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Gauge fields on a lattice. II. Gauge-invariant Ising model
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We study the case of a discrete local gauge group Z, in order to discuss the existence of a transition

in dimension d & 3. We compute the critical constant for d = 3 and 4 and show that in three

dimensions the transition is a second-order one.

I. INTRODUCTION

We have described in a previous paper' [here-
after referred to as (I)] a gauge theory on a lattice
according to Wilson's ideas. ' It was suggested that
the system undergoes phase transitions. For a
small enough coupling constant the gauge field
behaves qualitatively as ordinary perturbation
theory in the continuous limit would indicate, while
beyond some critical coupling a new phase sets
in. The long-range forces become so strongly
attractive that they provide a binding mechanism
for charged particles.

We want to look here more closely at the nature
of the transition. To simplify as much as possible
we make use of a possibility afforded by discre-
tization, namely the introduction of a finite local
gauge group instead of the usual continuous Lie
local gauge group. The simplest one is Z„ the
(multiplicative) group with two elements II, -Ij.
In (I) the local group was O(n), n & 2. The present
case amounts to setting n=1. A drawback of this
choice might be the absence of Goldstone bosons
in the ordered phase. We notice, however, with
reference to (I), that as the dimension d of the
lattice gets large, mean-field theory hardly dis-
tinguishes n=1 from n~2. In particular, it pre-
dicts in all cases a first-order transition. Con-
sequently, as an instrument to investigate the
validity of mean-field theory, the present sim-
plification is not too drastic.

With Z, as gauge group, we can use several de-
vices introduced in the context of Ising models,
The first of these is specific to a system with con-
figuration variables taking values +1. It is a dual-
ity transformation to be described in Sec. II. Com-
bining this duality with some mathematical results
(collected in an appendix) enables one to reduce
the problem in three dimensions to a standard Ising
model of which much is known. It also allows one
to locate exactly the critical constant in four di-
mensions (Sec. III). We shall also use the Griffiths-
Kelly-Sherman inequalities, ' which express the
fact that strengthening "ferromagnetic" couplings
can only strengthen correlations. This is explained
in Sec. IV where a discussion of a global-order

parameter is given.
Once some exact results are known, approxi-

mation methods, such as perturbation theory
around mean-field theory in the Coulomb gauge,
can be checked. If they are found reliable, one
can then proceed to use them in more general cases.
This is another motivation for the present work.

We recall the model. Let there be given a hyper-
cubical lattice in d dimensions with unit spacing.
We introduce a spatial cutoff by retaining N sites
(eventually we let N-~). To each link (ij) of neigh-
boring sites we assign a variable A;~ =A, ; taking
the values +1. A set of four neighboring links is
a plaquette p=(ijkl). We compute a partition func-
tion

z-=2 "' I exp( p, gA, , ~ p, pA;, A,,A„A„),
JAf = 11} 1 P

and define a free energy as

1E—= lim —lnZ .„N
We wish to study the occurrence and properties
of phase transitions as P, and P~ vary. Had we
insisted on presenting a gauge-invariant version
of the Ising model, we would have introduced extra
variables k; =+1 at each site and replaced the P,
term by P, P, k;A;,. k, . However, the gauge trans-
formation A;~-k, A;,. k& eliminates the k's while
leaving the plaquette coupling invariant, and re-
duces the problem to the study of (1.1). We shall
mostly be interested in the case P, =0, which we
call the pure-gauge-field case.

II. DUALITY

Application of duality transformations to Ising-
type models is well known. It has recently been
further developed by Wegner. ' Owing to this cir-
cumstance, although our presentation is slightly
different, we shall be rather brief.

Geometrical duality transforms q-dimensional
manifolds into (d —q)-dimensional one . Let us
present it for d=3. We introduce a dual lattice
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obtained from the original one through a transla-
tion by an amount (—,', —,', z). There is a natural cor-
respondence between a site, a link, a plaquette, or
a cube on the original lattice, and a cube, a pla-

quette, a link, or a site on the dual one. For in-
stance, to a link is associated the dual plaquette
that it.intersects. This construction is easily gen-
era.lized to any dimension and is used as follows.

