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Exact results for effective Lagrangians
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A simple method is presented for the evaluation in quantum field theory of the effective Lagrangian
induced by one-loop quantum efFects. Exact solutions may be obtained in the quasilocal situation where
the resulting Lagrangian is allowed to depend on the fields and their first derivatives (and, in some
cases, their second derivatives as well). The method is a general one and may be applied to any given
field theory. For example, Schwinger's result for the effective Maxwell Lagrangian with constant
external field and the Coleman-Weinberg results for effective potentials each emerge as special cases of
the general method. By isolating the divergent part of the induced Lagrangian in the general case,
moreover, one may recover the 't Hooft-Veltman expression for the one-loop counterterms of an
arbitrary field theory. At no stage need Feynman diagrams be evaluated.

I. INTRODUCTION

It was recognized long ago that the effects of
closed loops in a perturbation expansion of the S
matrix could be summarized by adding to the orig-
inal classical action functional, S, an "effective"
quantum action functional, 8'." All calculations
are then reduced to a study of the c-number theory
based on I'=S+W.

Although it has now become popular to employ
the functional integral representation for l as a
useful device for generating the full irreducible
vertex functions of the theory, there have been
relatively few attempts to simply calculate I ex-
plicitly, even though this effective action, if one
could only get a handle on it, contains all the in-
forrnation we need ever want to extract from the
theory.

Qf course I' is an exceedingly complicated quan-
tity. Even in the one-loop approximation it is a
nonlocal functional of the fields depending, as it
does, on the field variables and all their deriva-
tives. For arbitrarily varying fields, therefore,
one must, it seems, resort to perturbative meth-
ods of calculation. In certain situations, however,
exact results ean be obtained. For example,
Schwinger' has computed exactly the effective
Maxwell Lagrangian induced by closed loops of
fermions or bosons, in the case of a constant ex-
ternal field. Schwinger's coordinate-space method
is an elegant one, relying on his proper-time for-
malism, which is accompanied by the introduction
of abstract vectors in a nonphysical Hilbert space
with an associated "Hamiltonian" and "transition
amplitudes" satisfying a "Schrodinger equation. "

There is, however, another way to compute ef-
fective Lagrangians which relies on straightfor-
ward momentum-space methods, which, we feel,
are more familiar to most field theorists. Work-

ing in momentum space also facilitates the intro-
duction of dimensional regularization whereby the
resulting divergences may be rapidly and elegant-
ly removed. It is this route which we advocated in
a previous paper' for the computation of effective
potentials, and which we wish to extend in this pa-
per to effective Lagrangians.

Rather than plunging straight into the evaluation
of I' in the general case, we prefer to begin in
Sec. II with the example of a X$' theory so as not
to obscure the essential simplicity of the method.
Many of the results of this section will be seen to
carry over, with one or two modifications, to the
general case treated in Sec. III. Using the back-
ground-field method of DeWitt, ' it turns out that
the one-loop effective Lagrangian, Z ', may be
computed exactly provided one can obtain an exact
solution to the equation of the appropriate Green's
function in the presence of the background field,
P(x). This we are able to do in the quasilocal situ-
ation in which Z~" is allowed to depend on the vari-
ables Q' 8 P', and 8 8, $'.

The essence of the calculation is to write an in-
tegral representation for the momentum-space
Green's function, G(P), in terms of three unknown
functions which are then determined by three ele-
mentary first-order differential equations obtained
by substituting G(P) back into its defining equation.
By working throughout in n dimensions and only
taking the limit n- 4 after renormalization, the
resulting finite Lagrangian is arrived at without
reference to eutoffs or counterterms, and we de-
scribe how to avoid the infrared divergence in the
massless theory. Our Lagrangian goes smoothly
over to the Coleman-Weinberg effective potential
in the local approximation obtained by setting the
derivatives of the field equal to zero.

In Sec. III, we set up the relevant Green's-func-
tion equation for an arbitrary field theory. The
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major difference from Sec. II is that this is now a
matrix equation, depending on parameters which
do not, in general, commute with each other. (If
one is interested solely in the divergent part of
the Lagrangian, then this presents no problems.
Indeed, the 't Hooft-Veltman expression for one-
loop eounterterms in an arbitrary theory follows
almost immediately. ) The determination of the ef-
fective Lagrangian is consequently more difficult,
since the number of invariants formed by such
commutators is now without limit, unless one
specifies which particular group one is interested
in. This is an interesting problem in its own right
which we postpone to a future publication. In this
paper we show instead how, with only slight loss
of generality in the form of the interaction, exact
results can be obtained in the quasilocal situation,
even for an arbitrary group. For an Abelian
gauge group, of course, everything is much sim-
pler, and me see how Schwinger's effective Max-
well Lagrangian induced by closed loops of charged
scalar mesons emerges as a special case.

Finally, Sec. IV treats the feasibility of extend-
ing the method to two or more loops, of introducing
a greater degree of arbitrariness to the background
field, of including fictitious quanta, and of taking
the gravitational interaction into account. We fin-
ish with some general rema. rks on the usefulness
of effective Lagrangians in field theory and some
problems we hope our method will be able to solve.

