PHYSICAL REVIEW D

VOLUME 11, NUMBER 8

15 APRIL 1975

Vector potential and metric perturbations of a rotating black hole*

Paul L. Chrzanowski
Center for Relativity Theory, Department of Physics, The University of Texas at Austin, Austin, Texas 78712
and Department of Physics and Astronomy, The University of Maryland, College Park, Maryland 20742
(Received 22 August 1974; revised manuscript received 16 January 1975)

The assumption of factorized Green’s functions together with the inhomogeneous Teukolsky equations
are used to derive analytic expressions for homogeneous metric (and vector potential) perturbations of a
Kerr black hole. These homogeneous solutions are used to construct solutions to the perturbation
equations when sources are present. What one finds are particularly simple formulas for the energy and
angular momentum flux in the asymptotic regions r* — =+ co.

1. INTRODUCTION

Ever since Teukolsky' discovered that the
Newman-Penrose? equations describing certain
components of the perturbed Weyl tensor (¢, and
¥,) can be decoupled and solved by separation of
variables in a Kerr?® background, the dynamics
of rotating black holes has been a subject of con-
siderable investigation. Significant work has
been done by Press and Teukolsky,* who, by
studying the separated radial functions, have
demonstrated numerically that a rotating black
hole is stable with respect to small perturbations.
The separable equations have proved useful in
many other computations, a few of which include
the superradiant scattering calculations of Staro-
binsky,® Starobinsky and Churilov,® and Teukolsky
and Press’; the gravitational spin-down work by
Hartle® and Teukolsky® and the point-charge
computations of Cohen, Kegeles, Vishveshwara,
and Wald.'°

In the work cited above, knowledge of y, and/or
¥y (9 and/or @, in electromagnetic computations),
two complex scalars formed by projecting the
perturbed Weyl tensor along the legs of a suitably
chosen tetrad, proved to be sufficient; the value
of the other perturbed Newman-Penrose scalars
did not need to be known. Such might be expected
since the Weyl tensor components ¢, and y, are
invariant under both gauge transformations and
infinitesimal tetrad rotations. These scalars
carry information in their real and imaginary
parts about the two dynamical degrees of freedom
of the perturbed field. In fact, Wald'' has shown
that well-behaved solutions to either the y, or the
¢, equation uniquely and completely specify a
gravitational perturbation up to changes of the
Kerr parameters a and M.

That either y, or §, determines the perturbation
in full does not necessarily mean that full infor-
mation about the perturbation is readily accessible
from these scalars. Off hand, it would appear
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improbable that the entire perturbed Riemann
tensor can be obtained with ease from y, or y,,
and it would appear even less likely that there
is an easy way to find the perturbed metric given
any or all the ¢’s since the Riemann tensor must,
in principle, be twice integrated to obtain the
metric.

The purpose of this paper is to spell out in some
detail an unexpected result that the perturbed
metric potentials #,, given by

gu.,:gﬂ(ﬁ"’**huu (L1)

in fact are directly accessible from y, and ¥,

by twice differentiating a particular combination
of separated Teukolsky functions. The homogene-
ous (source-free) potentials k,, thus obtained

are presented in two different gauges in Table I.

This construction of the perturbed Kerr metric
potentials, together with the Teukolsky equations
and Wald’s result, completes the picture of Kerr
metric perturbations. Any desired perturbed
quantity may be found from the metric, which,
in turn, may be determined from the separable
Teukolsky functions as shown in Table I.

For many calculations of interest, however,
this result is only of academic interest since
formulas for the energy and angular momentum
fluxes at infinity and at the horizon involve ¢,
or y, without need of the perturbed metric.
Notable exceptions to this general rule, that ¢,
and ¢, are sufficient for computational purposes,
lie in the areas of stationary perturbations and
quantum processes in the neighborhood of black
holes. In the first case, the potentials may be
used to find the vectoral change in the angular
momentum of a black hole when a nonaxially sym-
metric stationary perturbation is present. The
results will be presented elsewhere together with
an investigation of the properties of the perturbed
event horizon. As for the study of quantum pro-
cesses, the electromagnetic and gravitational
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TABLE I. Homogeneous potentials.