(i} d. =2. We write (1.1) as

z= 2 '"( o hP, ) ( o hi) ) ' g II (I t hP, A; ) II (1+t hP A;, A A„,A„),
(A,.~-&1} 1

(2.1)

expand the products, and sum over A;& =+1. Nonvanishing terms are in one-to-one correspondence with
configurations of P distinct plaquettes selected on the lattice. The boundary of each configuration is de-
fined as the set of L, links which belong to one and only one of the selected plaquettes. A configuration
contributes a term (tanhp, ) (tanhp~) . If a plaquette is selected, let us set s; = —1 at the corresponding
site i of the dual lattice and s; =-+1 otherwise. Obviously P= P; —,'(1 —s;) and L = Q, z(1 —s, s~), the sum-
mations running over sites and links of the isomorphic dual lattice. Consequently, we have

Z=(—,
' coshPz cosh'P)" g exp g —zintanhP~(I —s;s,) + g zintanhP~(1 —s;)

(Si= kl}
(2.2)

Up to a factor we recognize the partition func-
tion Zl for an Ising model in an external field H.
Letting

z, -=e ' P eep P Z. *,e, Pz, ),
fs;= ~1}

1
Fs = l&m —lnZr i

N~~

we get the equality

(2.3)

F(P „P~)= —z'In(sinh'2P~ sinh2P~) +Fz(p, H),
P„=—zlntanhP „H= ——', IntanhPz . (2.4)

As long as H 40, the system exhibits no transition,
while for II =0 there exists a critical value P, of
Pz (sinh2P, = 1) separating two phases: a disordered
one for P~ & P, and an ordered one for P~ & P, .

The condition 0 &0 means P~ is finite. As Pp -~
we find a transition for tanhP, = e '8&, i.e. , P, = P, .
This is in agreement with the discussion given in
(I): No transition occurs for finite P„ li~. We knew
already that for P, =0 the gauge-field model is
trivial for d=2, with F(0, P~) =IncoshP~.

(ii) d = 3. Repeating the previous argument we

find that the coupled model is self-dual with

F(P „Pz) = —z'In(sinh2P, sinh2P~)

+F(- zlntanhPp, —zlntanhP, ) . (2.5)

f(g„t'~) =f(ln2 —t'~, ln2 —$,) . (2.7)

Let C be a simple closed curve on the lattice
(for d arbitrary). We defined in (I) the average 8
of the product of the link variables Ai& along C:

Note the interchange of indices (l, P) between the
two sides of this equality. We exhibit the symmetry
of this self-duality by introducing the bounded
variables

$, =in(1+e 'si),

g~ =ln(1+e 'sz),

0 «(„(q «ln2,

and the function

f($„$~)—= F(P„Pz) ——l (zln' +e&) s(I+e's&} . (2.6)

Then this function f is symmetric with respect to
the line (, +E~ =ln2:

(2.8)

This is also equal to the average of the product of
all plaquette variables A&~A»A»A„ for a set S
of plaquettes bounded by C. For d=3, we find by
applying the duality transformation

The ( ) average is computed with the dual cou-
~ 1

pling constants: P~ -——,ln tanhPp for plaquettes and

p, - p+= —&lntanhp~ for links of the dual lattice
(to which are associated variables s;&=+I). Form-
ula (2.9) allows an interpretation of 8 as

exp —2P s; ~

S~

(2.9)
8 = exp [- (8' —F')], (2.10)
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where 5 is the free energy of the dual model, and
F' the similar quantity obtained by reversing the
sign of the coupling constants on the links of the
dual model belonging to S~, that is, all the links
intersecting the surface S.

(iii) d=4. In this case a cube is dual to a link,
a plaquette to a plaquette. Ne can define a free
energy E~(P«, P~~) for a dual model by

exp(fVE„) =2 '" Q exp P„ps„„
(S;j» = ~i)

c a= 1

E(P „P&)=21n2 sinh2P, +3ln2 sinh2P~+E~(P~„P~~) .