Appendix A deals with the more tedious aspects
of the matrix algebra, and since Secs. II and III
deal only with bosons, we show in Appendix B how

fermions may be included as well.

II. A SIMPLE EXAMPLE: X(I54THEORY

A. The effective Lagrangian

We begin with the classical action

S=
Jl

dxg"', g'=-,'(ay)'--,'m'y'- —,y'.

(2.1)

To compute the effective Lagrangian, me employ
the background-field method of DeWitt' and accord-
ingly make the replacement

(2 2)

where h (x) is the quantum field variable and P(x)
is now to be regarded as the classical background
relative to which the quantum fluctuations take
place. If S((t) +h) is nom expanded about the back-
ground field, then the one-loop effects will be
governed by those terms which are bilinear in the
quantum field. We denote the corresponding La-
grangian by L,

L = =,'h(a'+ m'+-,'xy')h . (2 8)

The Lagrangian induced by these one-loop effects,
g ', is then given by the functional integral over
the quantum fields,

exp — dxZ" =N dh exp — dxL

[a.' ~ m'+! ~y'(x)] G(x, «') = 5(x, x'), (2.5)

where

—, G(x, x') = (h (x)h (x')) (2.6)

f(dh)h(x)h(x') exp [(i/g)fdx L]

f (dh ) exp[ (i /ff )fdx L]

(2.7)

Since, for the time being, we are ignoring the pos-
sibility of real pair production, it is not necessary
at this stage to specify what particular boundary
conditions G(x, x') obeys.

For an arbitrarily varying background field,
P(x), Eq. (2.5) is a very difficult equation to solve.
The resulting Lagrangian mill depend on the field
and all its derivatives,

g'" =g"'(y, a„y, a„a„y,a„a„a,y, . . . ), (2.8)

and one is forced to resort to perturbative meth-
ods of solution. Instead, however, we wish to
solve Eq. (2.5) exactly in the quasilocal situation
where Z '~ depends only on P and BpQ. To this end,
we consider a background field obeying the re-
striction

a„a„a,y'(x) =0 (2.9)

and the quantity P'(x) is now expanded about the
reference point x',

P'(x) = P'(x') + @' „(x')(x—x')"

+-,'(j)' „„(x')(x—x')" (x —x')',

where commas denote differentiation. [Note that
to ensure the correct dependence of Z ' on the
first derivative of P, we must keep the second
derivative of Q', and that by discarding third de-
rivatives of P' by Eq. (2.6), we are ignoring sec-
ond derivatives of P.] Substituting (2.10) back in-
to (2.5), we see that we are led to seek a solution
of the equation

{2.10}

(2.4)

where N is a normalization constant determined
by the requirement that Z ' =0 when (IF) =0.

As we shall see later, one may solve for Z ' ex-
plicitly provided one can obtain exact solutions to
the Green's-function equation
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[ 5„'+n (x') + p~(x')(x —x')"

+ y'„„(x')(x—x')" (x —x')'] G(x, x') = 5(x, x'),

(2.11)

equation, it could be solved immediately to yield

where QS 2
(2.17)

a = ns'+ —'AP

(2.12)

(We write y' rather than y simply for convenience. )
Before proceeding to solve Eq. (2.11), we first

wish to show how knowledge of its solution enables
us to obtain the effective Lagrangian. Substituting
(2.10) and (2.12) into the expression (2.3}for L,
and then differentiating both sides of Eq. (2.4} with
respect to n, we have

g g{&)
= --,' (h {x)h (x) )8&

Indeed, if we were interested only in the effective
potential, where Z '~ depends on (Ij} alone, our task
would now be complete, Eqs. (2.13), (2.14), and
{2.17) providing the desired result. When the de-
rivatives are present, however, we look for a so-
lution of the form

A»(s)-5„, s, 8„(s)-0, C(s)-0 (2.19}

G(P) = ds e ' exp P "A „, s) P'+B „(sP" +C s

(2.18)

where the unknowns A, B, and C are to be deter-
mined in terms of P and y, and where

= ——.G(x, x).
2i (2.13)

as we switch off the background field.
From Eqs. (2.14) and (2.18), we now have

Thus the whole procedure devolves upon a deter-
mination of

d "p
G(x, x) =

(
)„G(P), (2.14)

where, in anticipation of the use of dimensional
regularization, the momentum-space integral is
allowed to be n-dimensional. The Fourier-trans-
formed Green's function,

1
G(x x) = dse "" ~td "Pe~'"'~'

{2&)n J

(2.20)

noting that, for suitably chosen n, we may freely
interchange the orders of integration. At this
stage everything is perfectly finite, only at the
end do we take the limit n-4. Under the change
of variable

(2.15)
q=P+-2'A-' B (2.21)

obeys, from (2.11), the p-space equation

8 1
p Hfdf sp 4 Y pU sp sp

(p)

the q integral becomes an elementary Gaussian,

1
G(x x) =

{2&)n
ds exp( cts+C —-'8 ~ A '

