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Gauge fields on a laNce. III. Strong-coupling expansions and transition points
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We discuss the principles of the high-temperature expansion leading to a variation-perturbation

method. For pure gauge fields, diagrams are two-dimensional manifolds. As an application, we compute

the critical coupling constants for discrete, Abelian, and SU(2) gauge groups and compare them with

some earlier results.

I. INTRODUCTION
z(h) =—expu(h) = D&p exp(h &p) . (2 3)

II. FORMALISM OF HIGH- TEMPERATURE EXPANSIONS

A. The partition function in terms of diagrams

Consider the generating functional (or partition
function)

z((l,. )I= line, axe(Ea, y, os).
i

(2.1)

Here g; are (possibly multicomponent) fields as-
signed to the site i of a discrete lattice in dirnen-
sion d. The values assumed by Q; can be contin-
uous or discrete. In the latter case, integration is
replaced by summation. Whenever the range of Q

is compact, we shall normalize the measure to
unity. The action PS, assumed to be translation-
ally invariant, is writ ten

5i s ~ ~ ~ ~ ip

(2.2)

and the "potential" V~„~ is totally symmetric in its
indices.

At infinite temperature (P =0), PS vanishes and

fields at different sites are independent. Thus Z
factorizes into Z =lI,z(h, ), with

In previous papers, ' we described a gauge theory
on a lattice following %ilson's idea. ' The motiva-
tions and the notations are discussed at length in

papers I and II. This paper presents some nu-
merical calculations in the disordered, fully sym-
metric, high-temperature phase of the gauge field
system (i.e. , in the strong coupling limit).

In Sec. II, we recall the formalism of high-tem-
perature expansions and the analysis of diagrams
in terms of their strongly irreducible parts. This
leads to a variational method, associated with a
perturbative expansion of the generalized free en-

ergy to be varied. 3 To lowest order this procedure
yields results equivalent to the mean-field approx-
imation. The outline is general and we apply it to
the two models discussed in Ref. 1: the scalar
model (Sec. III) and the gauge model (Sec. IV).

The unperturbed average (E) o of a functional
X((II)&) is defined as

(x&, =z, '
lloyd, p(E ay; XI').

5 5

(2 4)

For small P, we expand the exponential e in

powers of P; thus we are led to the unsophisticated
high-temperature series

n=0
(2.5)

n5

(g,. '), =z(h,. ) ' „.z(h, ) . {2.0)

This formula is generalized in an obvious way if

P; is a multicomponent field.
(iii) If a graph remains invariant by an inter-

change of some of its vertices, its contribution
has to be divided by the order of its symmetry
group.

The sum over all possible distinct graphs (in-
cluding the empty one, which contributes a term
equal to 1) reproduces the expansion (2.5} for
~(&h;)) ~ZQHh;))

If we set all h& equal to It, we may group the con-
tributions of a family of graphs differing only by
the locations of the sites, but yielding identical
contributions due to the properties of the poten-

It is convenient'4 to interpret the terms in the
series (2.5} as corresponding togxaPhs. Each
graph consists of a finite subset of distinguished
sites on the lattice and a set of vertices represent-
ing interactions. Lines are drawn joining sites
to vertices. Each site is linked to at least one
vertex. A contribution to Z is assigned to each
graph in the following way:

(i) A factor PVI,'i ' corresponds to a vertex
linking the k' sites i„.. . , i, .

(ii) Each site i linked to n, vertices yields a
factor
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tials V~, ~. We represent such a family of graphs
by a nonlabeled diagram. A diagram can thus be
dramn independently of the structure of the lattice
(for instance, of its dimensionality). Besides the
previous rules, we then assign to a given diagram
an extra factor, equal to the number of distinct
corresponding graphs. Such a factor can be
thought of as a number of configurations (n.c.),
i.e., the number of ways a diagram can be mapped
on the lattice. It may be evaluated by relabeling
its sites under the condition that two sites cannot
receive the same label.

In this type of calculations one is faced with two
problems:

(i) Enumerate all diagrams of a given order in

P, and

(ii) find the corresponding n.c. for each diagram.

A discussion of these points is given by Domb4 for
the case of Ising-type interactions (V&~~ ——0 if k &2).
In Sec. IV we shall present the more intricate
case of the gauge model.

Because of translational invariance (with periodic
boundary conditions), the n.c. is a polynomial in

N, the number of sites, which vanishes for
N=O, The degree of this polynomial is equal to
the number of connected parts of the diagram. In
calculating E= lim„„(l/N) lnZ, we make use of
the existence of the infinite-volume limit. As a
result, the high-temperature series for E —M(h)

is defined in terms of the same diagrams and
same rules as before, except for the replacement
of the n.c. by the coefficient of order 1 in its power
expansion in N. We call this coefficient the re-
duced number of configurations (r.n.c.).

With the above definition of diagrams, connected
as well as disconnected ones contribute to E. In
the subsequent sections, we shall also use more
elaborate expansions in terms of suitably mod-
ified connected diagrams, which we now recall.

B. Connected, irreducible graphs

The unperturbed averages ( Q"& o
= e "(d"/dh")e"

can be expressed in terms of cumulants defined as

F =u(h)+ g (connected diagrams) . (2.9)

To be precise, let us repeat how one computes
the contributions of the diagrams entering (2.9).
Such a diagram consists of points, vertices, and
lines. Each point is joined to at least one vertex
through a. line. The diagram is to be connected.
A vertex of k lines yields a factor PV~„~, a point
linked to n vertices gives a factor (&jP&, . This
contribution is completed by including two weights:

(i) a symmetry factor P(D) ', where P(D) is the
order of the symmetry group of the diagrams by
interchange of its vertices, and

(ii) a r.n.c., computed by dividing by N the
number of distinct mappings of the diagram points
onto the lattice sites (note that for connected dia-
grams the n.c. is simply equal to X times the
r.n.c.).

