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According to the "singularity theorems" of Penrose, Hawking, and Geroch, all general-relativistic

cosmological models must have a singularity. However, the energy condition assumed by the theorems

is not satisfied by all known forms of rnatter. (A notable exception is the massive Klein-Gordon field. )
Our object here is to construct exact isotropic cosmological models without singularities by exploiting a
violation of the energy condition which arises naturally from the basic physics, rather than being

introduced ad hoc via an equation of state. We accomplish this with models in which the matter,
envisaged as dust, interacts with a conformal scalar field whose field equation and stress-energy tensor
come from an action principle. All the equations that govern the evolution of the models are solved

exactly. For all possible topologies of the universe, the singularity can be avoided for a certain range of
the parameters of the model, but only for the closed universe is the required range physically

appealing.

I. INTRODUCTION

The singularity theorems" of Penrose,
Hawking, and Geroch' show that any general-rela-
tivistic model universe (a) satisfying reasonable
causality and generality conditions, (b} possessing
a surface to the past (future) of which the light
cones start converging, and (c) containing matter
which satisfies the energy condition

(T„„——,'g„„T)t"t '& 0 (1)

for any unit timelike vector t" must contain a
timelike curve with a past (future) end point at
finite proper time (a singularity). In most known

examples this end point is associated with an in-
finite curvature singularity, but an exception
exists. ' The actual universe is expected to satisfy
the causality and generality requirements, condi-
tions for the existence in it of a surface of conver-
gence of the past light cones are satisfied, ' and its
matter content is generally regarded as satisfying
the energy condition. Does this mean that the

universe actually passed through a singularity in

the past, either an infinite curvature singularity
(big bang) or a miM singularity' associated with

the origin of matter particles?
Some workers are resigned to the singularity'

and try to make it palatable by conjecturing that
it is of the mild variety, ' or else by relegating the

big-bang singularity to the "infinite past" accord-
ing to a physically appealing time scale. ' Others
contend that the cosmological singularity is only

a symptom of the incompleteness of the theory,
and they propose that it is absent in a more funda-
mental theory in which Einstein's equations are
appropriately modified by quantum effects, ' phe-
nomenological quadratic terms in the curvature, '

or the effects of torsion. '
Before taking the serious steps of accepting the

cosmological singularity as real, or modifying
the gravitational field equations, it seems timely
to rediscuss the fundamental assumption of the
theorems that the energy condition (1) is sa.tisfied
by all physically reasonable forms of matter. It
is known that once the energy condition is given

up, singularity-free cosmologies become possible.
One example has been provided by Murphy, "who

postulates matter with sufficiently large second
viscosity to violate condition {1)but does not try
to justify this property with a microscopic model.
Another example is the closed Friedmann model
of Fulling and Parker" in which the singularity
can be prevented because the energy condition is
violated in a natural way be a massive scalar field
in certain coherent quantum states. It is not yet
clear whether the singularity is avoided in every
cycle of this model universe, or whether the
quantum states envisaged are realistic.

It may not even be necessary to resort to quan-
tum effects to violate the energy condition and

prevent the singularity. For example, the stress-
energy tensor for a classical massive scalar field
Q with Compton wavelength ~n

' is

We have

(T„,——,'g„,T)t 't ' =(y „t~}' — ~'y',
which may be negative in violation of the energy
condition. This is very significant because the
strong interactions in nuclear matter can be re-
garded as mediated by a classical massive scalar
field, the non-second-quantized part of the pion
field. " Because of (3) it is no longer clear that

2072



NONSINGULAR GENERAL-RELATIVISTIC COSMOLOGIE S

nuclear matter in the dense stages of our universe
(where the strong interactions are important) al-
ways obeys the energy condition. Therefore, it
is no longer possible to state categorically that
the cosmological singularity is unavoidable;
judgment must await concrete model calculations
which allow in detail for the effects of the strong
interactions.

We intend nothing so complex here. Rather we
study model isotropic universes whose matter con-
tents mimic that of the early universe, but which
can be solved exactly. They contain incoherent
radiation, and pressureless matter coupled to a
classical conformal massless scalar field after
the manner of the standard pion-nucleon coupling.
This field can also violate the energy condition; it is
the closest analog to the pion field for which we
have been able to find exact solutions. We find
the solutions for all three possible topol. ogies of
the universe, and in every case the singularity
can be prevented for a certain range of the pa-
rameters of the model. But only for the closed
universe is the necessary range physically com-
pelling.

is conformally invariant. Variation of S with re-
spect to g"" gives the stress-energy tensor

+ ~6G„vt'

where u" = dr" /dr is the 4-velocity of the particle,
and G„, is the Einstein tensor. We may add to
the above stress-energy that of any radiation
present.

Now consider a Robertson-Walker model uni-
verse containing a uniform distribution of identical
particles of the kind considered above, plus iso-
tropic radiation. The metric can be written as

ds'=a( l)r'[-dg'+(I+ 'kr') '(d-r'+r'de'

+ r'sin'Hdg')] (7)

for a closed (k=+1), flat (k=0), or open (k=-1)
universe. For this metric

ft=6a '(a „„+ka) . (8)
Il. THE COSMOLOGICAL EQUATIONS

Consider a point particle of rest mass p. coupled
to a conformal scalar field g with coupling strength

f . As the action we take

S =--,' tl tI}'"+~ Rg' -g '~'d4x- p. + $)d7

(4)

where R is the curvature scalar and d& is the ele-
ment of proper time of the particle. The first
part of S is the action for a free corrformal scalar
field, "the term proportional to p, is the familiar
action for a free point particle, and the coupling
term, which may be written

=-f d x -g' $ -g ' 5'x"-x" 7) dT

is a classical analog of the standard pion-nucleon
coupling. The integral over d7, a three-dimen-
sional 5 function, plays the role of the "density"
(44) of the nucleon idealized as a point.