~ 8)-4

(2.16)

and were it not for the derivatives in the above and we obtain

x d" (2.22)

G(x «)= „,exp[-os+C —48 ~ A '.8 ——,'trln(As ')].(4v)"~', s " (2.23)

Finally, the effective Lagrangian Z ' is obtained from Eq. (2.13}by integrating with respect to o subject
to the boundary condition ~" =0 when (II) =0:

(2.24)

It now remains to show that the expression (2.18) for G(p) is indeed a solution of Eq. (2.16), and to deter-
mine the unknowns A, B, and C. This we do by inserting (2.18) into (2.16), yielding

f ds[o. —p (1+Ay'A) ~ p-(2ip ~ A + p ~ 'A ) ~ p —(~a try'A +ip ~ 8 8+y' 8)]e "'e~ " '~' '~' =1.
0

(2.25)
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By setting

d'A
1+Ay A = —,

Bs

BB
2iP A+A y'A =—

Bs

(2.26)

(2.27)

A.Q' theory, the Lagrangian would be the same,
save that n, P, and y would be replaced by

n =m +A(+,

PP =~4, p ~

y „=2AQ „,,
in the above equation and integrating by parts, we

see that (2.18) solves (2.16) provided the function

C(s) obeys the equation

and we would then obtain the correct dependence
on the field, its first derivative, and its second
derivative as well.

;tr(y'A)+iP ~ B+;B y' B =— (2.28)
B. Renormalization

and the boundary condition

-as O'A'P+B'P+C
0 A ~ (2.29)

In the case of massive fields (ms"-0), the total
Lagrangian is now

These equations for A, 8, and C, do indeed admit
of elementary solutions in terms of trigonometri-
cal functions,

A =y 'tangs,

B = -2iy '(1 —secys)p,

C = ——,
' tr ln cosys —p y s(tanys —ys) ~ p.

(2.30)

g(1) '
( e-a( 4}se-f(s) -a(0)s]

2(4 )n/2 .1 n/2

(2.31)

where

f(s) =-C+ —,'B A ' B+-,' trln(As ')

=-,' tr In[(ys) 'sin(ys)]

+P y '[2 tan(-,'ys) —ys] P, (2.32)

with n, p, and y given by Eq. (2.12).
This completes the derivation of the effective

Lagrangian for XQ'. Note that had we chosen a

The resulting expression for the effective Lagran-
gian of Eq. (2.24) is

-m s [ —&4 sf'2 -f(s)
2(4 /2 1 /2 Le e 1]

7TJ go s
(2.33)

To obtain a finito result in the limit n-4, we must
first rewrite 4 in terms of the renormalized mass
m „and renormalized coupling constant A. R defined
by

m 2=-
R gy2

(2.34)

There is no wave-function renormalization.
[There is an infinite term in (2.33}proportional
to try', but this is of no consequence since try'
=/1as(t12, i.e. , a total divergence. ] In terms of m/2

and l1n, 2 becomes (and we now drop the ii sub-
script)

g 1(sy)2 1msys ps+ e-m s [e—&0 s/2 e f(s) I ~1/ Pss -/s~ss2]
2 2 41 2(4V}n/2 Sl+n/2 2 2 (2.35)

and this is now perfectly finite in the limit n =4
(though we recommend that n be kept arbitrary for
the purpose of actually evaluating the integral).
This closed expression for g takes into account
all orders of the coupling constant X, and is valid
to first order in h. This corresponds to summing
up the contributions from all one-loop Feynman

diagrams possessing arbitrarily many external
legs. The local approximation obtained by setting
the derivatives of Q equal to zero in (2.35) corre-
sponds to the situation where these external legs
carry zero momenta. In this limit, then, we ob-
tain the effective potential which, upon performing
the s integration, becomes

4 A
-g(/I/} =- I/(p) = —,

' 2p2 + —,/t/' — „/2 ( I'(-2n)[(m' + z'A/tl')"" —(m')""] + ~&X/I/ I"(1—~zn)(m'}""

(2.36)
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which, for n=4, is

in agreement' with that obtained by Coleman and Weinberg. " If, on the other hand, we keep Q and b „(It,
the first few terms in the expansion of (2.34) are

m X ~ hk 5 ~ ~ 1

Ix' 1, 1, 97, , 61
'32 ' 48 '~" 18 '~'('~" 380 '~'('~)" 2520

(2.37)

The increasing complexity of each term is a good
illustration of why the evaluation of individual
Feynman diagrams is not the best way of obtaining
our effective Lagrangian.