The restriction that two points cannot be mapped
on the same site is removed. Two maps differing
only by a relabeling of the points of the diagram
are not distinguished. Examples illustrating these
rules will be worked out shortly.

A connected graph is reducible if it is cut out
into k parts by removing one of its k-vertices.
One allows among the possible parts a single site
without any vertex. We might of course have en-
larged the definition of the graphs to include such
a. case, to which corresponds the term u(h;) in the
expression (2.9). A general connected graph is
thus a tree of lines joining vertices to irreducible
"bubbles" (see Fig. I).

Call B((h;)) the sum over connected irreducible

with the previous rules, where a single factor
& @"&,was assigned to a given site linked to n ver
tices. With these new rules, when summing over
all diagrams, we are allowed to let the sites over-
lap. Consequently, summations over all connected
parts are independent, and ln(Z/Zo) is expressed
entirely in terms of connected graphs. If we set
all A; equal to&, we obtain

(2.7)
s ~

The relation is

(2.8) (cj

where the summation extends over all partitions
of n distinct objects. Substituting (2.8) in the ex-
pansion of Z/Zo defines new graphs, with the prop-
erty that the lines arriving at each site are tied
together in all possible mays, each one correspond-
ing to one term in (2.8). This is to be contrasted

FIG. 1. Examples of graphs: sites are represented as
points, vertices by crosses, irreducible parts by circles,
strongly irreducible parts by hatched circles. (a) Re-
ducible graph. (b) Irreducible graph. (c) General de-
composition of a graph into a tree of irreducible parts.
(d) Same decomposition as before but in strongly irre-
ducible parts.
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graphs. For a general connected graph, adding
a k-vertex increases the number n, of k-vertices
by one unit and the number n~ of bubbles by k —i
units. %e then get the topological identity

Set

8
(y;) -=m~ = „ lnZ (2.ii)

1 =n —g (k —1)n„. (2.10)

and average the relation (2.10) by multiplying
both sides by the contribution of each graph. The
following equality is obtained:

i z((z, ))=a(~z, +z P z
', P vI', &' ","

'
Sz ig, " k &1

(2.12)

The combination of (2.11) anti (2.12}yields a variational principle for the calculation of the total free en-
ergy. Namely, consider the right-hand side of (2.12) as a function 4 of the two independent sets of varia-
bles h, and m;; the A s being kept fixed, lnZ is the stationary value of 4 when varying the m,.'s:

Inz(Ih, })=4 ((a,},(m,.}), (2.13)

(2.14)

The proof may rely on the topological relation (2.10).' We may also check (2.14) directly. From the defini-
tion of 4, we have

84 BB 1 U zJ& '( 1 z&zz za"
smf +ah, "'+~~

(k 1)! ~ '" '. 'aI ~ +(k 2)! ~
a j ~ aa j~2

''' j
3 k

1 $j ~ aaj+ (k —2}!j2"' j~
(2.15)

Qn the other hand, making use of (2.12) where m,.

takes its actual value (2.11), we obtain

88 84 Bm,

, h,
'

1

We now eliminate the explicit 8 term of (2.15) by
use of (2.16), which yields

{2.16}

1O=g 5„+pg „
k

jj2 "j,am, 84
x Z V(~) mj, ~ .mj

~ aa j2 k
j2

The factor in brackets is equal to a unit matrix
for P =0, and hence its determinant does not van-
ish for P small enough. Thus, as expected, 94/
Sm, vanishes and (2.14) is proved.

If all h, are set equal to h and Fgg) = (I/ly) lnZ,
then all m; are equal to m, B=Xb(k), 4 =Kg(h, m),
and m =dE/dh. All previous formulas apply after
omitting a factor N. In later applications, how-
ever, N will stand for the number of lattice nodes,
whereas the field variables will be defined on the
links, the number of which is Nd. The relation

between m and dF/dk will therefore be modified
into md = dE/dh.

Although the lowest-order approximation to B
in {2.13) yields, as we shall see below, the mean-
field results at the stationary point, it should be
noticed that the stationary value of @ is not nec-
essarily a maximum in m.

If one sets the external field h equal to zero,
the extremum lies at the point m =0 for P =0. If
there is a second-order transition at P„m
smoothly departs from m =0 at that point. The
critical value P, is then obtained by requiring
that

92
, y(0, 0}=0. (2.17)

(O, m, ) =0.BQ
am

{2.ia)

Of course the whole method allows one to com-

If, on the other hand, the transition is a first-
order one with a jump from 0 to m, at P„ these
two quantities follow from the system of equations:

q(0, 0) = y(0, m, ),
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pute in a systematic way various other quantities
of interest. In the sequel we shall mainly be in-
terested in the ca,lculation of the critical value of I3.

the value of lnZ. All the discussion at the end of
Sec. II B may be carried over to the present ex-
tension.

C. Strong irreducibility

(2.19)1 = n+n~ —n„.
Let @([M',",h, })be the sum of contributions over

strongly irreducible graphs computed according
to the preceding rules, except for the replacement
of ()1),"), by the variables M;" defined consistently
through

{k)M;'"'= e p PG'," „„)(0;").,
k-1 i

G',."= &„({MI"),h, }) (2.20)

(for the first of these equations, no summation
over i is implied). Let 2; be the extension of
formula (2.20) to n =0, in the form

It is possible to go further in the cia,ssification
of graphs by strengthening the concept of irre-
ducibility. Up to now, irreducibility was defined
in terms of vertices. The new type, called strong
irreducibility, is defined with respect to sites. A
connected graph is strongly irreducible if omission
of any one of its sites (and of the corresponding
lines) leaves it connected. A strongly irreducible
graph with more than one vertex is a fortiori ir-
reducible. A general connected graph is thus a.

tree of strongiy irreducible parts [Fig. 1(d)].
Considering this decomposition of a graph into

n strongly irreducible parts, connected by nI,
sites, let n~ be equal to the sum of these connect-
ing sites, each one counted as many times as the
number of strongly irreducible parts to which it is
linked. The following topological identity holds"'.

