interaction process, cf. B.
The merging or pair creation implies a close ap-
proach, side by side, of the interacting loops along
each other. Obviously, what happens, as a func-
tion of time, in the spatial regions between these
adjacent loops concerns the strong-interaction
process. That region may be characterized by a
narrow two-dimensional ribbon whose edges are
the two interacting loops, plus the three-dimen-
sional surroundings of that ribbon. These spatial
regions may correspond to the strings which have
been proposed as connecting a quark particle with
an antiquark particle in current quark-string mod-
els. With the proposed reformulation of the string
model in terms of a “ribbon model,” one might
again find an appropriate representation of dual

amplitudes.

The issue of “crosscutting” of loops is made re-
sponsible for weak interactions if such cutting
across involves the loop itself or the loop with
which it is interacting in a process of merging,
or pair production.

It has also been pointed out in B that a strange
quark (X quark), having the form of a trefoil, i.e.,
a “knotted” torus knot of winding numbers (3, 2),
can only undergo a slow merging with an N quark
which has the form of a simple unknotted torus
knot (2, 1), because that implies a crosscutting
of loops. But a A quark may undergo a fast pro-
cess with the mirror trefoil X by merging or
pair creation in associated production because a
merger of a A trefoil with a X trefoil does not
imply any cutting across of a loop cf. Fig. 6.
Strangeness-violating processes are thereby
eo ipso weak and they are parity violating, too.

It is interesting to note that it has been recog-
nized that the electromagnetic properties of a

FIG. 6. Merging (pair annihilation) of a loop of quantized magnetic flux with an antiloop. Consider any one of the
upper three loops as being laid on top of the respective lower loop. Starting from points where loop and antiloop thus
make contact first, with antiparallel magnetic flux orientations, extinction through merging may occur, a process which
proceeds all the way around the loop pairs. That is obviously possible in the case of the simple “unknotted” (2,1) and
(3,1) loops on the left side of Fig. 6. In the case of the “knotted” loops (3,2), i.e., trefoils, one might ask whether the
merging comes to a halt whenever the annihilation reaches the crosshatched regions. The other, not crosshatched,
parts of the loops which seem to be preventing the merging of the crosshatched regions are, however, annihilating each
other, too, so there is really nothing in the way of the crosshatched regions annihilating each other. Note that this
unimpeded merging of a trefoil is possible only with a mirror trefoil, not with an identical trefoil or with an unknotted
loop. Considering the latter, impeded, annihilations (which necessitate that a flux line cuts across itself or across the
line with which it interacts) as a weak interaction, it is obvious that strangeness conservation may be understood top-
ologically if the trefoils (i.e., A quarks) are assigned strangeness + 1 (“unknotting number”) depending on their handed-

ness.
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quark resemble that of a lepton. That should in-
deed be the case in the present model of a quark
and of a lepton, both as a quantized flux loop. The
difference between a p*u” pair annihilation or
creation and a strong interaction implying a gq
creation or annihilation is that in the latter case
the g and the ¢ are actually linked with one or
more quarks.

APPENDIX D: FURTHER COMMENTS ABOUT FORMS
OF LOOPS AND MAXWELL - LORENTZ EQUATIONS

To build up a magnetic field from alternative
forms of one quantized flux loop (one in the case
of leptons) means to take the closed loops of
Faraday lines (divB = 0) literally; they are the
forms which a flux loop may adopt. As a flux
loop is characterized by the singularity line of
gradd (9=pseudogauge variable), the motion
(circular spinning) of that loop is a realistic phys-
ical phenomenon even if only indirectly measur-
able, as most physical quantities are.

As the basic assumption of the theory is to de-
mand consistency with the Maxwell-Lorentz theory
(the Maxwell-Lorentz equations relate the field
to the distribution of charge and current), we want
to add a few comments in regard to the assump-
tions about the equivalent distribution of charge
and current in the present model. As regards the
description in terms of mean position, the source
is assumed to be a point dipole source. Its known
electromagnetic field is then interpreted in terms
of a superposition of a continuous manifold of
forms of quantized flux loops, a superposition with
complex amplitudes which also imply the above-
discussed motion of the loopforms.