(2.12)

III. CRITICAL COUPLINGS IN THREE

AND FOUR DIMENSIONS

Duality has given a complete solution in two di-
mensions. In particular, we have recovered the
fact that the pure gauge system undergoes no tran-
sition. The results of the previous section will
enable us to show that a transition occurs in three
and more dimensions. In the pure gauge system,
the critical values of P~ are given by

~c = 0.7613

d=4, P, =0.4407 .
(3.1)

Let us see how these values are obtained.
In three dimensions the coupled model is self-

dual. If one sets P, =0 in (2.5), infinities occur
on the right side while the left side is obviously
finite. The required cancellations are exhibited
on the form (2.V) which reduces to

f(ln2, (~) =f(ln2 —$~, 0) . (3.2)

Thus, the study of the pure gauge model is equiv-
alent to the study of the coupled system in the
limit P~~-~ ((~~=0). We then expect the gauge
field to reduce to a pure gauge, as discussed in

(I}. This is indeed true, since

(2.11)

Each plaquette (fj kl) of the dual lattice carries
a variable s&», =+1. These are combined six by
six along the faces of three-dimensional cubes to
give the interaction g „,s; z ~, . We defined

pg J 2ln tanhp~, p~~ = ——,'ln tanhp, . Between the
original model and the dual one, duality yields
the relation

Z Z=-(P. i, P*p) (coshP.&)
'"

I,,hs, -,
+p

= (coshP+, )'"
(S.j= 4 lj'

I~i j jk» li

II (1+tanhp„s; ) .

z= —,
' P exp(l4, ps, . s,

(S = klj'
(3.4)

which means that for d=3 the pure-gauge-field
model is related to the Ising model:

E(p, =0, p~} = —aln2+ ~ln i shn2p~+Ez( 21ntan-hp~),

(3.5)

where I'& is the free energy of the three-dimen-
sional Ising model. The Ising model is known to
have a unique second-order transition in three
dimensions. The techniques for the proof are
based on the arguments of Griffiths and Peierls'
to be discussed in the next section. The value Pl
at which E~ is singular is obtained numerically
from the high-temperature expansion' and is given
by

= 2.255 16 .
1

I
(3 5)

From the relation --,' ln tanhP, = P, , we find the
value given in (3.1).

We turn to the case d = 4. We use Eqs. (2.12) and
(2.11) and set P, =0 or tanhPe~ =1. This amounts
to sum over plaquette variables s;,» constrained
by+' s, , ~, =1, the product running over the
faces of every cube. The same theorem quoted in
the Appendix states that, up to a gauge transfor-
mation, one has then s;j» = s„s,„s„,s„.. Taking
into account this gauge arbitrariness, we sum
freely over the variables s;, and divide by the
"volume" of the gauge group. By inspection of
(2.11) it is seen that, as we let P, approach zero
or JB~~ approach infinity, we can extract an infinite
term from I"

~ (proportional to P~~}. Using then the
above expression for s;,», we recover the original
pure-gauge-field model. The final result is ex-
pressed as a self-duality formula:

F(0, P~) = 3 ln sinh2P~+I'(0, --,' ln tanhP~) . (3.7)

This is a remarkable result, ' analogous to the

(3.3)

The last sum is taken under the constraints that the
product s; js j„s»s« for every plaquette is equal
to l. A theorem (see Appendix) states that the
general solution of these constraints is s; j =s; s j,
with s; defined up to an overall sign. Consequently,
we obtain
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ff-I, = --,' ln tanhp, or sinh2 p, = 1 . (3.8}

This yields the value quoted in (3.1).
The trend exhibited by (3.1) (to which we can add

P, =~ for d = 2) is a clear decrease of the critical
value as d increases. In fact, we expect a behav-
ior in 1/d for d large.