A. Critical coupling constant as a power series in 1/d

Fields are n-dimensional unit vectors k; lo-
cated at the nodes of a d-dimensional hypercubical
lattice and interactions are between nearest neigh-
bors. Thus, we have

kg'k, . (3.1)

In the graphs, vertices join two neighboring sites
and can just be represented by this bond. The
function z(h) in (2.3) is now (h =

~
h

~ )

*)a)=e"'"=f d" '8 xp(k K)

=s„h' "»I„»,(h), (3.2)

where I,(x) is the modified Bessel function, and
where a„ is adjusted in such a way that u(0) = 0.

To find p„we use the method of See. IIB, where
b(h) is expanded in powers of the number of bonds.
It is convenient to replace the variable m to be
determined variationally by

H-=h+ 2Pdni .

III. SCALAR MODEL

In this section, we apply the previous machinery
to the scalar model with global symmetry O(n)
described in paper I. For n=1, this is nothing
but the Ising model and for n ~ 2 it is the classical
Heisenberg model. %e shall also recover the
Stanley model in the n- ~ limit using the tech-
nique described in Sec. IIC.

gk
2,. = exp P G,", M(h;) . (2.21)

In the absence of external field, Eqs. (2.13) and
(2.14) then reduce to

If one returns to (2.19) and averages both sides
using the contribution of all connected graphs,
one finds

H
1" = b(H)—

db H
dB 2Pd

'

(3.3)

InZ({h,})=$((M,",h;})+Q 2, — Q M;" G;
k= 1

(2.22)

For a detailed justification of this result, see
Refs. 3 and 5. As before, the solution of the
self-consistent equations (2.20) can be cast into a
variational principle. Namely, the right-hand
side of (2.22) is considered as a function of inde-
pendent h's, M's, and G's. Keeping h's fixed and
varying M's and G's yields at the stationary point

To lowest order, we have b,(h) =u(h), and (S.S)
reduces to the mean-field result (see, for in-
stance, paper I), with a second-order transition.
The critical P„obtained by requiring the vanishing
of the H' term in I", is found to be equal to
P, = n/2d to this order. We can now consider in
a systematic fashion the expansion of b(h) in

powers of P. In Table I, we have collected the
contributions to the coefficient of aH' up to sixth
order. A diagram of order P yields a contribution
to b which is a polynomial of degree [P/2] in d,
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TABLE I. Coefficients of —2H in the contributions to b(H), up to sixth order in P, for the scalar model.

36
cj (2cj-1 )

n (n+2)6

2g d
3

8 cj

7
(7n+16)

n (n+2)

48 d

n (n+2)4
40$ d

7

12/ d

n

6
d (2d-1)

7

4
cj (2cj-1)

5
6

7
(4d +8d-7)

n (n+2)

8P d

n (n+2)5 2Ot,
-6

d (6d —9d+4)
7

64/ d

n (n+2)6

given by the n.c. As P, is of order 1/d from the
zeroth-order result, the correction to b and there-
fore to /cd is of order d ~' ~ 'j. Consequently the
series for P, appears as a 1/d expansion. Thus
our calculation yields

g) 1 @C

TABLE II. Values for p*=2pcd/n in the scalar model
obtained through the 1/d expansion. The numbers in
parentheses are obtained using the alternative method
of Sec. IIIB. Exact results are listed in brackets, either
for n =1, d =2, or for the limit n —~ (Sec. IIIC).

1 2 2/(n + 2) 7 —8/(n + 2)
2d (2d)' (2d)'

1.6696
[1.763]

1.2883 1.1824 1.1334

+0 (2 4) 1.3012
(1.3170)

1.1879
(1.1924)

1.1364
(1.1357)

We recover the results of Ref. 6 for the case
n=1. We shall also check this formula in the
limit n- ~ at the end of this section. Some numer-
ical values are listed in Table II for P,* to sixth
order in the expansion of b(H).

[oo]

1.3091 1,1913 1.1382

1.3416 1.2047 1.1455 1

[1.4808] [1.2385] [1.1563] [1]
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B. Free energy and two-point function (n=2)

Picking the special case m=2 as a typical example, we now perform various high-temperature expan-
sions. They will provide a cross-cheek for the value of P, in reasonable agreement with the previous one.

Up to twelfth order, the high-temperature expansion of the free energy (2.9) in zero external field yields

F(P) dP2 + (d2 5 d)P4+ (16 d3 l 6d2+ 97 d)P6+ (54d4 284d3+ 22747 d2 15613d)P6

+ (3968 d5 6328d4 + 55537 $3 925&5 d2 + 6101009d)P105 3 4 600

4. (45280 d6 ] 67836d5 4
6677002 d4 14484205 d3 4

5457782167 d2 17218423249 d) P12+ O(P14)9 9 3240 2 5920 (3.5)

The curve F =E(P) is drawn in Fig. 2 for d =4. The zero-momentum propagator y(P) (the susceptibility),
computed up to seventh order, reads

y(P) = 1+ 2Pd + (4d' —2d)P'+ (8d' —81P +d)P'+ (16d' —24d'+ 4d'+4d)P4+ (32d' —64d + 20d'+ 186P —',9 d)P'

+ (64d —160d'+ 80d'+ 24d'+ ~3d —+d)P'+ (128d' —384d'+ 272d + 8d +246d ', d—+ '
8 'd)P'+O(P') .