Ingoing radiation gauge: A,l" =h,, " =h,* =0

A, e, lmwP =%£)=[=1, (6% +2B%+ T¥) +m} (D + 2€* +p*)] _,ﬁ imw@) +1282,(6, p)e T

(=1, (6+28+7) +my (D +2€+p)] R ) 1 Z {20, 0)e™™T

hu,,(x,lme=i):{—l“l,,(6*+a +3B* = TF)(6* +4B* +3T+) —mlmf(D —p* +3€* —€)(D +3p* +4¢€*)

+Lymy)[(D +p —p* +€+3€%) (5% +4B* +37%) + (6% +38% —a — 7 — ) (D +3p* +4e¥)]}

X -Ziilmw(r) +Zlem(0’ ¢ )e-iwf

t{=l,1,(6+a*+38 =1 (6+4B+37) ~mym, (D —p +3€ —e*)(D +3p +4¢)

+lumy [(D +p* —p +e* +3€) (6 +4B+37)+ (6 +3B —a* —m* — 7)(D +3p +4€))}

X -Zlew (7‘) _22;‘;'"(9, q))e-iw'r

Outgoing radiation gauge: A, n" =h,,n"=h,* =0

A 0, Im@P =) = p*2n, (6 +7% = 20%) =, (A + 0% =279 4 Ry ) 1220060, )™

20 ny (6% + T —20) = mF B +1 =27)] 41 Ry, ) 11 Z2(0, ) 73T

huv(x,lme=:t)=p*""{—nun,,(6 —301*—6+51r*)(6—4a*+1r*)—mum,, (A+5u* = 3y*+7) (A +p* —4y*)

+numyy[(6+5m*+ B -3 *+ DA +p* = 4Y*)+ (A +5u* —p — 3y* —y) (6 —da * + %))}

X +2E1mm(7) _ZZ,‘*,J'.(@, ¢ )e-iaﬂ

ip-4{._nun,,(6*__3a —B*+5m) (0% —4a + ) —mImF(A+ 50 — 3y +7¥) (A +p —4y)

+n(mEy[(6% +5T+B* —3a + T) (A +p —4Y) + (A+ 5 —p* — 3y =y*) (6% —4a +m)]}

X yoR ) 42 Z 120, 9)e T

potentials are crucial to extending the analysis
of Unruh'? to second quantization of electromag-
netic and gravitational test fields in a Kerr back-
ground. The result, most expectedly, is that the
photon and graviton spontaneous-emission formu-
las for the flux at infinity are the classical super-
radiant scattering formulas of Starobinsky and
Churilov® and Teukolsky and Press.” In addition,
these potentials may be used to repeat for higher-
spin radiation fields the calculation of Hawking'®
to find the steady-state spectrum of electromag-
netic and gravitational radiation resulting from
a realistic collapse situation.

In general, however, the conceptual benefits
of having found the perturbed Kerr metric poten-
tials surpass the usefulness of these potentials
for doing future computations. For one, the dis-
cussion in this paper reemphasizes the important
lesson learned by Chrzanowski and Misner'*: The
amplitude of the ImwP mode (P = polarization
state) of the field generated by an arbitrary per-
turbative source with stress-energy 708 depends
on the strength of the direct coupling of T*® toa
solution of the homogeneous equation for the lmwP
mode. Specifically, what one finds for the gravi-
tational potential generated outside of a bounded
source is

M= [ do Y B gnap)

I,m I w |
x(h%% (ImwP), T*%, (1.2)
where the gauge-invariant inner product is de-
fined by
<ha8’ TaB>= f '_gdqxh):xBTuBa (1.3)

and “up” and “out” label properly normalized
[see (5.6) for normalization of the radial function]
homogeneous solutions which have the property
that they vanish, respectively, at past null in-
finity and on the future horizon.

Equation (1.2) and an analogous expression

valid inside the source radius lead to the partic-
ularly simple energy flux formulas

E:Z; Z fom dw w|{ R (ImwP), T*8Y |2 (1.4)

near infinity and [ with % defined in (5.21)]

b k oW ol 2
E=§ Z:fo dwl—-;-lwl(hdaa"(lmwp),T By

(1.5)

near the horizon. The normalization of the “down”
homogeneous solution, which vanishes near null
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future infinity, is given by (5.18). One sees that
the energy radiated involves a sum over a com-
plete set of modes; the source field coupling term
I{,)[? is the number of gravitons in a given mode
of frequency w. Equation (1.4) is mathematically
equivalent to the formula of Teukolsky!

2
E=lim f 4:1_w2_ Iy, l2dt ds2, (1.6)
but the former is far more suggestive as to how
the perturbing source couples to the perturbed
field in the physical process of the generation

of radiation.

Also conceptually important is the fact that the
gravitational potentials, and hence the perturbed
Riemann tensor components, are found by dif-
ferentiating a single scalar function ¢. In partic-
ular, in the gauge hgl%=h *=0, ¢ is given by
(see Sec. VI)

y= fdu.)z -Zleu(r) +zslﬁl(6)eimw—iut

=[P-4¢4] *. 1.7

This represents a generalization of recent work
by Cohen and Kegeles,'® who find a Debye potential
¢ for electromagnetic perturbations of all alge-
braically special solutions. For the special case
of the Kerr metric, ¢ satisfies ¢=[p~2 ¢,]*.
Clearly, for a Kerr background, ¥ acts as a
gravitational Debye potential, an object for which
a general theory has not been developed. The
results presented here, then, provide a foundation
for future investigations into the subject of Debye
potentials for gravitational fields.

