
PHYSICAL RE VIE W 0 VOLUME 11, NUMBER 8 15 APRIL 1975

Static cylinder of perfect fluid with nonzero spin density
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In this paper we have studied the interior field of an infinite static cylinder of a perfect fluid having

the spins of the individual particles aligned along the axis of symmetry. We have obtained a solution

with an assumed equation of state and expressed the pressure and the density as departures from their

values on the symmetry axis. As in the case of spherical symmetry, the pressure is discontinuous across

the boundary of the cylinder.

I. INTRODUCTION

The discovery of pulsars gave a big impetus to
the developments in relativistic astrophysics, par-
ticularly in the study of neutron stars. Since the
rotating-neutron-star model for a pulsar seems
to be almost undisputed' it is now essential to
study the possible internal structure of neutron
stars with respect to gravitation and the associ-
ated geometry of space-time therein. Observa-
tions indicate a very high magnetic field associated
with them in comparison with any other compact
objects in the universe. It is not unlikely that this
magnetic field might induce a spin polarization of
the nucleons composing the fluid of a neutron star. '
If the spins are aligned then it is probable that
there would be a substantial nonzero spin density
which would then play, along with the mass den-
sity, a dynamical role in influencing the geometry
of space-time containing the fluid. In general
relativity as given by Einstein there is no way of
considering the spin effects on the geometry of
space-time. On the other hand, it is clear that
one could study such configurations in the frame-
work of the Einstein-Cartan theory. In fact as an
attempt to investigate whether the Einstein-Cartan
theory admits self-gravitating fluid systems Pra-
sanna had recently considered a study of static
fluid spheres in its framework. ' However, since
we had assumed therein a radial alignment of spins
(implying the presence of a magnetic monopole at
the center) the picture is not very physical. Fur-
ther, since a rotating system cannot be spherical
it is necessary to consider axisymmetric distribu-
tions which are more physical. In this connection
we now propose to study the simplest axisymmetric
system, namely a static cylinder of perfect fluid
composed of particles having their spins aligned
along the symmetry axis.

We follow the notation of our earlier paper' (now

onwards referred to as paper I) wherein we have

given in Sec. II the necessary details regarding
Einstein-Cartan equations. %hile referring to the
equations from paper I, we use the notation {I2)

appropriately. In the following we label the coor-
dinates r, q, z, and t by 1, 2, 3, and 4.

II. METRIC AND CURVATURE

%'e start from the static cylindrically symmetric
metric

s2 = —e2P 2u (dt2+d+2) $.2c 2vd~2-

+ e2vdt2 (2.1)

wherein p and v are functions of ~ alone, so that
we have the orthonormal tetrad

6'=e" 'd~, 6'=we 'dy, 6'=e" vdz, 6'=evdt,

(2.2)

along with the metric tensor

g;, = diag(- 1, —1, —1, 1) .

Since we have assumed that the spins of the in-
dividual particles are aligned along the symmetry
axis (z axis) we will have for the spin tensor S;&

the only nonzero components

S,2
= —S2, =K {say) . (2.3)

As in the previous case, since the fluid distribu-
tion is static, the velocity vector u' =5', and hence
the nonzero components of s', „are

s4 = -S4„=K.12 (2.4)

Consequently, from Cartan equations (12.12) we

get the torsion tensor Q',.„ to be

Q 12= —Q 21 ——KK
q (2 5)

8'=0, 0'=0, 0'=0, 8'=-~K{6"6'). (2.6)

One can now easily compute the connection one-
form u', and the curvature two-form 0', , which
are found to have the components

where the other components are zero. The torsion
two-form 0' is therefore given by
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(v'2= —(d2, = -e" "()2'- v')8',

~2 ~3 0 3 4 03 2

{d 4=(O 2= —2KK62 4 l 1 (2.7)

/ /

O', = -O2, = e (' ~) v" + ——y, 'v'+ —+ ')(2K— (8' 6 )+ —')([e" "(K'+2Kv')] (8' 8'),

O', = -O', =[e " " (v"-)2")](6' 8'),

O', = -O', = e'(" "' v'- — (i('- v') (8' ~8')+[ ')(Ke-" "()2' v')]-(8' ~8'),
le

O' =O', =[e2" "'(v" +2v" —v'))')+-,')('K'](6' 64)+ ,')(e"-2K -(6~.62)

(2.8)

I

O' =O' = e"" "' v' ——v' +-')('K' (6'~84)4 2 r

O', =O', =[e"" "'v'(v' p, ')-] (6'~6') [ 'KKe"-"-(p,'- v')](8' ~ 8').
Using (2.8) in (12.4) we can now read out the nonzero components of R', » from which the Ricci tensor R;,.
and the scalar of curvature 8 may be easily evaluated. We have thus

I + I
V// —P, 'V'+ + —K K g = 2K/" & K'+2KV'

2' =e"' "'( "—e"'1 2' e"" "'( ' —=— (e'- ')1
323

(2.9)