IU. GLOBAL ORDER PARAMETER

Kramers-Wannier duality for the Ising model in
two dimensions. If we assume that the gauge field
undergoes a unique transition for d =4 as it did for
d =3, then the critical constant follows from (3.7):

D: QD=C

D irreducible

t ID I (4.3)

with boundary C is called irreducible if it does not
contain any closed subset of plaquettes. When a
diagram with boundary C is reducible, it may be
decomposed at least in one fashion into an irreduc-
ible part and a closed pa, rt, having no plaquettes
in common. This is easily seen by repeatedly
stripping the diagram from closed parts.

The first part of the proof consists in showing
that 6 is smaller than the contribution t of irre-
ducible diagrams:

From now on we set P, =0. In order to analyze
further the nature of the transition, it is interest-
ing to find a quantity with a qualitatively discontin-
uous behavior. Due to gauge invariance the choice
of such an order parameter is not straightforward.
For instance, if we look at the Green's function

(fA;, A„A„,A„}(A „A„pA.p, A, ))„
pertaining to two plaquettes far apart, we expect
it to decrease exponentially with the distance both
for P~ small and I3~ large. However, Wilson' has
suggested that the average 8 along the closed
curve C defined in (2.8) may be used to define or-
dering. We recall from (1) that for d =2, -lne is
proportional to fS I, the area of the set S of
plaquettes enclosed by C. For P~ large enough, it
was also made plausible that if d ~ 3, -lnC in-
creases like the length

f
C

f
of C. We prove the

following result for the present model.
Theorem: Let d~ 3 and I Sf denote the minimal

area enclosed by C; if P~ is small enough, there
exist two positive constants a, and a, such that

ln6
a 2 fSf 1

~a (4.1)

Set P, = 0 and expand both numerator and denomi-
nator of (2.8) in powers of t=tanhP~. Let a dia-
gram D be a set of plaquettes chosen on the lattice
(which we take at first as finite). The boundary of

D, noted BD, is the set of links which belong to an
odd number of plaquettes of D. If BD is empty, we
say that D is closed. Denoting by ID f

the number
of plaquettes of D, we have

t ID I

D:aD=C

t ID I

(4.2)

D: 5D=g

The sum in the denominator Q includes the empty
diagra. m D = {f) which gives a contribution equal to
1. Among the diagrams involved in the numerator
(P of (4.2), let us distinguish the family of irreduc
ible diagrams D, defined as follows. A diagram

Consider the product (Pg. It contains the contri-
bution to.d' of irreducible diagrams, coming from
the term 1 in g. It also contains the contribution
to 6' of each reducible diagram counted as many
times as this diagram may be decomposed into an
irreducible part (contribution to 6') and a closed
part (contributing to g. ), i.e., at least once. Final-
ly, the product O'Q generates additional terms
which do not appear in 6', and for which some
plaquettes are repeated twice. All terms are posi-
tive, since we have "attractive" interactions.
Therefore (Pf, is larger than (P and (4.3}holds.

An analogous result had been established' in the
context of the Ising model, for which the two-point
correlation function was shown to be bounded by
the sum of all self-avoiding walks. The present
diagrams appear as two-dimensional extensions of
the Ising ones: Plaquettes replace links, and the
boundary contour C replaces the two end points.
Irreducible diagrams, which are the self-avoiding
walks in the Ising case, have here a more compli-
cated topology, since the plaquettes of the two di-
mensional irreducible manifold are not naturally
ordered as are the links of a walk.

In the second part of the proof, we provide an
upper bound for the number n, of irreducible dia-
grams made of exactly k plaquettes and bordered
by C. Since k is at least equal to the minimal area
fS I

enclosed by C, we have

4= g n t'. (4.4)
a ~ IS I

Let us define an iterative process designed to gen-
erate at least all irreducible diagrams. For this
purpose, we number once for all the links of the
lattice. The construction starts from the contour
C. We pick along G the link of lowest rank, and
select a plaquette P, adjacent to this link: There
are 2d —2 such possible choices. We now define a
new contour C, along which we shall add the sec-
ond plaquette:

C, =C48P, .