Next we turn to the case m =0. Massless fields
must be handled with more care owing to the infra-
red problem. The Lagrangian is

fore we define

(2.39 )

where M is an arbitrary mass. (Note that dimen-
sional regularization avoids the need of a spurious
mass renormalization. ) Z now becomes (and again
we drop the subscript R)

d s
& &4,~," x(') —1n/2 1+n/2 L

(2.38)

+
2(4 ) g Jl &+nyz I& ' (~ —1)j

(2.40)
and the renormalization condition must be modi-
fied so as to avoid the origin in (II) space, There- where we have separated out the effective potential

V(Q) = — &+» e @ '" —1 ——(3A's' —8X'M's'+A~M's')erz
" ds & y4 2

4! 2(4v)" 0
s""" 4! (2.41)

s' = —,'A.Q's

Eq. (2.41) becomes of the form

(2.42)

v(y) = —,y'+ a(~y')""z (2.43)

where I' is independent of A.. Evaluating the s' in-
tegral, in fact, gives

V(y) = 4—, y'

The dependence of 2 on the renormalized coupling
constant is rather curious in the massless case
and requires a separate discussion. Let us look
first at the effective potential. Under the rescaling

yielding the Coleman-steinberg result for n =4:

@g2y4 y2 25
V(Q) = —Q'+ ln

41 256m' M' 6
(2,45)

Thus the sum of all one-loop graphs for the effec-
tive potential is proportional to A.'.

The situation changes, however, (as Coleman
and Weinberg anticipated) when the external legs
carry nonzero momenta, i.e., when we keep the
derivatives of Q as in the complete Lagrangian
(2.40). Under the rescaling (2.42), the Lagrangian
is seen to be of the form

Ir(--,'n) ~y' ""
2 8n

(a y)
M' A(t)'

(2.46)

n (n —] )(n —2)(n —3)
M 4l

(2.44)

and the dependence on the renormalized coupling
constant is much more complicated. Clearly, ex-
panding out the factor e ' in Eq. {2.35) and then
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performing the s integration is a procedure which
must be avoided since this would lead to a series
in inverse powers of A.. A series in positive pow-
ers of A. can be obtained only at the expense of
performing some rather unpleasant integrations.

III. THE GENERAL THEORY

A. The formalism

Let us consider a set of real boson fields h (x),
where the index represents not only an internal-
symmetry label but possibly space-time labels as
well. (Fermion fields are treated in Appendix B.)
The one-loop effects are again governed by that
part of the Lagrangian which is bilinear in the
quantum field variable. Following 't Hooft and
Veltman, we write this Lagrangian in the form

scalar fields interacting with an external Yang-
Mills field, B~u, where

Nv=G 8 v M=m'+G 8 uG 8 (3 7)

The G are the generators of the group satisfying

[G, Gs]=G&c"~&.

If the quantum variable is itself a gauge field, then,
in general, one must take into account the fictitious
particles. We shall reserve discussion of how this
is achieved for a future publication.

Before proceeding to solve Eg. (3.4} it will prove
useful to summarize the gauge structure of 2 as
defined by (3.3).

The requirement that Z is invariant under h -h
A( x)= e h, - Ajj = -Aj;, yields the following transfor-

mation properties for M and N:

with

h'Wu" q h' —h'Nu 8 h'--'h'M- h'2 u jj lt jj u 2

(3.1)

N„-N„=e N„e -( Se )e

M —M =e Me +e N "~ue

A}N p -A (s A)(s -A)

(3.8)

(3.9)
Wu. = Wu =Wjj jj jj
N j"j = -N j";, M jj = M; j

(3.2)

where W, M, and N are regarded as external,
space-time dependent source functions. In all the-
ories save quantum gravity and certain chiral
models Wu. .' is simply 5u'5jj. Here we shall deal
only with the situation

X=M-N„Nu,

Y„,=S„N„—8, N„+[N„,N„].

Both X and K have the transformation law

(3.10)

(3.11)

It can easily be shown that there are two tensors,
X and 7, that can be formed fromM and N. These
are defined as

T-T=e Te (3.12}
The Green's function G '" is defined by

(S'5,, +2N~, S„+s„N~,+M, , )G'"(x, x )

= 5'; 5(x, x') . (3.4)

The Lagrangian given by (3.3) covers both of the
following situations:

(a) A theory with self-interaction. For example,
in the A~t}' theory of See. II the h 's are the quantum
field variables with a background P field; thus

N=0 M—= m + —'~Q (3.5)

N =eAjj jj & jj

M;, -=(m' —e'A')5;; .

t0 1)
)-1 Of

(3 6)

(6) A quantum field interacting arith a (different)
classical external field. For example, for charged
scalar bosons (v, m*) of mass m in an external
electromagnetic field A„we have

1
h, =~ (v+v*), h, =— .~ (v —v*),

One can define the covariant derivative of any ten-
sor T that transforms as in (3.12),

T q=T q+[Nq, T],
where

(3.13)

h „=a„h+N„h. (3.14)

By use of (3.10) and (3.14) 2 can be rewritten in
the manifestly eovariant form

(3.15)

Let us now turn our attention to obtaining a so-
lution to Eq. (3.4). We wish to obtain an exact so-
lution to this equation by placing appropriate re-
strictions on the background fields M and N. How-
ever, we must now be careful to ensure that these
conditions, if they are to lead to an invariant ef-
fective Lagrangian, must themselves be manifestly
covariant. Thus we choose the covariant analog
of Eg. (2.9),