(3.6)

The corresponding curve is also drawn in Fig. 2 for d =4. At P =P, a singularity occurs. Its position may
be determined by computing either the limiting ratio of two consecutive terms of the series or the smallest
positive zero of a Pade-approximant denominator. Both methods give the numbers quoted in parentheses
in Table II.

For large distances, the propagator behaves as e ""up to a power of r. The first few terms of the ex-
pansion of i1 (in units of the inverse lattice spacing) are

~(S,)'"= »O+(S, 2d+—')P'-
+ [5S,2 S,S, —,"S,+ (—,

' —12d)S, +(2d —2)S, —2S, —10d'+ 12d —~~ JP + O(P6), (3 .7)

with

and

0.'l—
x x

4

S„=

Away from the critical point, no Euclidean invar-
iance appears, even in the large-distance limit.
It is, nevertheless, generally believed that this
invariance shows up near the critical point when
the correlation distance becomes infinite.

C. The Stanley model (n~ limit)

It is well known that, in the n-~ limit, the
scalar model is soluble. ' We briefly outline the
use of the present techniques to find this result.
For n large, we need an estimate of z(h)=e" "
for h of order n in formula (3.2). This is given by

4h2 '"
u(h) = —n 1+ —1

2 n2

0.05

0
0 0.1 Pc

—ln —+ — 1+
2 2 n' (3 8)

where h2 stands for Q"-,h '. Returning to (2.22)
and (2.21), it is easily shown that C ", k~ 3, can

FIG. 2. The free energy and susceptibility of a scalar,
n =2, model in dimension 4, as computed from formulas
{3.5) and {3.6) of the text.
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be dropped for n- ~ so that

&&u(~ h+ G '
~
}. (3.9)

The not:ation G'" is to recall that we are dealing
with a n&&n matrix. To leading order in n, (3.9)
yields the approximation

Z =u((~ h+ G'"
~

'+ 2 trG"')'") . (3.10)

(M) =pd(M'' )'+ g —tr[(M ' )~J —Tr[(pV) J.
(3.11)

Here M~' is a nx n matrix, while V is an Nx N

matrix with elements V„equal to one or zero ac-
cording to whether (ij) are nearest neighbors or
not. Using a Fourier series to compute the trace
over (PV) and noting that this quantity vanishes
for P = 1, we arrive at

fs(M ) = pd(M(")'

2fl d1—2tr ~ ~ ~

27r

ln 1 —2PM ' P cosq~
27r0 ~1

which can conveniently be recast in the form

+(M)=))d(M'")* '*& (f — '(&(2)).))'*')"—))
0

(3.12)

Finally the releva. nt set of diagrams for the compu-
tation of S turns out to be those with no more than
one loop (Fig. 3). Thus

magnetization, is obtained either from the vari-
( )ational equations giving 1Vl
' or by setting v to its

lowest possible value equal to d in (3.14). This

gives

2P,d
n

=d ds e 'Ip s) ~.
0

(3.15)

Figure 4 shows the behavior of I3,*, which blows
up for d= 2. An expansion in powers of 1/d is ob-
tained by using the Taylor series of the Bessel
function, and this agrees with the series (3.4),
where one omits the terms in 1/(n+ 2). The values
of P~ for d=3, 4, 5 are indicated between brackets
in Table II.

IV. YANG-MILLS MODEL

We shall first discuss some technical points for
obtaining the high-temperature expansion for the
pure Yang-Mills field in the simple case of a dis-
crete Z2 gauge group. We further extend the anal-
ysis to a continuous group, Abelian [U(1)J or non-
Abelian [SU(2) J. Finally, we present some nu-
merica, l results.

A. Diagrammatic rules

We consider the action as a sum over all
plaque t te s

(4 1)b = Q A)2A23A. ,4A„,

where the fields A;, =+1 and sources h are attached
to each link of the hypercubical lattice. The un-
perturbed partition function relative to a link is
then

We now have to maximize +Z —G ~ M(1) . (1)

—trG ' M "with respect to M and G to obtain the
free energy. This yields, for P &P„

2F 2Pu 2Pu "ds
n n n 0 s

(3.13)

with v defined implicitly in terms of P by

(f )
—e))( h) )

Q eAh

A='1

= coshh .

2)

(4.2)

dse "f,(s)'.
n 0

(3.14)

This equation expresses the stationarity of {3.13)
with respect to v.

The critical P„marking the onset of spontaneous

+ ~ ~
0

0 4

FIG. 3. The set of leading strongly irreducible dia-
grams for the calculation of the n —~ limit.

FIG. 4. The critical coupling P, as a function of d in
the n —~ limit.
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The expansion of Z in powers of P is performed
as in Sec. IIA. Graphs are drawn as tuo-dimen-
sional surfaces built of plaquettes which now rep-
resent the four-vertices. When the graph is con-
sidered independently from the lattice by preserv-
ing the relation between links and plaquettes, it is
called a diagram, as previously. The problem now

is to analyze these diagrams and to compute the
associate r.n.c.

We shall disregard the simplification introduced

in the present case by the remark that a series
in powers of tanhP obeys simpler rules. Hence
we study the plain P expansion (2.5} of Z. To do
this, we first introduce skeleton diagrams, which
never contain the same plaquette of the lattice
twice. Given a skeleton, one can reconstruct all
associated diagrams by dressing each of its
plaquettes once, twice, three times,

In Table III, we present all the connected skele-
tons up to four plaquettes. Computations in zero

TABLE III. The number of configurations for all connected skeletons up to fourth order.