The quasinonlocal concept of ordinary position
is related to mean position by the Pryce-Foldy-
Wouthuysen-Tani transformation. Even though
this is not a point transformation and thus does
not, strictly speaking, permit a local space-time
picture of moving flux loops, we try the use of
an extended-source model. The structure of the
source is assumed to correspond to a fibration of
space: a toroidal form of the field of magnetic
flux. The charge and current distribution, re-
lated by the Maxwell-Lorentz equations to the
effective electromagnetic field, may then be de-
termined from the distribution of flux loopforms.
The charge and current distribution is limited to
the inner region of the toroid because that is the
region which corresponds to the point source be-
fore the Foldy-Wouthuysen transformation was
applied.

A detailed mathematical formulation of the
electromagnetic field (and, by the Maxwell-

Lorentz equations, of the corresponding electric
charge and magnetic moment distribution) due to
the fibrations of ordinary position space may
properly be given once we know what probability -
amplitude superpositions of such fibrations apply
to an electron or a muon, and to hadrons. That
will be possible with the results of the next paper
(D), which constructs probability-amplitude dis-
tributions of fibrations from bases of representa-
tion of SO(4), appropriate distributions which cor-
respond to a core of size #/mc and have the proper
asymptotic behavior outside the core. In the
meanwhile we have given, in (A), Sec. V, a de-
tailed mathematical description based on a simple
approximation; we approximated the aforemen-
tioned magnetic-moment distribution by the spher-
ical Gaussian distribution of magnetic moment
over a region of linear size #/mc.*?

The different types of distributions, correspond-
ing to charged and uncharged lepton, to mesons
and baryons, have been discussed in B.

The parametrization of the loopforms, so suc-
cessful in a description of a single particle, fails
in collision processes. This serious limitation of
the theory is, however, offset by the topological
characterization of conservation of strangeness,
of PC, and by such characterization of weak and
strong interactions.

APPENDIX E: FOOTNOTES AND CORRECTIONS
TO PAPERS A AND B

Omit Eqgs. (4.20) to (4.25) in A; cf. Secs. II-IV
of the present paper.

The magnetic dipole field Fig. 5, A, or Fig. 1,
B is now to be considered as the resultant field
due to a superposition of a right-handed and a
left-handed torus-loop field; cf. Fig. 3(e) of the
present paper.

The notation of Euler angles was chosen as
(B, 6, ) instead of the more usual (a,8,y). With
that notation, (B, 6, a), we are now using the con-
ventional definition of the Wigner D functions:

Di. (8, 6, a) =di,(6) exp(inB) exp(ima) .

This notation is to replace the notation in A, p. 327
(which used the same B, 6, a),

Ton(a, 6,8) =P ;,(6) exp(inB) exp(ima) .

Omit the formulas Eqgs. (9.1) to (9.4), and (9.11),
(9.12), and (9.13) of A because quantities ®,, and
gz Should not have been introduced. Appendix B
of the present paper simplifies and clarifies this
reduction formalism.

Omit Sec. XIII of A, which advocated regionally
differentiated reduction. In the new formalism
of probability amplitudes in terms of wave func-
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tions (in paper D), we are replacing the heuristic
bundle model by a model of “bundles” understood
as wave-mechanical modes (some eigenfunctions).
Every wave mode covers all spatial regions, and
reduction depends on the statistical distribution
of modes, no longer on a regional distribution of
bundles. [One should also note that arguments in
favor of regionally differentiated reduction based
on consideration of (B?) ., versus (B.g)? of A
suffer from the impossibility of localizing energy
and angular momentum distribution inside an
elementary particle; only the integrated quan-
tities have physical significance.] The present
view about the reduction formalism simplifies the
theory in many respects, and clears A of an un-
desirable complication.

The reduction factor is now redefined in Eq.

(9); its numerical estimate in the present paper,
Appendix B, should replace the numerical assump-
tion made for it in A. N is to be calculated on the
basis of probability-amplitude waves in the next
paper (D).

Eq. (8.4) in A should have 20 columns and two
rows corresponding to the counting of 20 inde-
pendent flux orientations (£).

It may be remarked that the basic structure of
the theory has not been changed since the early
beginnings, and that A presents a realistic way
of setting up a heuristic model.