I
R4 e2( v-2 ) (vee + 2 ve2 ve re) + K2K2 R4 e2(v —2 ) ve2 + K2K2

224

R'„,=e"" "'v'(v'- p, '), R4„,= —-')(Ke" "()2'- v'),

V +~&& V
&2( 1/-]l )

V
II /I 2 V/2+ I- P &2( V-P ) VI/ +22

I I

833=8 V —P. +,824=2KB K +K V +P, (2.10)

I

A44=8 " V + —+2K K, A42 2KB K +K P —V

where the others are identically zero:

VI/+ VI —+ —K KV

r (2.11)

Finally me have the Einstein tensor 6&, as given by

I
e2(v-2) ) ve2 + +2K2 G e2(v-2)(+ee + ve2)+ +2K2ll 4 y 22 4 7

I

G33 e"" "' v"- —+ &K'K', 624 = 2K@' " K' +K v'+ p.
' (2 12)

/

=e " " 2V"- P, "+ —V' +4K K G 2= 2Ke' " K'+K P, '- V'
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III. FIELD EQUATIONS

T = diag(-p„p„-p. , -p) . (3.1)

Considering this along with (2.4) in (I2.28) we get
the nonzero components of the canonical tensor t',
to be

We assume the material distribution to be that
of a perfect fluid with anisotropic pressure repre-
sented by the symmetric tensor T; ',

field equations reduce to the form

8.P=e ( -~) 2
2V —P. + —V

8&p„= —8~p, =e"'-~) /

—Vr

8&P e2( v-v ) (~ v + v&2)

and the continuity equation becomes

(4.2)

(4.3)

(4 4)

t 3= T3 = -p, , t 4—- &ate' "v'.

If we use (2.12) and (3.2), the field equations
(I2. 11) may be explicitly written as

e2( -P ) 2 v» +» + vi2 + +2~22v
r

e " v ——-&vg =up2(IJ — ) s2 I 1 2 2
r t

2e( vP )
( p

v
vr2) g2K2 KP

(3.2)

(3.3)

(3 4)

(3.5)

dp„- ~
» -, 1" + (P+P, )v' (P, -P, ) -v'- — —2P, (v' v') -= 0.

(4.5)

We have only three independent equations to de-
termine five unknowns. In fact these equations
are the same as those obtained by Marder' in
connection with the study of the static fluid cylin-
der in general relativity, and thus one could use
the solution as given by him and determine the
corresponding equation of state. However, we
now assume an equation of state of the form
p=yp~, where y is a constant. This gives us
an additional equation.

I

e " —v + —--,~yC =~p2( V — ) /2 0' 1 2 2

r z ) (3 8) 2v"+ —(1+y)v' =(I+y)p".r (4.6)

e ' "'(g'+Kg, '-&v') = -ge' "v',

e " "

'(K'+Kg�'+K

v') =Ke" "v' .

From (3.7) and (3.8) it directly follows that

(3.8)

Since our set of equations is still incomplete we
will assume a particular form for one of the met-
ric potentials and thus determine the system. As-
suming v' = Xr" where X and n are constants, so
that

K'+K p.
' = 0,

which on integration gives

(3.9)
v = (Xr"")l(n+ 1) + C, , (4. 7)

Be (3.10) we can solve for p. from (4.6} which we find to be

where B is an arbitrary constant to be determined.
The conservation equations (12.19) give for j = 1
the continuity equation

dP„ , 1—'+ (p+p„)v'- (P„P~) v'- — —(v-'- p')(p„-p, )

= —pKK(K'+K v')

(3.11)

where the rest are identically satisfied. It can be
easily verified that Eq. (3.11) may be obtained
directly as a consequence of the field equations.

2 && r(P+ 1) ~r2(n+ 1)

n(1+y ) (2n+1)(2n+2)

We have now four arbitrary constants X, C„D„
and D, which are to be determined through the
boundary conditions. Assuming that the cylinder
has a radius r =-a, we have for r &a the field equa-
tions R;& = 0. A well-known solution for Einstein
equations for empty space with cylindrical sym-
metry is that given by Levi-Civita, ' which is ex-
pressed as

$5 2 g2r 2C(1 'Iv (dy2 + A/2) r2(1 ~ ) /7/72

IV. SOLUTION
+ r2~dt2 (4.9)

p-p 2p+2 p-p (4 1)

(we ha.ve set ~ = —8m G/c' with G = 1, c = 1), the

If we adopt the similar procedure as in the case
of spherical symmetry and use

where C and A are constants. Since Eqs. (4.2)-
(4.5) are similar to the Einstein equations in

form, we can use the Lichnerowicz boundary
conditions, namely that the metric potentials are
C' across the surface r =a. Thus the continuity of

g' and v, v' gives us
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X = C/a"' ', C, = C lna —C/(n+ 1),
2C(n+ 1) C(1+y } 1

a(1+y) (2n+ 1) n

2C C'(3+ Bn+4n')
1+y (2n+ 1)(2n+2)

'

