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Static fluid spheres in Einstein-Cartan theory
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Following the work of Trautman we have described briefly the Einstein-Cartan equations with special
reference to a perfect fiuid distribution and then obtained three solutions adopting Hehl's approach and
Tolman's technique. %e have found that a space-time metric similar to the Schwarzschild solution

(interior) will no longer represent a homogeneous fluid sphere in the presence of spin density, and the

corresponding equation of state has the form 8trp = gtrp —6/R' + (B2/2srA R ') (8trp —3/R ')'", where

8, B2, and A are constants. At the boundary of the fluid sphere the hydrostatic pressure p is

discontinuous.

I. INTRODUCTION

Modifying Einstein's equations of general rel-
ativity has been one of the techniques followed to
avoid space-time singularities. Recently, Traut-
man' has proposed that spin and torsion may
avert gravitational singularities, by considering
a Friedmann type of universe in the framework
of Einstein-Cartan theory and obtaining a mini-
mum radius 8, at 1 =0. Isham, Salam, and
Strathdee' have shown that if one considers the
Trautman model in the framework of their two-
tensor theory then the minimum radius would in-
crease substantially, giving a reasonable density
for the universe in the early stages. Applying the
same arguments for finite collapsing objects, the
present author has shown' that it is possible to
get a minimum critical mass for black holes.
Having seen that the new idea regarding preven-
tion of catastrophic collapse could have an inter-
esting role in astrophysical situations, we wish
to understand the full implications of the Einstein-
Cartan theory for finite distributions like fluid

spheres with nonzero pressure. Also, since spin
is a very important property of a particle, it is
very relevant to consider its role in the study of
such configurations as one may find in the interior
of a star.

As a first step in such a study, we now consider
the problem of static Quid spheres in the frame-
work of Einstein-Cartan theory. Moreover, if a
collapsing fluid sphere stops collapsing because of
spin and torsion and then stays as a static body,
its interior will no longer be described by the
Schwarzschild solution for a homogeneous fluid

sphere of general relativity. Finding a proper
solution to describe this situation is one of the
motivations of the present work. We adopt Tol-
man's technique4 to solve the field equations and
thus obtain two more solutions and their corre-
sponding equations of state.

The plan of the paper is as follows. In Sec. II

II ~ EINSTEIN-CARTAN THEORY

Let M be a C" four-dimensional, oriented, con-
nected Hausdorff differential manifold with a
Lorentz metric g defined on it. All geometric
objects other than the forms are defined by their
components with respect to a field of coframes e'
(in the cotangent space of M) which are linearly
independent at each point of M. Since we are
interested in spinor fields we take the e' to be
in general anholonomic and the associated tetrad
to be orthonormal. Since the manifold is para-
compact there exists a connection ~ on it which
we assume to be a metric linear connection. The
metric g and the connection ~ are described with
respect to the chosen coframe 6' by the metric
components g;& and by a set of one-forms cu', de-
fining the covariant derivative, respectively.
Hence we have

g = ds' =g,,e'(3 e' .
~', themselves are completely determined by 64
functions I"„such that

(2 2}

The torsion and the curvature two-forms on M are
respectively given by

ei De i

=we'+', . 8'
= —,q'„8'. e", (2 3}

we describe briefly the Einstein-Cartan theory
and the governing equations following the notation
and treatment of Trautman. ' In Sec. III the metric
and the curvature are presented along with the
components of the Einstein tensor. Section IV
deals with the energy-momentum tensor and the
field equations. Three solutions are given in Sec.
V, and the paper is concluded along with some
discussions in Sec. VI.
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0 . =6(L) . +(d A(

-~R jki A ) (2.4)
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jk j@ lk k@ jl ~s jk&

(2.11)

(2.12)

where D denotes the exterior covariant derivative.
For a tensor-valued zero-form, say, y„, Dy„
=O'V;y„, where V; is the usual covariant deriva-
tive. Q'jk and R'», are the torsion and the curva-
ture tensors, respectively.