There is yet another benefit arising from this
derivation of the Kerr metric potentials. The
Schwarzschild limits of the expressions in Table I
lead to differential relationships (see Table III)
between the a =0 Teukolsky functions and the
radial functions which arise from studies'®™®
of metric perturbations of the Schwarzschild
solution. Hence, this work serves as a link be-
tween these two distinct methods that have been
used to investigate black hole perturbations.

In the succeeding sections, the perturbed metric
potentials are derived and their basic properties
are discussed. Specifically, what are considered
in the second section are the two basic inputs
into the derivation: the inhomogeneous Teukolsky
equations and an assumed form, first used by
Chrzanowski and Misner,* for Green’s functions
for the perturbed metric. Some justification for
the assumption is given in this section and in
Appendix A, where it is shown that the assumed
form for the Green’s function is valid at least in
the Schwarzschild geometry.

The Green’s functions and the Teukolsky equa-
tions are then used in Sec. III to derive the poten-
tials listed in Table I. Verification that these
formulas are correct is relegated to Appendixes
B and C.

Following a discussion of the basic properties
of the homogeneous potentials in Sec. IV, the
inhomogeneous potentials are studied in Sec. V.
Retarded Green’s functions are constructed and
the previously quoted formulas for the observed
energy flux at infinity and at the horizon are de-
rived. Angular momentum flux formulas also
are found.

In the last section, the electromagnetic results
are compared with the work of Cohen and Kegeles.!®
This leads to a speculation that the gravitational
formulas are more general than their derivation
warrants. It is suggested that the expressions for
the perturbed Kerr metric, with minor modifica-
tion, are valid for perturbations of any algebra-
ically special vacuum solution.

1. FACTORIZED GREEN’S FUNCTIONS
AND THE TEUKOLSKY EQUATIONS

The two inputs needed to find the metric poten-
tials are the Teukolsky equations with sources
and an assumption of the existence of factorized
Green’s functions for the perturbed potentials.
For the purpose of establishing the notation to
be used throughout the paper, the pertinent work
of Teukolsky,' Teukolsky and Press,” and Chrz-
anowski and Misner'* on these topics is reviewed
here.

The Teukolsky equations are decoupled, sep-
arable differential equations for certain compo-
nents of the perturbed Riemann tensor invariant
under gauge transformations and infinitesimal
tetrad rotations. Specifically, in an appropriately
chosen tetrad, the equations for the Newman-
Penrose quantities ¢, and ¢, (¢, and ¢, for elec-
tromagnetic perturbations) are known to decouple,
and the equations for

rp“‘zp“ s= =2

p_2¢2) s==1

Q,=( ® (scalar field), s=0 (2.1)
¢ S=1
\‘Po’ s=2

separate as follows:

Q =Z Q (linw)

=S Rimlr)  Zis(6, e, (2.2)
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where (¢, 7) is any one of the coordinate pairs
(¢,t), (@,u), or (p,v). The pair used depends
on whether the perturbation is studied in, respect-
ively, the Boyer-Lindquist, Kerr “outgoing, ”
or Kerr “ingoing” coordinate system.?® Through-
out, the symbol 3 will denote a sum over ! and
m (and polarization states P, where applicable)
and an integral over all frequencies (-, «).

The angular functions in (2.2), normalized to

—J
1 d . .ds 2,02 m?
$ing <;i-9-sm9d0> + (azw cos?6 = Sin%g ~ 2awscosf -
which is regular on the interval [0,7]. Two
useful symmetry relations,
SZZL:JH (Tr - 6’ ¢ + ") = —SZ[ulJ'l(a’ q))) (2'6)
Zim (O, @)*= (=)™ _Z,25(6, ¢), (2.7

follow from angular Eq. (2.5); the phase conven-
tion is chosen to agree with the spherical har-
monic phase convention in the appropriate limit.

The differential equation satisfied by ,R(r)
depends both on the choice of tetrad and the choice
of coordinate system. Written here in Boyer-
Lindquist [¢,7, 6, ¢ | coordinates, two commonly
used tetrads are the Kinnersley tetrad?!