This is the symmetric difference between the con-
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tour C and the boundary of p„ i.e., the set of links
which belong either to C or to Bp, but not to both.
The plaquette p, is chosen among those which bor-
der the link of lowest rank of C„and so on. At
each step of this iterative process, me perform the
folloming operations:

(i) Identify along C, , the link of lowest rank,
(ii) select a plaquette P, adjacent to this link, and
(iii} introduce a new contour C, =C, »nap, .

This construction stops at some finite stage if the
resulting contour is empty. We thus obtain a finite
ordered set of plaquettes having C as boundary.
We denote it by D. Some of these sets D are genu-
ine diagrams contributing to d', but it may happen
that such a set contains some plaquette more than
once and thus cannot occur as a diagram D. If the
ordering is ignored, a given set of plaquettes may,
of course, be obtained several times. Let n, be
the number of sets D with k plaquettes (distinct or
not). At each step there are 2d —2 possibilities
for adding a plaquette. Thus, we find at most
(2d —2)' ordered sets at stage k (the construction
might indeed have stopped before). Among them,
those for which C, =!t) are obviously only a sub-
class, and therefore

nk&(2d —2) .
We can improve our bound by modifying the def-

inition of the sets D (and correspondingly of their
number n, ); we exclude the sets ith overlapping
plaquettes, by changing the rule (ii}. If the link of
lowest rank on C, , belongs to C, there are still
at most 2d -2 possible choices for p, . If, how-
ever, it does not, me have already selected an odd
number of plaquettes adjacent to it, and hence the
number of choices is then at most 2d —3. Since at
least k —

!C! steps involve such a link, we obtain
now the bound

indeed, we have nk&nk.
Taking into account this result with (4.3), (4.4),

and (4.5), we obtain

(2d 2)lcl(2d 3)k- Icltk
k «js!

I c I [(2d 3)t] I s I

2d —3 1 —(2d —3}t

provided that

1"2d-s. (4.7)

(a )= I a e p! I
- (a;=~&) s&A

—-I
x exp Jso s

( a,. = ~j.) s ~.x

Then if J~ ~ 0 for all R, GKS state that

(4.8)

(oRos& -(oR& &cs&.

To apply this result to 6 we write it as

(4.9)

II A»»AykAk»A»»
s

where the product runs over a minimal set S of
plaquettes with sS=C and area of S=!S!.Apply-
ing inequality (4.9) we find

(4.10)

If the curve C gets very large in such a way that

!C!/! S!—0, we have established the left inequality
(4.1).

In order to get the other inequality (4.1), we need
the Griffiths-Kelly-Sherman (GKS) result' which
we recall for completeness. Consider N sites with
variables v, =+1 attached to each one. Let
A =(R, S, . . .] be the family of all subsets of sites
and write c„=g,. Rc;. Define

n, & (2d —2) '(2d —3)" (4.5) 6 - (A»»A, kAk» A»» &' (4.11)

It remains to show that any irreducible diagram
D is obtained (at least once) as an ordered set D.
This will imply n, &nk. For this purpose, given
an irreducible diagram D, let us order its k

plaquettes by using the above procedure. Instead
of performing our choice of plaquettes over all
those of the lattice, we restrict this choice to those
of D, keeping otherwise the same rules. At stage
q, we note that C, , is the boundary of the remain-
ing plaquettes of D. Hence, each link belonging to
C, , borders an odd number of remaining
plaquettes, and thus step (ii) is always possible,
unless C, , is empty. This, however, cannot hap-
pen for q «k, k being the number of plaquettes of
D; otherwise the remaining plaquettes would form
a closed subset, and D mould be reducible. Thus,

for P~ small enough and C going regularly to in-
finity. From (4.7) we derive that, if P, is the
largest value for which (4.1) holds, then

1
tanhP, -

d
(4.12)

Thus for d = 2 there is no transition as expected,
while (4.12) is easily verified for d = 3 and 4 using
the critical constants given in (3.1). For d large

in fact, no matter mhat the dimension or the value
of P is. This establishes the right inequality in
(4.1) and the theorem is proved

It is likely that (4.1) can be strengthened to yield

inc —constant
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we expected P, -1/d, which is again in agreement
with (4.12).