T. u

Lastly, the eovariant derivative of h is defined as

Alternatively h' might represent a multiplet of X p, =O, (3.16)
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whereas the natural condition to impose on the N

field is

Vv ~ p
(3.17)

Y„, , =0 ~[Y„„Y„,] =0. (3.18)

Lemma Z. The most general form for N„ that
satisfies Y„„-=S„N,—S,N„+[N„,N, ] when Y„, ~

=0
is given by

[In the example of electrodynamics (3.6), for in-
stance, this corresponds to a constant external
field, i.e. , &~+„,=0. ]

Inherent in the method for the solution of the
Green's function in Sec. II was the substitution of
a Taylor-series expansion for any quantities de-
pendent upon the background field that occurred in
the defining equation of the Green's function. As
they stand, conditions (3.16) and (3.17) are not

readily amenable to such an approach. Thus we
must first recast (3.16) and (3.17) into a more
tractable form. To this end let us first examine
the consequences of (3.17).

We first quote two lemmas, the proofs of which
are to be found in Appendix A.

Lemma 4.

(x)x'+e"'*'a e-"'*'
P (3.19)

Np-N„=e "Npe" —(Bye "")e".

Under the transformation (3.20)
-0 0Y„v- Y„v=e Y„ve

(3.20}

(3.21)

Substituting for N„ in (3.20} from (3.19}, we find

I vN„=-2 Y„v (3.22)

Moreover, in the barred system Y„„p= 0 becomes

as a consequence of {3.18) and (3.22).
To summarize our results so far, when

I'„,.
p

=0, there exists a gauge in which Y„,(x) is
constant [ = Y„,(0)] and iV„(x) = --,' Y„,(0)x".

Secondly we have to deal with (3.16). Here again
we begin by quoting another lemma (proof in Ap-
pendix A).

where Q(x) is an arbitrary antisymmetric matrix.

Thus Y„, p
=0 implies that we can write N„ in the

form given by (3.19). We now ask whether we can
find a gauge transformation N„- N„such that N„
takes on a simple form. Clearly we must make
the transformation

Lemma 3.

(X p„=Y„, p—- 0)m([Yq, , X q]=0, [Y„,, X p~]=0, [Y„,, [Y,), X]]=0). (3.24)

If we now continue to work in the barred system,
the following results are easily established:

X, =X,+ -,'[ Y... XJ x',

X(x}=X(0) +X, (0)x'
+-,'{(X „{0)+-';[Y, , (0), X(0)]jx'x~.

(3.26)

X, r p X. w p
+ 2 [ Yr p& X] y

X 7 p fI X T p g 0

(3.25)

Thus we may solve X p, =0 by the Taylor series:

We are now in a position to substitute (3.26) and
(3.22) into (3.4), whereupon we are led to an equa-
tion that is essentially of the same form as that
encountered in Sec. II. In so doing, (3.4) becomes

(8'+X(x'}+X,(x')(x —x')'+ (x —x')'Y, , (x')s„

+ (x —x') [-,'X „(x'}+-,'[ Y„(x'),X(x')J ——,
' Y'„(x')] (x - x')')G(x, x') = 5(x, x') . (3.27)

Note that we have shifted the origin in Eqs. (3.22) and
(3.26) to the point x', and dropped the bars from
the X's. It is now ensured that N and M will enter
the effective Lagrangian only via the tensor com-
binations X and Y. This is of course as it must be
when one imposes covariant restrictions on the
background field.

With the exception of the term (x —x') Y, , S, ,

Pq=X q,

~'„,=2X „,+[Y„„,XJ —Y'„„,.

(3.28)

Eq. (3.27) is of the same form as our basic equa-
tion of Sec. II, (2.11), where a, P, and y are given
by

n=X,
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B. Counterterms

Returning to Sec. II, if one isolates from Eq.
(2.31) for g&" those terms which yield divergences
at n =4, we have

S -GfZ~„= 2(4,„&2 Tr „„&, [e (1+ ~try s )2 4m)"
() S

-a&a'I3
J (3.30)

where we have supplied the trace symbol necessary
when e and y carry i, j indices. (Tr implies a
trace over i,j labels and tr over p, , v labels. )

Thus,

Z~,„=
2( „&2 Tr( I'(-2 n)[o.""—a(0)""J

But there is now a difference in that in general

(3.29)

The number of invariants (formed from these non-
vanishing commutators) upon which the effective
Lagrangian can depend is now without limit unless
we specify the underlying group. In consequence
the complete solution to (3.27) becomes very much
more complicated than in Sec. II.

However, if one is interested solely in the in-
finite part of the effective Lagrangian, these dif-
ficulties do not manifest themselves. Now although
we have already emphasized that the isolation of
such infinite counterterms is not an essential step
in the calculation (at least for renormalizable the-
ories), it is often of interest to display the diver-
gent parts explicitly, especially if one is inter-
ested in testing the renorma, lizability of a given
theory. By way of a diversion, therefore, we shall
show how these one-loop counterterms now follow
almost immediately.