Under a conformal mapping g» -g»Q and
g- fQ ' (arbitrary function II), both the free-field
action" and the coupling action are left unchanged.
Hence the scalar equation obtained by varying g
inS,

(5)

For simplicity we assume that the particles in
question are each at fixed r, 8, and P coordinates.
In the continuum approximation we may then re-
place the integral over dT in (5) and (6) by the
number density of particles n. Assuming that
the field P is uniform, and introducing the nota-
tions I"= ga and N= na', we may, with the help of
(8), reduce the wave equation (5) to

F ~ „+kF = fN . - (8)

T =gg „——', Rg' —(u' +f g}n, (10)

which reduces to T„=-pn by virtue of the wave
equation (5). But the trace of Einstein's equations
gives ft = -8wT, so that (8}cannowbe rewritten
as

4m
a +ka= —Np. .

3

Finally, for the metric (7),

We assume that the particle number is conserved;
in this case N is a constant.

We take into account the radiation by adding to
T„, in (6) the term

Ba '(, u„u„+ -', g„„),
where B, a measure of the amount of radiation,
is taken as a constant on the assumption of an
adiabatic expansion (or contraction}. It is under-
stood that u =u~ =u"=0 and u" =a ' both for the
radiation term and for the particle term. The
trace of the total stress-energy tensor is
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G "=——(a +ka).
s~

(12)

III. SOLUTIONS

The equations are solved as follows: First find
the solution of (9) and (11}in terms of four con-
stants of integration. In some cases one constant
can be eliminated by an appropriate choice of the
zero of g without loss of generality. Substitution
of a(t}}and F(q} into (13}then fixes another of the
constants. Tmo or three are left free; denoting
these by J, K, and Lwe have the following:

k=+1.

q=( fN+Jsin-rl+Kcosg}a ', (14)

- j./2
a= —Np 1+ 1+—(Ng) (J +K +28 —N f )3 4m

The corresponding Einstein equation is

4n
a „2+ka2= —(F,„'+kF +2Nap+2NfF +28).

(13)

Equations (9}, (11) and (13) are the complete set
of equations for the problem.

These solutions generalize those we found ear-
lier'4 for the special models with no particles
(N-0}. In contrast with that ca,se, in this the
universe can always be made to "bounce" [a(g)
having a positive minimum] for all topologies.
The conditions for a bounce are

k=+1,

k=O,

+2f2 ) 2gjf +J2+ +2

1 2KÃf& -8- —8' (19)

N2f2&28 (20}

Only in this case is the removal of the singularity
physically appealing.

k = -1 (type a), K' & g'+ N'f '+ 28 .

On physical grounds we would like the scalar
field to be generated entirely by the particles
themselves (mathema. tically, the scalar field
should be the particular solution of the inhomoge-
neous wave equation with no admixture of solutions
to the homogeneous one). We achieve this by set-
ting J=K= L, = 0; we find that now only the 0 =+ 1
universe can bounce provided

&sing

k=0.

g =(-2fÃg'+ Jq+K)a ',
(15)

2W 2
"8n - j./2

a= —Npq'+ —(8+NfK+Np, L+-,' J') @+L;

k= -1 (type a).

g =(fN+ Jsinht}+Kcoshq)a ',
(16)

a= Np, -1+ 1+——(Np) ~(K2 —O' —N f'-28)
3 4'

k = -1 (type k).

41 =(fN+ Jsinhri+Kcoshrl)a ',

x coshg

x sinhg

k=-1 (type c}.

fee+Pe" ~ —2B f'ee' ——ee'e')e4J

a= —Np(-I+Le ") .
4m'

3

(18)

— j./2
a =—Np-1+ 1+ ,—(Np) '(4' —K'+N'f'+28)

3 4m

IV. DISCUSSION

In field theory the conformal scalar field is gen-
erally regarded as physically reasonable (if not
necessarily existing in nature). The coupling with
matter we have assumed is the most natural one.
Furthermore, even though the scalar field can
have negative energy density in some circum-
stances, '4 in the case of interest here [k =+ 1 with
(20) satisfied] the total energy density a 'T„„is
positive. Thus we conclude that there exist phy-
sically reasonable classical cosmologies which
are singularity-free as a result of violation of the
energy condition assumed in the singularity the-
orems. Of course, since no massless scalar
field is knomn to exist, the above has no immediate
bearing on the actual universe. But our results
do underline a point of principle, namely, that
singularities in cosmology are not compulsory if
certain subtle features, such as interactions, are
taken into account. " It mould appear, then, that
only model calculations taking into account in de-
tail the relevant physics of the matter in our uni-
verse will be able to clear up the question of
whether there really was a big-bang singularity
or not.

There are, however, qualifications to be made
about our singularity-free model universe. The
attractive scalar force between particles must,
in any realistic situation, lead to the development
of inhomogeneities (clumping of the particles). It
is not clear whether the bounce is stable with re-
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spect to such inhomogeneous perturbations of our
homogeneous model. In addition, in any realistic
model entropy will be generated (we have ignored
this effect) and, in the final analysis, it will mani-
fest itself in an increase in the amount of radia-
tion, i.e., in an increase in B. It is not clear

whether under these circumstances the condition
for a bounce, (20), will continue to hold indefi-
nitely, or whether a collapse to a singularity will
ensue after a finite number of cycles of the uni-
verse.
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