If we introduce a completely antisymmetric ten-
sor q, ,„, such that q»„= ideig;, .

i
'", this zero-

form along with the forms

c ~j 1 ~ gk ~a (2.13)

In order to derive the conservation laws we
make use of the Bianchi identities

DO' = n'. ejj (2.14)

where t'; and s', „are defined through the rela-
tions

~i jk ~ ~ijkl ~ ~ij ~~ ~i jk ~

(2.5)

From (2.9) and (2.14) we get

De = —'O' A QP'r)2 jpQl

i.e.
spans the Grassmann algebra of M.

The field equations are obtained from the vari-
ational principle

Dei =@[ Q", (R -~ —'8 ~R)-

Dc, , =r(,.k 0, j —gjk Q",.

(2.15)

(S+~L,) =0, (2.6)
=ei AOj —ej A6;. (2.18)

where L = L(P„,Dg„, 8', g, , ) is the material La
grangian four-form depending locally on the spinor
or tensor fields gA, their covariant derivatives
D(„, and the metric; ~ is the gravitational con-
stant and S is the Ricci four-form defined globally
as

(2.7)

If we use the field equations and simplify, the con-
servation laws for the spin and the energy-mo-
mentum are respectively given by

(2.1 f)

(2.18)

Simplifying (2.18) we get
where R =g'"& kR", „; q is the volume four-form.
Varying the total action with respect to the metric,
i.e. , 6' since g, j are fixed, the connection ~'„and
the fields g„ independently, we get the equations

Vkt j = s jkR ) + ps j, R

(2.19)

wherein

(2.8)
In order to consider solutions of Einstein-Cartan

equations we use a classical description of spin'
as given by

1 ki j j L '
le, =zg;k, AO", c',. = Dg, t, =

v(d

(2.9)

T, ' =Oj A t, —~Ds

Using (2.3) and {2.4) in (2.8} and (2.9) we can
write the Einstein-Cartan equations as

(2.10)

The orthonormality of the frames together with
the fact that the connection is a metric connection
(Dg;, = 0) tells us that an infinitesimal variation in
connection induces tetrad rotation. Hence one
identifies s ', as the spin density of the system. '
t; is the energy-momentum vector-valued three-
form. In the general case (when the variation in
metric is induced through the variation in g;j) we
have the energy-momentum symmetric four-form,
T" =-,'8L/Gg;, , which, along with t; and s'„sat-
isfies the identity

s k=u'S», with u S.k=0, (2.20)

wherein u' is the velocity four-vector and S» is
the intrinsic angular momentum tensor. If we
have a perfect fluid distribution with isotropic
pressure then the canonical tensor for such a
distribution is given by'

tjk =hjuk- Pg (2.21)

h,. = (p+p)u, —u'V~(u'S, ,), (2.22)

where p= tijuiuj is the energy density in the rest
frame Using the. expression for t, from (2.21)
and (2.22) we get the equations

V~[(p+P)u' -g~'u'V (u S„.) j —u'V~P =0 (2.23)

where hj is the density of enthalpy. The conserva-
tion law (2.17) then gives us
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and

[(p+P)u" -g "u'V (u"Sg, )]V,u,

V-, ~ ( u u) - 6 ) ) + u &A~A ~ —
ms S,+

~vi B4
e"

1

e"
+4 1 ~Bs +3 ~1 Bs

2 2 (3.6}

(2.24)

If T denotes the usual symmetric energy-mo-
mentum tensor then we have for a classical de-
scription of spin (2.20) the relation between the
canonical tensor t~„ the spin tensor s'», and
T, 'obtained from the identity (2.10) as

u 4-—m 3
= - 2MB „u 2

= -co 3
= - 2KKB + 6cot&

Using them in (2.4) we get the curvature form 0',
with the nonzero components

g' = [e 2I (v" + v' —u v )](8 8')
rtT =8~ h rti, t~, —~D(q„s~,~),

which on simplification yields

T j t j ~~fmV (sk

III. METRIC AND CURVATURE

(2.25)

(2.26)

——e "(8'~B),

0' =-,~e " K'+ —(8'~8')K
2 r

2P
+ — v'+-'t(K B'~ 6 )