—d(d- I )
1

2

d(d-l}(2d-3)
8d(d-1) (d-2) (2d -8d+9)2

2d{d-l)(2d-3)

—d(d-1) (d-2) (2d-3) (2d-5)1

6

2d(d-j)(4d -14(1+13)2

2d (d-1) (d-2) (2d-3) 2

—d(d-1) (d-2) (2d-3)2
3

4d(d-1) (d-2) (4d —16d+] 7)
2

—(1 (d-1) (d-2)4

3

1—d(d-1) (d-2}
2

—d (d-1) (16d -72d +107d-52)1 3 2

2 Q) X 1 6d (d- 1 ) ((1-2) 2

4d(d-l){2d-3)(4d —14d+13}2

Sd(d-1) (d-2) 2

2d(d-1) (8d -44d +84d-55)3 2
1—d(d-1) (4d"-16d+17)
2

4 2d(d-1) (8d -44d +84d-55)3 2 2(j((j-1)(d-2)
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external field require the consideration of closed
skeletons (because each link must occur an even
number of times). Connected ones are classified
up to sixteen plaquettes in Table IV.

On these same two tables appear the r.n.c. The
latter is identical for a skeleton and for its dressed

counterparts. We were unable to find a general
rule to write the r.n.c. for the connected, strongly
irreducible skeletons, and had to calculate them
case by case. However, once these were obtained,
the r.n.c. of an arbitrary diagram can readily be
computed. Let us illustrate the reasoning on some

TABLE IV. The number of configurations for strongly irreducible skeletons contributing to zero-external-field ex-
pansions up to sixteenth order.

—d(d-1)1

2 J MW i p d(d-l)(d-2)(4d -20d+25)1 2

(14)

/l / —d(d-1)(d-2)1

6
2d(cl-1) (d —2) (4c1 -20(1+25)2

(14)

1

d (ci-1) (d-2) (4d-9)
jism a
I

d(d-1) (d-2) (d-3)

(10)
(14)

—d(d-1) (d-2) (4d-9)1

6
4d(d-l}(d-2)(d-3)

(14)

%0
(12)

—c1 (c1-1)(cl-2) (c1-3)4
3

(15)

d(d-1) (d —2) (4d -20d+25)2

—d(d-1) (d-2) (d —3}1

3 4d(d-I }(d-2) (4d -22d+31)2

(12)
(15)

(Continued on follow:ing page)
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Table IV (continued)

Sd(d-1) (d-2) (d-3) 16d(d-1)(d-2}(d-3) 2

(16)
(16)

(16)

16d(d-1) (d-2) (d-3) 2
r.

(16)

—d(d-I ) (d-2) (4d -24d+37)1 2

2

Sd(d-1} (d-2) (d-3) 2

(16)

ES,} (S,}= g n. &S},
S=Sg&S2

(4.3)

simple examples.
(a) Single plaquette. There are N[d(d —1)/2]

plaquettes on the lattice.
(b) Taboo Plaquettes sharing one link. Choosing

the link leads to Kd possibilities. The first
plaquette can then be set in 2(d-1) directions,
the second one in 2(d —1) —1. Dividing by a factor
2, because of the indiscernability between the hvo
plaquettes, finally leads to Nd(d —l)(2d —3).

(c) Three plaquettes at the comer of a cube.
There are N[d(d —1)(d —2)/3! ] cubes on the lat-
tice and 8 corners on each cube. Hence the r.n.c.
is ';d(d- 1)(d-2).

It is easy to compute the r.n.c. of a disconnected
skeleton S. We start from the set theoretic formu-
la

where [S}denotes the n.c. of a diagram S, and
w'here the summation runs over all skeletons vrhich

can be decomposed as S, US, in ns different mays.
The r.n. c. [S], i.e. , the coefficient of N in [S},
then satisfies

S= S& US2

n, [s]=O. (4 4)

Equation (4.4) allows a recursive calculation of
[S] if we isolate on its left-hand side the term cor-
responding to the maximal number of disconnected
parts.

This method can be refined to compute the r.n. c.
for connected, but not strongly irreducible skele-
tons. Let us distinguish a link of a given connect-
ed skeleton S, and denote by k the symmetry num-
ber pertaining to this link (meaning that there are
k links on the skeleton playing the same topological
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role). Every link of the lattice will be occupied by

the distinguished one of the skeleton an equal num-
ber of times (up to a choice among the k identical
ones). This number of mappings is therefore,
again up to the symmetry of order k,

4 [o1
d

FIG. 5. The diagrammatic equivalent of Fq. (4.5) for
bvo plaquettes sharing one link.

If S can be decomposed into S, US, (both sharing
the distinguished link) in n, ways, formula (4.3)
becomes

contribution of any link described n, times in the
direction i-j and n2 times in the reverse direction

't J.s

k, [s,] k, [s,] ~ k[s]
S=S1US2

(4.5)
where

(4.v)

Let us consider, for instance, the example (b)
above. The distinguished link for the considered
skeleton, made of two adjacent squares, is the
central one (k= 1), while it is any one for the single
square (k =4). Equation (4.5) gives the diagramma-
tic equation shown in Fig. 5, where the factor
», =2 in front of the first term of the right-hand
side represents the two mays in which the skeleton
can be obtained as a union of two distinct plaquettes.
We thus recover the r.n.c. d(d —1)(2d —3) of the
reducible diagram of example (b).

B. Continuous gauge groups

z(h) = . , exp(h "&+h&*)df
2Z7t'j

(4 8)

The general procedure of Sec. II then applies in
a straightforward way, diagrams being now built
with oriented plaquettes.