It would be nice to complete this theorem by
proving that for P~ large enough and d» 3, -lnC
behaves like ~C ~. In fact, it is sufficient to estab-
lish it for d =3 (where a transition is known to oc-
cur). An argument ba.sed on inequality (4.9) will
then show that it also applies to d & 3. Using dual-
ity, this amounts to studying a small p+ property
for a corresponding three-dimensional Ising prob-
lem. Perturbation expansion of P —5' in Eq. (2.10)
in powers of J3~ shows that, to a finite order, -inc
is indeed proportional to ~C ~. Although strong in-
dications exist that the result holds beyond pertur-
bation theory, we have not been able to find a com-
pletely satisfactory proof. This is unfortunate,
for it would have demonstrated the existence of a
transition in any dimension d ~ 2, with -(In8)/

~

S
~

as an order parameter. The order of the transi-
tion remains questionable: We have shown above
that a second-order transition exists for d = 3, but
mean-field predictions seem to indicate first-order
transitions for d ~ 4.

APPENDIX

We sketch some results of cohomology on a lat-
tice analogous to similar properties of differential
forms in the continuous case.

On a hypercubical lattice in d dimensions we de-
fine d +1 sets Z~ of functions with values in the
group Z, -=I1, -1j. The set Ll, contains functions
defined at each site, the set g, functions on links,
Z, on plaquettes, J, on cubes and so on. Sites,
links, plaquettes, cubes, . . . are simplexes of di-
mension 0, 1, 2, 3, . . . . In each Z~ a privileged ele-
ment e assigns the value +1 to all P-dimensional
simplexes. A product of two elements in Z~ is the
function that assigns to each simplex the product
of the values of the given elements: e is a unity
for this product. Each element is idempotent and

Z~ is a group. Let B be a map from Z~ to Z~„
(0 &p &d —1) defined as follows. For each y@ 2~,

sy assumes on a (p+ I)-dimensional simplex a
value equal to the products of the values of y on
the P-dimensional simplexes of its boundary. For
instance, if pH Zy Bg7f, A, , =p]& cp&f, (py, g7, ) It is
clear that e(yg) =sysp, se =e, and a(sy) =e. It is
convenient to define g, = Z, and extend the defini-
tion of 8 for an element + of Z, as the constant
function which assigns this value at each site.

Theorem: if y ~ g~ and By = e, then cp = Bg, for
some g p Z~, . Of course, g is arbitrary to the
extent that it can be multiplied by an element of
the form sf', g' e g~, (a generalized gauge trans-
formationn).

The most elementary case is with y E Z, : By =e
means y =const, which by its very definition
means y =Bp, gE. Z, .

A general proof of the theorem is not very in-
structive. Let us rather discuss as an example
the case d =3, P =2. On an ordinary cubic lattice
we have a function y with value +1 for each
plaquette, such that the product of its values on
the faces of each cube is +1. By duality, this pro-
vides us with a function y defined on the links of a
dual lattice, such that the product of the six values
corresponding to the six links incident on a site is
+1. Let us mark all the links where y assumes
the value -1. Because of the aforementioned
condition this set can be decomposed (perhaps not
uniquely) into elementary closed circuits. Each
of those can be considered as the boundary of a
surface made of plaquettes. This choice involves,
of course, a large arbitrariness. We define a
function g equal to -1 on these plaquettes and +1
otherwise. Consider the product of the values of

g on the four plaquettes having a fixed link in com-
mon. An even number of these plaquettes carries
a value g = -1 if this link does not belong to the
closed circuits, and an odd one if it does. Thus
the product in question is precisely equal to the
value of y on this link. If we now return to the
original lattice, there corresponds to P a function

aC
y

and the property just proved means B g
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