%e consider a static spherically symmetric mat-
ter distribution represented by the space-time
metric

0' =-2se " K'+ —(8'~8')K
4 2 r

2p
v'+ -g2K~ (8~ ~ 84)4

(3.7}

ds =-e "dr2-r d8 —r sin 8ctg +e

(3.1)

e '"
n' = t '(8"8')

2 r

S 23
—-S (3.3)

Hence from the Cartan equation (2.12}we get for
Q'» the components

where p. and v are C1 functions of r alone. If 8'
represents an orthonormal coframe we have from
(2.1) and (3.1)

8' = e"dr, 8' = rd 8, 8' = r sin 8dp, 8 = e"dt,

(3 2)

so that

g;& =diag[-1, -1,—1, lj.
Assuming that the spins of the individual parti-

cles composing the fluid are all aligned in the r
direction we get for the spin tensor S&, the only

independent nonzero component to be S» =K, say.
Since the fluid is supposed to be static we have

the velocity four-vector u' =6'4. Thus the nonzero
components of s'» are

—2We" v' —— (B B),

2'
i '(8'"8')

3 r

--2'me-" v' —— e' e',

0 1 —e '"
B2 p, Bs)

+ 2xe "(K'+Kv')(8' 8~) .
Equations (2.4) and (3.7) together give

Ql e 2P(VII + V/2 ~ I VI )

e '"v'
r

e-2P~ I

212 313 r
-2P1 - e8 =

r2 +4)cK

Q 3--Q 32--~
the others are zero.

Using (3.4) in (2.3) we can obtain the torsion
two-form 6" to be

(3.4)
8' =- —e423 r

8'=O, 8'=O, 8'=O, 8'= m8'-8'. (3.5)

Once we have the torsion form we can use it in

(2.3) along with (3.2) and solve for the components
of v „which in the present case turn out to be 8' =-,'e "(K'+Kv').
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The Ricci tensor R,j and the scalar of curvature
R are therefore given by

If we assume the equation of hydrostatic equilibri-
um to hold as in general relativity, namely

t'

R =-e '" v" + v" —p. 'v'—ll + (p+ p)v' =0,dp (4.9)

2P 1
R» =R» = —,[1+r(v' —p')]+ —,,

=e '" v" + v" —jtl'v'+ + —PK22v
44 2 )

R=-2~ ——e —+ v +v —p, v

(3.9)
we get the additional equation

K'+Kv' =0.
Solving for K we get

K=Ae ",

(4.10}

(4.1 1)

+ —(v' —p. ') + —,'~'K', (3.10)r

where A is a constant of integration to be deter-
mined. Setting K=-SING/c' with G = 1, c= 1 we
can write the field equations as

with R;j = 0, i+ j. Hence the Einstein tensor G;j
=R;j —kg;j is found to have the components

1, 2v' 1
8mp=16m~K2 ——+e '" +—

2 r r2 ) (4.12)

G = ——+e + —+&KK
1 -2]1 2 v' 1

ll r2 r r2 )

G22 =633

=e v +v —/l v + —(v —p. ) +gKK

(3.1 1)

G = —+e ——+ 48K1 2]1 2P 1
44 r2 r r2

~S p ~4 (4 2)

Hence the field equations (2.11) may be written,
using (3.11) and (4.2), as

1 2]1 2v 1——+e -+ —+ 4K K =-Kpr2 (4.3)

IV. ENERGY-MOMENTUM TENSOR

AND FIELD EQUATIONS

Since we are considering a perfect fluid distri-
bution with isotropic pressure p and matter density
p we have from (2.21) and (2.22) for t~;

ti, =g "f[(p+p)u„-u'7 (u S»)]u, -pg„]. (4.1)

Using (3.4) we get then the nonzero components

1 -2q 2P' 1
8pp —16g2K2+ —+ er2 r r2 )

e '" ———,——, —]LL.
' + —,

(4.13)

+ v' + —= 0 . (4.14)
]L(,

'+ v' 1
r r3

fP=p —2%K ) p =p —2&K (4.16}

In principle we now have a completely determined
system if an equation of state is specified. How-
ever, it is well known that in practice this set of
equations is formidable to solve using a preas-
signed equation of state, except perhaps for the
case p=p, which may not be physically meaning-
ful. Secondly, we have the question of boundary
conditions to be chosen for fitting the solutions
in the interior and the exterior of the star. A

very interesting aspect of the Einstein-Cartan
theory is that outside the fluid distribution the
equations reduce to Einstein's equations for empty
space, ~is. , Rpj 0 since there is no spin density.