Z. Ron-Abelian group SU(Z)

On the example of SU(2) as a. gauge group, we
illustrate the new technical points arising from the
noncommutativity of the gauge field. The action is

We discuss in turn the extra factors contributed
by the gauge groups U(1) and SU(2) (see paper I).

S = g y (A„A» A~, A~, ) .

1. Ahelian group U(1)

The action is now

The matrices &,, =A ',. ; belong to SU(2) and can be
parametrized with an angle q (0 & g =-. 2v) and a
unit three-dimensional vector n as

S = Q cos(|)'~+ )23+ qs4+ y4i)

~12~23~34~41 ~

where Q~ means a sum over oriented plaquettes,

(;, =g,*;=e' '&. The sum over configurations in-
volves integration over every angle g in an interva. l
of 2v with a measure (2r) '&g. The source term is
written

where again the sum runs over oriented links and

h]; =h)*].
In the diagrammatic expansion, a vertex is now

associated with an oriented plaquette, field vari-
ables being associated with the oriented links. The

A = cosQ + i sing n ~ a, (4.&O}

where o stands for the Pauli matrices. The nor-
malized measure on SU(2) is

sin'g dQ d'n
27T2

We choose for g the character associated with the
1spin- 2 representation:

g(A) =trA=2cosd) . (4.11)

If we were to display the matrix elements of -&

and expand y(AAAA) in terms of those, we could
blindly use the formalism for multicomponent
fields described previously. It is, however, wiser
to try to take as much advantage as possible of
the group-theoretic framework. For insta, nce, in

the case of a zero external field, we found it. con-
venient to compute the contribution of a given
diagram by using recursive formulas such as
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[A„A, E SU(2)]

= Q C", IX(A,Al) I' (4 12)

The extra factor 6 arises from the choice of the
distinguished plaquette repeated three times, and
the denominator 3 t is the symmetry number as-
sociated with permutations of these three pla-
quettes. The calculation of the integral proceeds
as before and gives

A generating function for p~, is

A(A„A, ) = Q p~, (A„A, ) —,—,
P, q

dA exp[u tr (A,A) + l( tr(A A, ) ]

x = [u' + v' + ut( tr (A,A, ) ]'~I,(2x)

(4.13)

from which we derive the coefficients C„". The
result is

P lq t

[1+ .(p+q)J '-[.(p —&)]'[ (q -&)J'l'

(4.14)

or C~'=0 if any of the arguments of the factorials
is not a non-negative integer. (This implies in
particular that p= q = r mod2. )

Let us illustrate the use of formulas (4.12) and

(4.14) by exhibiting the contribution to the free
energy of a diagram consisting of a cube. It reads

12 6

P',—'[d(d —1)(d 2) ] II dA II lt(AAAA) .
1 1

We have used a short-hand notation to indicate
the integration over the twelve A.„.attached to the
links and the six factors contributed by the
plaquettes. This integral is calculated by use of
the previous formula and yields

P6 —'[d(d 1)(d 2) I Q C»L» L"L"C*'(trl}'
Pqrsk

C31C(xlcclgx'lcx l(trl)l
Pqrst

The generalization to a cube dressed in an arbi-
trary way and to various other diagrams is
obvious.

In order to be able to perform computations in
a nonzero external field as was indicated in Sec.
II, for instance to obtain the critical value of the
coupling constant, it is necessary to introduce
in the action a source term of the form

X(A;th);)

h=u +iu o, u, u real. (4.15)

Moreover, like the field A itself, the source
satisfies h&~ =h~, . If &,&

and h;, are parametrized
according to (4.10) and (4.15), the source term is

y(A;&h&, ) =2(uocos((((+ sing n u),

i.e., twice the associated scalar product. In par-
ticular, from (4.13), we get

'(X(= Ex(x(xW(x(~')I

I,(2l}}
Tl

(4.16)

A source should be an element of a real vector
space; on the other hand, it is obvious from the
above form of the source term that h;,. should be
(like the average value of A, &) a linear combination
of elements of SU(2). Thus, each h, , is a 2X2
matrix of the form

To give a sl. '.:.ghtly more tricky case, let us look
at the eighth-order contribution arising from a
cube dressed with two extra plaquettes on one of
its six faces (observe that there is no such term
of order seven, since each link variable must
appear an even number of times, and this also
explains why two extra plaquettes have to be added
on the same face):

g d(d —1)(d - 2) T% ~ [x(AAAA) J'

x II y(AAAA) .

where

q2 =u, '+u2=deth .

C. Numerical results

A straightforward application of the high-tem-
perature expansion provides us with a formula for
the free energy without external field. It turned
out that the most economical method was also
the least sophisticated one of Sec. IIA. We pre-
sent the results up to sixteenth order for the three
groups discussed above.

For +2,
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d(d l)[IP2 I p4+( I d 29)pe+ (
I d+3343)ps+ (d2 III4 d + 118471)pie+ (

8 d2+ 121 153d 20022 781 )p121871 100

+ (1Pd3 208da+ 935 561d 5847451 $54 III14+ ( 74 d$ + I20761da 345 869921 d+ 3 612 986481 191)016+0(PIS)]3 5670 42 567 525 If + i- 3 840 1 247 400 20 432 412 000

(4.17)

We might also have written in this case an expansion in powers of tanhP involving fewer terms. Namely,
the expression

Z=2 " p exp p gAAAA
{X,)= ~1)

=2 "'(coshP)"' ' ' ' g II (1+AAAAtanhP)
{A] j- &

is expanded as a sum over closed skeleton diagrams only, each plaquette carrying now a factor tanhp. This
remark provides a check on (4.17).