To cancel the infinity at n =4, therefore, we need
a counterterm

which in the general theory becomes

(3.32)

Tr[X' —X'(0) ——,
' tr Y']

C. The effective Lagrangian and another example

%e now return to the problem at hand, deriving
Z ') in the general case. 'As was mentioned in the
Introduction, rather than try to determine Z'" in
terms of X and Y for a particular group, we shall
instead keep the group arbitra. ry but make the
s implif ication

2X» m5. . (3.34)

This would be the case, for example, when the
quantum field of mass m intera. cts with an external
gauge field.

The effective Lagrangian is given by

gg(])
, = --,' (ft '(x}h; (x })

(3.33)

on using Eqs. (3.28), and remembering that X „"
is a total divergence. This expression was first
obtained by 't Hooft and Veltman' using different
methods.

Alternatively, hZ may be derived by simply
iterating the basic Qreen's-function equation (3.4),
the first few terms of the iteration providing the
divergent part of 2 ".

+ 1'(2 —,'n)o&"" '~—try''t.

(3.31)

= ——.TrG(x, x),
2E

and Eq. (3.27) for G is now

(3.35)

[e'+ m'+ Y„„(x')(x—x')"s, ——,
' Y'„,(x')(x —x')" (x —x')" ] G(x, x')= 5(x, x') . (3.36)

The only matrix which need concern us now is Y„'~,
which, moreover, satisfies (lemma 1)
[ Y„,, Y„q] =0. Equation (3.36) may now be solved
in the same way as (2.11). The term in (3.36)
which is linear in Y, and which has no analogue
in (2.11), is of no consequence. The reader may
convince himself of this by noting that Y„„ is anti-
symmetric and that it commutes with A p

8 p,
and C of Eq. (2.18) since these depend only on Y.

Thus Z" is given simply by Eq. (2.31), with

P = 0, and y', = —Y„,', and by supplying
the overall trace.

(~) -m s -f(s)= 2(„,„„Tr „„„e (e —1),
o S

(3.37)

where



2132 M. R. BROWN AND M. J. DUFF

f(s) = —,
' trln[(-Y')'"s] 'sin[(- Y')'"s].

This is the one-loop effective Lagrangian for an
arbitrary field theory, subject to X= rn'.

As an example, let us consider charged bosons
in an external electromagnetic field, as in Eqs.
(3.6). All the non-Abelian character of (3.37) now

disappears and we have simply

y»j—
pV Pv

F„,=a„A, -a,A„. (3.38)

Trs" =2

we obtain

(3.39)

Substituting into (3.37) and being careful to re-
member that

dgg"~ = „,»,„„e '/exp[--, ' trln(eFs) 'sin(eFs)] —1]. (3.40)

After renormalization, the total Lagrangian is that given by Schwinger:

g g(0) + g(j)

=-,' trF'+, t —,e '[exp[--,' trln(eFs} 'sin(eFs)] —1 —+e's'trF')
0

2 2

= —' t rF '-+ — [ -' t rF ' + —'(trF ')'] + ~ ~ ~ .4 90 4 4+ 4 16 (3.41}

IV. CONCLUSIONS

In this paper we have concentrated on the evalu-
ation of the exact effective Lagrangians induced by
single closed loops in a prescribed background
field, these exact expressions summarizing the
contributions from all one-loop Feynman diagrams
possessing arbitrarily many external legs.

Further improvements in the approximation
may follow two courses: (i) extending the calcula-
tion to two or more loops, and (ii) allowing a
greater degree of arbitrariness to the background
field. There are also other extensions of the cal-
culation, within the present approximation, and
these include (iii) studying the situation where the
loop particles are themselves gauge fields, and in
the case of non-Abelian groups including the fic-
titious particle contributions, and (iv) allowing for
the presence of the gravitational field. %'e intend
to return to these improvements and extensions in
a future publication, but shall include a brief dis-
cussion of them here and anticipate which are like-
ly to be straightforward and which are likely to
present problems.

A. Improvements and extensions

Let us firstly consider the extension to more
loops. Since there is associated with each closed
loop a factor 8 in the effective Lagrangian, the
one-loop approximation corresponds to determin-
ing the Green's function G„(x, x') to zeroth order
in h and hence the Lagrangian to first order in S.
This is what we have done in this paper. If one is
interested only in a non-self-interacting quantized

1 h
Q Jk

Ii ~f 2t ~, ljk

ja kb lc+ —, —. S»G G a r.„
+ ~ ~ ~

The Green's function G ' is defined by

(4.1 )

G l kj=-6,'. (4.2)

Here we have used De%itt's condensed notation in
which functional differentiation with respect to the
background field Q' is denoted by a comma and a
sum ove r indices implies an i nteg ration ove r the
appropriate space-time argument. For a pre-
scribed background field, therefore, the problem
of extending the calculation to more loops is
merely one of calculational tedium rather than of
pr inciple.