(4. 10}

Hence we have for the interior of the cylinder the solution

—(R" —1) —(R —1) — —(2n+2)R +inA+C21na-
2C A C2 P2 +2 C'(3 + Bn + 4n')

1+y n 2n+1 I 2n+2 (2n+ 1)(2n+ 2)
(4.11)

(R"'' —1)+Clna, R = ria
n+1 (4. 12)

with the pressure and density given by

BwP =16w'8'e '"+e'' "' ' ' (R"-1)+ ' ' (1-R'"")
(1+y)nar (2n+ 1)ar

Bwp 18w2R2e-2w e2(~ w& -' ' (R~ —1}+ ' ' (1-R2 +1)
2cin+1& 2C2«+1~

(1+y)nar (2n+ 1)ar

8 P 18 R2 -2P 2(u-w) + Rn-1wp~= w e +e

(4. 13)

Sgp —16g2+ e
—

2C&n+~}
(1+y)a'

From the expressions above it is clear that along
the axis of the cylinder ~=0, the central values of
the pressure and density are all equal and express-
ible in terms of the constant 8, provided we avoid
the singularities by choosing n ~ 1 and

C(1 + y) ——=0, i.e. D
2n+ 1 n

Hence we have

4C AF =exp —(R" —1) -R
1+y n

2C2 i A'"+'
+ — —(2n+ 2)R2n+1

I
2n+2

4C 2C'(3 + Bn+ 4n')
1+y (2n+ 1)(2n+2)

(4. 19)

2n+ 1 —nC
nC

(4.14) satisfying the equation of state,

The system is thus determined by the pressure
and density

y~~ = 2m''
1 —y

(4.20)

n-1Bwp~=F(8wp~), + R" ',

s~P, = F(s~P, )0—
FC. „, 1 C(1+y)

n 2n+1

FG
Bwp=F(Bwp), + y R" ',

(4. 15)

(4. 16)

(4.1 t)

(4. 18)

with y given by E(1. (4. 14).
In order to identify the constant C we follow

Marder' and consider the integral expression for
the gravitational mass M, of unit length of the
cylinder as given by

c 27k 1

M~ = (p+P„+P~+P, )re' " "' dr d(w dc .
0 0 0

(4.21}

Using the values from (4.13) we get

16 n+1re(~((" ' 1(' w d -'C (4 22)a2c
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Expanding the exponential term up to first order
in C and integrating we get

M = —,'C+ 16mB'a'' ' —+
1 C

g 2 2 n+3 (4.23)

Thus we find that the value for the gravitational
mass is the same as that obtained by Marder,
together with the contributions from the spin den-
sity.

p(p, &v . (5.1)

The only undetermined parameter is the constant
A.

If we consider Marder's solution as given by

C2
(1 —R ")+C'1na+1nA,

m+1
(5 2)

C
(1 —R"' ') + C 1na,n+1

with m and n as constants & 1, the pressure and
the density are then given by

8~p„= 16~'a'e -'~

C2
2 2nP 2R(n1 Rm 2n —i)-

V. DISCUSSIONS AND CONCLUSIONS

As we had in the case of spherical symmetry
here also we have discontinuity in the hydrostatic
pressure across the surface r =a, due to the
presence of the spin density. From the expression
for y it can be readily seen that, as n ~ 1 and
C& 1, y& 1. Hence from the equation of state
(4.20) we get for real K p —y p~& 0, i.e. ,

87tp —1677 g e

C2
+ e2v-2P g2n (1 Pm-2n-1)

Q

8mp =16m'8'e '"

+ —e" '"R'"[2(~+1)R " ' —mCR '" ' —C].a

C(p+p ) —2(p, +p~)=4m(C —2)K'. (5 4)

It may be recalled that in the case of spherical
symmetry (paper I) the equation determining the
spin density had to be assumed, whereas in the
present case we obtained it from the field equa-
tions. It is interesting to see that because of the
presence of the spin density we could determine
the pressure and the density as deviations from
their values on the axis of symmetry.

As could be seen from the two cases of symme-
try considered, in the static models the major
contribution of the spin density is to change the
equation of state of the system, as one would ex-
pect. Further studies with rotating-fluid distri-
butions might give us more interesting aspects
regarding the effects of the spin density.
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2
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( 1 + ~R m —&n —1)

a
(5.3)

It is a pleasure to thank Professor K. Bleuler
for his kind interest and encouragement and the
A. v. Humboldt-Stiftung for the award of a Re-
search Fellowship.

*Alexander von Humboldt Research Fellow.
G. Horner, in Springer Tracts in Modern Physics,
edited by G. Hohler (Springer, New York, 1973),
Vol. 69.

2G. D. Kerlick [Astrophys. J.185, 631 (1973)] has estimated
that pure torsion effects in a neutron star are unobserv-

able compared to those of magnetic-dipole interactions.
3A. Rn Prasanna, preceding paper, Phys. Rev. D 11,

2076 (1975).
4L. Marder, Proc. R. Soc. A244, 524 (1958).
5T. Levi-Civita, R. C. Accad. Lincei 28, 101 (1919).