For the continuous gauge groups considered above, we find for U(1),

F = d(d -1)[2(2P}'- 8 (d3)'+ (sd )I(ea-p)' (+- d+'
$}6(4P)2'

+ (2d$85 d+24I3 )(Ip)10+ (
26 da +6569d I 750 513)(yI)l2

+ (2pd3 749 da ~ l97 803 d 44476 939 )(Ip}14+( g8d$ +4777 da 43844 513 d + 9 463 083 949)( Ip)16+ 0(PIs)]

(4.18)

and for SU(2),

F =d(d —1)[ep 4$ p +(9~ed —
+578 }p +( Sad+384)p +(2M d 48osd+1612SOO}p

85 189 ~ 965 807 qgl2 + ( 5 d3 155 ~ + 3229 ~ 288 747 853 )p14
512 4978640d 87 OS1200 }p (204$ I2 288 122 SSO 13412 044800 )p

107 A3 25 657 2 15 024 019 1 199 262 152 197 16 18+( a4 eve~ +II79648 d avI sss Iaod+4I 845 evsvve ooo)P + 0(P )] ~ (4.19)

The corresponding curves are drawn in dimension
four in Fig. 6.

Let us now investigate the critical couPlings.
Variational expansions generalizing (3.3) may be
written for each group, and will yield to lowest
order in P the result of mean field theory, namely,
the existence of a first-order transition for P,
= O(1/d). However, higher-order terms do not
provide a. natural expansion of P, in powers of 1/d,
as was the case for the scalar model. Indeed, the
maximum dimensionality occuring in Pth-order
terms of the expansion (2412) is now P. Since P, is
of order 1/d, this yields a contribution to 4, and
hence to ]8,d2, of order 1. Successive terms of the
perturbation expansion therefore all contribute
to the corrections of order d ' to the critical
coupling as given by mean field theory.

Furthermore, due to gauge invariance, setting
all m& to an equal value m is, in fact, dangerous.
This was discussed at length in paper I, where we
proposed to integrate first over a subset of field
variables in order to break formal gauge invar-
iance. A possible strategy was to eliminate all
"vertical" variables, resulting in an action

0
0 0.5

FIG. 6. The free energy of the gauge models for the
three groups &2, U(1), and SU(2), plotted against P/P,
for d =4. We have used for P, the best values of Table V.

S = Q X (A,a Aaa A34ASI) + Q X (A,a A34) . (4.20}
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Here p~ denotes the plaquettes perpendicular to
the "vertical, " timelike direction, P„denotes
the parallel ones, and the variables A. ;& only refer
to perpendicular, spacelike links. This was called
the action in the Coulomb gauge. Of course some
invariance still remains, but it is now a surface
effect rather than a volume effect. With this
choice, we may set all remaining spacelike m,
variables equal to m in the variational procedure.

We have now all the necessary tools to perform
the variational calculation of P, along the lines of
Sec. IIB. We have pushed the evaluation of the B
function occurring in (2.12) up to third order in P
in the case of the Z, gauge group, and to second
order in the cases of U(1) and SU(2). This was
only designed to demonstrate the feasibility of

y(h, m) = 4(h, m)
1

= b( h + 2P (d —2)m'+ 2Pm}

——,'(d —2)Pm' —Pm', (4.21)

with b(h) given, in terms of u =u(h) =lncoshk and

its derivatives u, =d'u(h}/dh', by

these calculations, which could of course be pur-
sued. The analytical expressions soon become
rather cumbersome. As an example, let us display
the simplest of them, relative to the Z, group.
We express the variational function 4(h, m) and
the irreducible kernel B(h) occurring in (2.13}and

(2.12):

b(h) = „B(h}
=u+ 2P'[ —,'(d —2)(u,~+4u, 'u, '+6u, 'u, )+u, ']+P'[ —,(d —2)(-,' u, +2u,u,u, + m, 'u, '+9u, 'u, 'u, '+ 6u, u,u,'

+ u, 'u, '+ 12u, 'u, 'u, + 16u, 'u, 'u, + 9u, u, '+ 4u, 'u, ')

+0(P ) .

+ u, '+'-, (d —2)(d —3)u, 'u, '] (4.22)

We recall from paper I that, to lowest order, we

find a first-order transition in F when varying m.
Thus we use Eqs. (2.18}, setting h = 0 in (4.21) and

in its analogs for the other groups, and looking for
the stationary value of the approximate p, up to
various orders of the expansion (4.22). The re-
sults are displayed in Tables V and VI.

For the gauge group Z„ the values obtained for
P,*= 2P,d in dimensions d =3 and d =4 may be com-
pared with the exact results predicted in paper II.
The agreement seems to be excellent in dimension

4, and seems to indicate that the transition is in-
deed a first-order one. However, for d = 3, where

one knows that the Yang-Mills field has a second-
order transition (while the present calculation is
performed in the framework of a first-order one),
some discrepancy occurs. It was indeed expected
that d =3 would appear as a limiting dimensional-
ity. This has also been checked by treating with
the present formalism the case d =2, known to be
equivalent to a one-dimensional Ising model.
Whereas the zeroth order (mean field} predicts a
spurious (second-order) transition, the second-
order terms are sufficient to rule out this transi-
tion. The perturbation variation treatment we
are using thus does not seem to suffer from the

TABLE V. Critical couplings P,*=2P, d for gauge models.

Group Approx. d=4 d=5 d=6

U (1)

SU(2)

0
2
3

exact

0
2

Pads

0
2

Pads

2.6028
4.2970
4.2941
4.5678

5.6563

10.0934

5.8708

2.6840
3.5272
3.5257
3.5254

6.2133
11.3761
8.9781

6.7270

11.4160

2.7104
3.2905
3.2897

?