As far as allowing a greater degree of arbitrari-
ness to the background field is concerned, how-
ever, exact solutions will be more difficult to find.
The appropriate Green's-function equation can al-
ways be set up, of course, no matter how many

field in an external classical field, of course, then
one loop is all one will ever need. For more real-
istic situations, though, it is desirable to go to
two or more loops. Now, provided we have an ex-
act solution for the effective action to order 8,
which we have in the quasilocal situation, then we

can obtain exact results to any desired order of 5
by iteration of the Dyson-Schwinger equation' for
the effective action I".
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derivatives of the field a.re kept. Probably the
best method of solving this equation is then to find
an exact solution including the nth derivative (for
n =2, say) and use this as a starting point to find
the dependence on the (n+1)th.

We do not anticipate any further obstacles in the
inclusion of closed loops of gauge particles, even
in the non-Abelian ease, since the fictitious parti-
cle Green's function may be evaluated in the same
way as any other. One does expect, however, that
the resulting effective Lagrangian will be gauge-
dependent. Even though the background field meth-
od and dimensional regularization ensure that only
covariant quantities appear, the numerical coef-
ficients in front of these quantities will involve the
gauge parameter. Nor is this surprising. The
Green's function, and hence the effective Lagra, n-
gian, are off-mass-shell quantities, and there is
no reason to expect them to be gauge-invariant.
On-mass-shell S-matrix elements determined
from this Lagrangian, on the other hand, ought to
be satisfactorily independent of one's choice of
gauge.

Of particular interest is the application of our
methods to gravity, whether it be in the form of an
external field or itself quantized. Here we need to
study the case where the W of Eq. (3.1) is itself
space-time-dependent, W,",'=g"'(x)5,„. Apart from
this one (very important) difference, the calcula-
tion proceeds along the lines we have already in-
dicated.

(4.3)

, (Olo) =e", (4.4)

the positive imaginary contribution to 5' thus ob-
tained is interpreted by the statement that

i W

~

2 -2 Im( W) (4.5)

represents the probability that no pair creation
occurs in the history of the field. Thus the proba-
bility, per unit volume and per unit time, that a
pair is created by the field is given simply by
twice the imaginary part of the effective Lagran-
gian. For a constant pure electric field, 8, for
example, Schwinger derived [from Eq. (B13)]his
famous result

l; =0 for some P'c0.
This has been discussed by Coleman and Weinberg
and we shall not repeat the details here.

There is another very interesting application to
a subject which has recently become fashionable,
especially in relativity and cosmology circles,
namely, particle creation by a prescribed back-
ground field. As Schwinger' displayed so elegantly,
to extend one's results to pair-producing fields it
is merely necessary to add an infinitesimal nega-
tive imaginary constant to the inverse of the
Green's function. Since the vacuum-to-vacuum
amplitude in the presence of tF.-e background field
is related to the quantum action functional, 8', by

B. Applications

Q n7r2m2
2 1m' = —,8' g n ' exp

n=l eg (4.6)

We do not, of course, claim to be the first to
recognize the power and elegance of the effective-
Lagrangian approach to field theory, but we do
feel that its usefulness cannot be overstressed,
and here we mention again some of its many ap-
plications since they have, perhaps, received in-
sufficient publicity in the literature.

As an example, consider the problem of pertur-
bation-theory anomalies. To test whether a theory
is anomalous, one simply looks to see whether the
effective Lagrangian contains terms which do not
respect the symmetry present in the original La-
grangian. The anomalous amplitude for a particu-
lar process then follows after functionally differ-
entiating these terms with respect to the appropri-
ate fields. There is no need for lengthy computa-
tion of Feynman diagrams, nor tracing over
strings of Dirac matrices.

Symmetry violation of a different kind —sponta-
neous symmetry breakdown —may also arise if the
effective action has a. minimum away from the ori-
gin even when the classical action does not, i.e., if

~x&pvp a = 0 (4.7)

since this equation is the gravitational analog of
the condition

V„Y„",=0 (i.e., Yq~ q =0) (4.8)

employed in Sec. III. We note here, in passing,
that in just the same way as the energy-momen-
tum tensor is given by functionally differentiating
the classical action with respect to the metric,

5$
5g„„(x)

(4.9)

Note that from Sec. III, we can now extend this re-
sult to the case of an external Yang-Mills field. A
much more interesting, and, from the cosmologi-
cal point of view, more realistic extension would
be the evaluation of particle production rates in a
prescribed background gravitational field, that is
to say, in a given geometry. Indeed, with our
method, one might expect to obtain exact results
in locally symmetric space-times for which the
Riemann tensor obeys
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so the "regularized energy-momentum tensor" is
given by the functional derivative of the effective
action

NV

5g„, (x)
= —.-'

& g'"(x)T"'(x)) . (4.10)

We also remark that, in the context of particle
production, it is desirable that the effective La-
grangian be exact; the nonanalyticity in the cou-
pling constant of Eq. (4.6) means that perturbative
methods would be altogether inappropriate.