Following Hehl's' approach, if we transform the
terms in K' to the left-hand side of the equations
and redefine the pressure and density as

v" + v" p, 'v'+ -(v' —y. ') + g8K' = itp, -r

(4.4)

we find that the equations take the usual general-
relativistic form for a static fluid sphere as given
by

1 2~ 2P, 1——-e —4/PK = Kp .r2 r r2 (4.5) 1» 2v' 1
8'tl'p = ——+ e —+-

r2 r r2 (4.16)

The conservation laws governed by Eqs. (2.23)
and (2.24) give us the relations

1 2]l 2P. 1
8mP = —+e '"

r2 r r2 (4.17)

V, (Ku') = 0 (spin conservation), (4.7)

V, [(p+P)u'] =0 (matter conservation), (4.6) with (4.14) remaining the same. The equation of
continuity (4.8) now becomes

and —+(p+p)v' =0.Ck

dr (4.18)

dr
—+ (p+ p)v'+ 2'(K'+Kv') =0. (4 8) Equations (4.16}, (4.17), and (4.13) are the same
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as obtained by Tolman, ' so we can use the same
solutions for our discussions. Assuming that the
sphere has a finite radius r =a for r &a, since the
equations are A, , =0, we have by Birkhoff's theo-
rem the space-time metric represented by the
Schwarzschild solution

1
ds2 = — 1 — dr' —r'd 8'r

and

P=O at r=a. (4.21}

V. SOLUTIONS

Case (2'). Let us consider the case correspond-
ing to the mell-known Schmarzschild solution

r2 1
ds2 = — 1 ——, dr' —r2d8' —r' sin'Ody'

—r' sin'&dy'+ 1 — d~', (4.19) r2 1/2 2

+ B2 —B, 1 ——
2 d

where m is a constant associated with the mass of
the sphere. With this we use the boundary condi-
tions

with

B,= ~(1 —a'/R')"' B,= —,, 2m/a =a'/R'. (5.2)

(4.20}

Unlike in the case of general relativity, the fluid
sphere is now no longer of uniform density. The
pressure and the density are given by

16w'A'+ (1/R') [SB,(1 —r'/R')'" —B,][B,—B (1 —r'/R')'"]
[B B (1 r2/R&)&/2]2

16v A'+ (3/R')[B —B (1 —r'/R'}'")'
[B B (1 Q/R2)'~2]~

(5.3)

The constant A can be evaluated in terms of the
central density p, to be

16v'A' m (6 —9m /a + mr'/a')
(1 —3m/a+mr'/a') a' (1 —Sm ja+2mr'la'),

1 3 1j2 a2 1/2
A = —8vpo ——

2 3 1 —
R2

—1 . (5.5)
8w

4ppg r {1 year /ja }
(1 —3m /a+ 2mr'/a')' ' (5.10)

6 a,
87tP = 8rp ——,+ — ', 8~p - —, (5.6)

As in the case of Einstein's theory we find that a
singularity at r =0 occurs only for the case B, = B„
i.e., m /a=9. From (5.4) we can compute r in

terms of p and substituting the value so obtained
in (5.3) we get the equation of state

At r = 0 we have now

8w po = 8vpo+ 3 1 — 1—,(5.11)
6m 2m 3m
a' a a

and we can again express the constant & associated
with the spin density in terms of p, as

1 3m 6m 9m 2

A = —8vp 1 ——— + . (5.12)
4p ' a a' a4—

+ (D+ Cr~)dt',

with

(5.7)

Case (2). Assuming e"v'=Cr, where C is a
constant, and solving (4.14) for p we get the space-
time metric

ds'=- —,dr' —r d6}' —r2 sin'6edy'(D+ 2Cr')
(1+B,r')(D+ Cr')

Eliminating &2 between P and p we can get the
equation of state.