On the other hand, the topological forms of the
various types of quantized flux loops have only
gradually been developed. In particular, the
neutrino trefoil assignment is to be found in Sec.
IV of the present paper (C), the quark assignments
were already given in B, together with the meson
and baryon model, Figs. 4 and 5 in B, and some
basic loop issues in the Appendix of A, whereas
Figs. 13, 15, 16 of A are outdated, as well as the
frequency and magnetic-moment estimates derived
from those figures in A. As regards B, the third
and fourth paragraphs of the subsection entitled
“Magnetic Moment” (left column of page 451, lines
16 to 29) should be deleted. In B, the spinning-top
model is the physically significant model.

APPENDIX F: NEW QUARKS

To give a more complete table of the simple
types of loops, we may list loops with sub-
tractive spin-whirl motion (assigned to quarks),
and those with additive spin-whirl motion (as-
signed to leptons) in Table II. (The earlier com-
ments in Sec. IV are supplemented in this appen-
dix, which was written after the discovery of the
new particles of 3.1, 3.7, and 4.2 GeV.)

We had, without having explained it in any way,
assumed that the fofal electric charge of a lepton,

Loops with subtractive spin-whirl motion (assigned to quarks) and with additive spin-whirl (assigned to leptons).

TABLE II.

Lepton loops
additive motion of spinning and whirling

1,0)

Quark loops
subtractive motion of spinning and whirling

2,1) 3,1 @3,2) (6,1) (5,4)

1,1)

1,1 (2,1 6,1 3,2 4,1) 4,3) (6,1) (6,2) (5,3) (5,4)
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meson, or baryon is integer.

With the assignments of loops to quarks, and
with the assumptions made, what further loops
might we expect to find in particle physics?

For the additive loops, because they refer to
leptons which are represented by a single loop
only, which therefore has to have integral charge,
we find (2,1), (5,1), (5,4), ..., the first being the
electron or muon (cf. paper D), the (5, 4) having
strangeness 6; thus, if another charged lepton is
to be found, one might first of all expect to find
a (5,1) loop of charge 2e.

As regards the subltvaclive loops, we preferred
the assignments (2, 1), (3,1),(3,2) to quarks be-
cause loopforms of those types, belonging to one
sheaf (i.e., one flux orientation f), are interlinked,
whereas the (1,0) are not.

We might expect quark-antiquark pair production
of any + charge, i.e., of types (4, 1), (4, 3), (5, 1),
(5, 2), (5, 3), (5, 4), besides the (2,1),(3,1),(3,2).
Pair production is a strong process, not only for
those of zero strangeness, but for the others also
because their pair production is, as associative
production, strong (cf. the loop picture, Fig. 6).
For the types of loops of opposite, nonzero
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strangeness, i.e., (4,3),(5,2),(5,3), (5, 4), one
may have reasons for expecting a long lifetime.

It is among the latter ones that candidates for
the 3.1-GeV etc. particles are to be looked for.

In connection with the quark-loop model the ques-
tion of detection of K° variants whose A quark is
replaced by an equally charged but strangeness-3
quark, i.e., (4, 3), has come up.

It is also interesting to note that all the quark
charges listed in the tables as well as charges of
higher wound loops are multiples of ¢/3. Some of
those new quarks might even be mixed in with the
conventional three quarks.

The conventional SU(3) quark model is a scheme
whose difficulties of fractional charge and of its
quark statistics in baryons have disappeared with
the loop model. The fact that this SU(3) model is
so immensely fruitful [we may say because of the
importance of the simple (2,1),(3,1), and the (3, 2)
loops] should not lead us to expect that the next
extension of the quark model would have to be con-
fined to the SU(4) and all its complexities. It
might be even simpler to look into the intrinsic
properties of several quark loops following the
simple N=(2,1), ®=(3,1), r=(3,2).
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FIG. 5. Pictures from The Graphic Wovks of M. C. Escher as illustrations of a trefoil and a lively picture of the
electron flux loop. We are grateful for permission to produce these figures to Koninklijke Uitgeverij. Erven J. J. Tijl
N. V., Zwolle, Holland, and Ballantine Books, N.Y., The Graphic Works of M. C. Escher.