Note added in proof. Another example of the
usefulness of effective actions in field theory has
recently been provided by Abdus Salam and
J. Strathdee [ICTP, Trieste, Reports Nos. IC/74/
133 and 140 (unpublished)], who indicate that
there may exist critical values of constant ex-
ternal magnetic fields above which a spontaneous-
ly broken symmetry might be restored.

With regard to the hope of obtaining effective
Lagrangians for space-times obeying (4.7),
P. Candelas and D. J. Raine [Phys. Rev. D (to be
published)] have since obtained exact results for
de Sitter space.

APPENDIX A

(i) Proof of lemma I (Eq. (3. I8)J

~PI), P
~ ~PI) ~ K) )iI), XK

Ry the definition of the covariant derivative (3.13) (Al) reads

[(a.N, —a,N, ), Y„,]+[N„[N„Y„,]J —[N„[N„Yq„J]=0

~ [ Y„,Y„„]+[N„,[N„Y„„]J+[N„f Y„„,N„]]+[Y„„[N„,N, l] =0

~ [ Y, &„Y„,] = 0 by the Jacobi identity .

(ii) Proof of lemma 2 [Eq, (3. 19)]. Let us write gauge transformation of (A6), viz.

N„= =,'- Y„,x'+A„(x), (A2) Qg -0 (A7)

where A „ is arbitrary for the moment.
Then N„ is constrained to satisfy

Y„,—= a„N„—a, N„+[N„,N„],

Y„, p
=0.

(A7) and (A2) now yield the most general form for
N

(iii) Proof of lemma & [Eq. (3.&4)J

Substituting (A2) into the above equations we ob-
tain

X, , =0~ {X,p -X p, ),=0 )

x „-x„=[Y„,x].
(A8)

(A9)

Ypv Yvv 2(Yvr, p Ypy v)x +avAv avAv

+[A„, A, ] ——,'[ Y„A,]x' ——,'[A„, Y„]x',

apl'„, +[A p, Y„,] =0.
(A3)

(A4)

In deriving Eq. (A4) it is necessary to employ
lemma 1. Equations (A3) and (A4) can now be corn.
bined to yield

(A8) follows immediately from the definition of the
covariant derivative (3.13) and the Jacobi identity.
Combining (A8) and (A9) and using the condition

Yp, , =0 yields

[ Yp, , X v] =0. (A10)

Equation (A9) ~ [ Y~„x „q]=0. (A11)

Equations (A11) and (A9) ~ [ Y~„[Y„~,XJ] = 0.

Y„,(A)=a„A, —a,A„+[A„,A„]=0. (A5) (A12)

0 (A6)

Thus the most general form for A„ is given by a

Equation (A5) simply states that the Riemann ten-
sor (for the internal-symmetry group) constructed
from the A field vanishes. It follows'o that there
exists a gauge transformation A - A ' such that

APPENDIX B: EXTENSION TO FERMIONS

The text of this paper confined itself to bosons.
As an illustration of how fermions are included,
consider charged fermions of mass m in an exter-
nal electromagnetic field. Reasoning akin to (2.13)
leads to
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g g(l)

am
= -( 0 "(x)4.(x) &

With

= ——.TrG(x, x) (B1) (BB)

(trace over spinor indices), and, in the fermion
case, G(x, x') obeys

[S"( I&-„+eA.„)+m]G(x, x') =5(x, x').
When B~F„,=O, we have from (3.22)

A „(x)= ,'F„,-(-x')(x —x')', (B3)

and therefore

fy" [ ie „-- ', eF„„(-x')(x—x')' J+ m[G(x, x') = 5(x, x'}

(B4)

this becomes

p 2+ m2 —'O p» ~ey p~2 PV PV gp V

g2
= m. (Bl"' ~P„~P J

As in Sec. III, the term F„„P"o/aP, is of no con-
sequence and (B10) may be solved in the same way
as our basic equation (2.11}with

(y =m --,'ecr ~ I',2

or, in p space,

-y" Pq +—2ieI' „„-— + m G(P) = 1 .
PV

(B5)

p„=0,
2 = 2 2

(all�)

To determine G(x, x),

d'P
G(x, x) =

(,„.G(P)

d p
(2 )c

G+ (P) (B6)

we need only the even part of G(P), denoted G'(P),
l.e.,

G(x x)=, m ds -m e e o p sg2 -f(a)
(4 )~n np2e

0

(B12)

f (s) = —,
' tr ln(eFs) ' sin(eF s),

leading, via (Bl), to the effective Lagrangian

G'(P)=l[ G(P)+G(-P}l,

and G' obeys the second-order equation

(a7) z" =-1) @ dS 2-m s -f(s) T e o ~ Fs/2
2(4 )

+II

(B13)
y" P„+~ieF» +m' G'(P)=m.

PV
(as)

in agreement (at n = 4) with that obtained by
Schwinger. '
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V if)=
( p/2 Tr(,)

s
[e"Ns e -P ~Ps]
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„&2 Tr &+ „&2e — + constant.(1) k ds
2(4~"

p S

Were we to introduce a fermion interaction g~p~s[g]g~,
this would become