6.4793
9.0530
8.4968

7.1520
12.821
10.333

2.7229
3 ' 1677
3.1672

6.6384
8.4929
8.2298

7.4096
10.5948
9.8510

2.7552

7.2934

8.4787
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TABLE VI. The discontinuity m, of m at the critical point for gauge models.

Group Approx. d =6

Z2

U (1)

SU(23

0
2

Pads

0
2

Pads

0.8643
0.9921
0.9913

0.6558

0.7829

0.4983

0.9416
0.9868
0.9858

0.7913
0.8949
0.8272

0.7042

0.7726

0.9616
0.9865
0.9859

0.8296
0.8793
0.8469

0.7619
0.8683
0.7938

0.9 704
0.9869
0.9865

0.8479
0.8707
0.8582

0.7892 '

0.8400
0.8081

0.990 61

0.9004

0.8682

defect of mean-field theory, which may predict
spurious transitions,

Table V also exhibits the convergence of the ex-
pansion. For large d, P,* should be close to the
mean field value (exact for d infinite), and con-
vergence is expected to be rapid. Values obtained
for P,*, either by expanding b up to second order in

P [as in Eq. (4.22)j or by using the Pade approxi-
mant for 6 to the same order, are indeed close to
each other. Furthermore, inclusion of third-
order terms does not seem to improve the second-
order results significantly. Such a fact already
appeared for the scalar field model of Sec. III; a
possible explanation is the occurrence of new ir-
reducible skeletons at even orders only.

The discontinuity of the parameter m, which

jumps from 0 to m, at P, is given in Table VI.
Since m is the average value of the field & which
varies on a unit sphere, it is bounded by 1. It is
quite striking that m, is close to this maximum.
Consider for instance the case of the group Z, in
the limit d- ~. Using the expression (4.21), in

the equations (2.18), one is led to

ln cosh(P,*m, ') —-', P,*m,' = 0,
tanh(P,*m,') —ts, = 0,

(4.23)

which yield m, =0.9906, P,* =2.755.
In the case of U(1), the transition disappears for

dimension 3 when we include second-order correc-
tions. This is similar to the disappearance of the
transition for the group Z, in 2 dimensions. It
may be that the transition, which is a first-order
one for high dimensionalities, becomes a seeond-
order transition around d = 4, then disappears. It
is also possible that, for a continuous group, the
low-lying excitations destroy the order at low

dimension. A subtle kind of phase transition might
remain at the limiting dimension. This phenome-
non is known' to occur for the scalar models of
Sec. III: whereas the two-dimensional Ising model
(d=2, m=1) exhibits a usual second-order tran-

sition (like the Yang-Mills model for d =3, n =1),
a transition without ordering takes place for
d 2 Pl

For gauge fields, the limiting dimension is not
unambiguously ascertained. In particular, we
see in Table V that for SU(2), the predictions of
the plain expansion and the Pads expansion differ
for d=4. Note finally that in this case m is re-
placed by a 2X 2 matrix, equal to the average value
(&;,) of spacelike field variables. Whereas &;,
is unitary, its average belongs to the algebra of
SU(2), and has the form //p+iu o. Hence
(u, +iu a)(u, +iu o) =m' is a. c number bounded

by 1. When looking for the stationary value of I',
one finds u =0. The corresponding numbers for
rn, are listed in Table VI.

V. CONCLUSION

A diagrammatic approach, combining perturba-
tive and variational techniques, allows one to
compute various quantities of interest, such as
critical couplings. A good numerical convergence
seems to be achieved even in low dimension, and

a check is provided by some known results. In
particular, for the case of a Z, gauge group for
d =4, we have shown in paper II that a t:ransition
occurs at P~ =3.5254, to be compared with the
value 3.5257 obtained with the present techniques
developed to third order (Table V).

The method is based on a self-consistent deter-
mination of m, the average value of the field for
a vanishing source. For the scalar model of Sec.
III, with its second-order transition, m is a
natural physical order parameter. It is somehow
surprising to obtain quite satisfactory results
for gauge fields, using the same techniques. In-
deed, the analysis given in paper II shows that m
has not the usual interpretation of an order pa-
rameter, and that no local order parameter exists
in the Yang-Mills models. It was therefore impor-
tant to test the validity of the method.
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We have taken care to perform the calculations
in the Coulomb gauge, suppressing the timelike
field variables &„, and taking m as the {common)
average value of the spacelike ones. This pro-
cedure was essential. We have tried to perform
the same calculations in a straightforward fashion,
without breaking formal gauge invariance, m being
then the average of all variables A„. Although
both approaches agree qualitatively to order zero,
higher-order terms yield nonsensical results when
no gauge condition is imposed. On the contrary,
Tables V and VI show the success of second-order
calculations in the Coulomb gauge, even in low
dimensions.

The nature of the transition remains to some
extent an open question. Since terms beyond sec-
ond order yield 1/d corrections, the mean field
approximation becomes very likely exact for
d- ~. The transition of the Yang-Mills model is

therefore a first-order one in high enough dimen-
sion, the function F having a discontinuous deriva-
tive. Not only is the transition a first-order one,
but m jumps from 0 to a value close to its maxi-
mum, equal to 1. Ordering thus appears bluntly
if we characterize it by m. It may, however,
be that the order parameter associated with the
average QIA;, ) of the product of fields along a
large loop has a smoother behavior.

Finally, as seen from the variations of P,* and

m, exhibited in Tables II, V, and Vl, the transi-
tion sets in with more and more difficulty when
the dimension decreases (and also when the num-
ber of components of the field increases). A

limiting dimension exists, below which no ordering
takes place. For this limiting dimension, a phase
transition may still exist, possibly of second order
(as for the group Z, in 3 dimensions), with a
critical behavior.
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