Case (3). If we assume e"=C,r'", the complete
solution is

ds (1+2n —n')
dy2 r2d (92

1+(1+2n —n~)B,r "
sin gdy + C r "dP

with
m- m 3mB = —— C= —D= 1-1 3& a3& a

The pressure and density are given by

(5.8) (1 + 2n —n')
(1+n)

16m'A' Smz (1 r'/a')
(1-3m/a+mr2/a'} a4 (1 —3m/a+2mr /a') '

(5.9)

B= 1 — — a'"

C, =

(5.14)
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The pressure and the density are evaluated to be

n2

Cp'2" r2 1+2n —n2

+ ~ (1 + 2n)r2 «& "~ ~ i &+ ~ ~

1

Smp= „+-Cr2" + 1+2n n2

3+ n B r "('~)/('.+")
1+n

(5.15)

(5.15)

At r = a, P = 0 gives us n in terms of m and a, as

n= (m/a)(l —2m/a) '. (5.17)

It is obvious from the expressions above that as
r- 0 both p and p tend to infinity. However, we
can study for various values of n how the ratio
pJp, behaves. For

0&n&1, i.e., m/a & —,', po/po-n/(2 —n),

n & 1, i.e., m/a & z, po/po- 1,
0&n&-1 and 1+2n —n'&0, p, /p, —n/(2 —n),

0&n&-1 and 1+2n-n' &0, po/p, —(1+2n) (1+n)
(2n' sn- 3) '

n & —1, p, /p, - n/(2 —n) .
n=-1, i.e., m =a, p is infinite, and the metric
is degenerate. As in the case of Tolman's solu-
tion if we consider the case n = &, equivalently
m/a =-„we get the space-time metric

ds' =—, », dr' r'd e' r' sin' edge'l(r a 7/3

+ z(r/a)dt z,

with the pressure and density given by

(5.18)

(3wp+ swP)rz —32wzA'ar —~ =0, (5.22)

from which solving for r and substituting in either
of the relations (5.19}or (5.20}we get the equation
of state

8wp(1 a z)' =,—(3wp+ 5wp)(6+ 2z' x Vz)

27/3+2/3g2/3(1 g Z)7/3

14a'(3w p+ 5w P)'"

8w p = 32w'A'(a/r) + (1/Vr') [1 (r/a)'"], (5.19)

8w p = 32w'A'(a/r) + (3/7r'} [1+—, (r/a)"'j . (5.20)

At the center r =0 we have p, /p, = 3. Since we do

not have any further relation to determine A. , we

can set a limit on it by assuming that at the bound-

ary r=a, the ratio of pressure to density is &3.

This gives us the condition

A &(1/8w)(-', )"'(1/a) . (5.21)

The expressions for the pressure and density sug-
gest the relation

where

(3wp+ 5wp)
' '"

1024m~A4a2, (5.24)

VI. DISCUSSIONS AND CONCLUSIONS
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At the outset we observe that the continuity of P
(not of p} across the surface r =a ensures the con-
tinuity of v' as required by Eq. (4.13), whereas
p,

' is discontinuous. The discontinuity in p' is due
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As could be seen the presence of spin density
induces nonuniformity in density in a Schwarzs-
child sphere, and consequently the equation of
state is changed. The other three cases con-
sidered by Tolman, ' (i) e'"=constant, (ii) e '" '"
= constant, and (iii) e'"= constant, do not give us
any interesting distributions. Case (i) represents
the static Einstein universe and cases (ii) and

(iii) represent fluid spheres with singularities,
without suggesting any interesting equation of
state.

Adopting the scheme of Hehl' as done here one
can always use any known solution of general rel-
ativity and study the corresponding equation of
state under the influence of spin density. It might
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solution as given by Adler' for static fluid sphere
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distributions the physical picture will be much
more plausible.
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