1% =[(r*+a?) /B¢, 1,0, a/0¢],
ne =[r2+a27 _A[{r 0,(1]/22’

m* =[iasing, 0,1,i/sind] /N2 (r +ia cosb),

(2.8)

2045
give

2m m
S a0 [ Taosins 256, 0% 2500, 0)-1,
1] o

(2.3)
are defined by
20506, 9)= (2m) 7 (S8 (6)e (2.4)
with ¢ S,2(6) the solution to
2mscost
W—§c0t29+E—§>S=O, (25)

r

which is regular on the past horizon, and a tetrad
with legs regular on the future horizon:

1%=[=(r*+a®) /By, 1,0, —a/n.],

n®=[=@2+a?), -8y, 0, —al] /2%, (2.9)
m®=[-iasing, 0,1, —i/sin6 | /V2 (v +ia cosé).

Here and throughout the notation Ay =72 — 2 M7 + g?

and Z =72+ a%c0s?f is used. The radial function
<R(r) is then

SR (y):{

where R(r) satisfies the differential equation

$Hr),
SR(r)*,

tetrad (2.8),
tetrad (2.9),

(2.10)

[Axdii;—+2(s+1)(r—M)a—§ +@§(&—ﬂ(+4irws—)\}1{= -T (2.11)
when (¢, 7)=(¢, ), the equation

<AK di:-z— +2[(s+ 1)(r = M) +iK) dir + 2(25+1)iwr—n>sR. =-T (2.12)
when (¢,7)=(¢, «), or the equation

<AK ;‘};5 +2[(s+1)0r = M) —iK | % - ——————4"3(:””“'- 225 + 1)iwr — /\) R=-T (2.13)

when (¢, 7)=(J, v). The eigenvalue A is related to
the angular equation eigenvalue by A =E ~ 2amw
+a?w?-s~s% and K=(r?+a?)w—-am. The source
term T is

2 J‘ dQ dT Es Tleu;l (6, \p)*ei JT’ tetrad (2'8)$
T=

2 f dQdT1Z,T* 256, p)e™*“T, tetrad (2.9),

(2.14)

r
with (T given in Table II. The above differential
equations admit the symmetries

slew(V)=(— )msRl-m—u(r)*’
slew(y)*=(l/Ax)s -sleuJ(y)’
both of which prove to be useful.
Taken together with the inhomogeneous Teukolsky

equations, the crucial idea which enables the
expressions for the potentials to be derived is the

(2.15)
(2.16)



2046 PAUL L. CHRZANOWSKI 11

TABLE II. Source terms.

o =2{(6 +m* —a* =3B =47)[(D —2€ =2p%) T, — (6 + 7% — 20* —2B)T ;]

+(D =3€+€*=4p =p*¥)[(6 +27* —
T =(0=B=a*=27+m*)d; = (D —€+e*—

ol '—'Tdoz

28)T ;= (D —2€+2€*—p¥)T, 1}
2p —p*)d

AT =P A +y =y 42U +p*)d e = (0% + @ + B* +2T = T%)J ]

2T =207H(A +3y = y* +4p +pu¥) [(6% =

27% +2x)

Tt = (B +27 = 27% +p 9T 5 4]

+ (6% — T*+ B* +3a +4m) [(A +2y+2u*)T ) % — (0% — T+ +23% +2a)Tm]}

concept of factorized Green’s functions. The con-
jecture to be used as to the form taken by Green’s
functions for the perturbed electromagnetic and

gravitational potentials is based on the result that

Z%‘)I B (x, lmw)PU (x', Imw)*,

r(x)>7(x")
G(x,x")=

Z —Q"‘ (x, Imw)®4¥(x, Imw)*,
r(x)<7r(x’)
(2.17)

can be shown'!? to be a retarded Green’s function
for test scalar fields in a Kerr background.
Throughout this paper, the labels “in,” “up,” “out,”
and “down” refer to the global boundary conditions
satisfied by the various scattering solutions.
¢ and ®“P are solutions to the homogeneous wave
equation which, respectively, vanish on the past
horizon and at past null infinity (97). Similarly,
doutand @91 vanish, respectively, on the future
horizon and at 9%, (See Fig. 1 in Ref. 14.)

The homogeneous solutions ®* and $**'in (2.17)
agree in amplitude and phase near 9" and satisfy
the normalization condition

w
(q)lmunq) ‘m’ ’>J* zl_w_l 6“'6,,, (218)

'm'w mlé(w—w’))
where @, is either the “up” or the “out” solution.
An inner-product symbol subscripted with a sur-
face (in this case %) is not to be confused with

the inner product to be defined by (2.21); this is
the standard Klein-Gordon inner product. The
fields " and ®%°*" are normalized to give

(q)‘lnmw7¢dl w’)fh ‘l ‘611’6 ( W/)- (2-19)

Near the future horizon (fh) ®™ and ®9°*" agree in

amplitude although they differ in phase [see (5.17)].

The above scalar Green’s function may be used
to find solutions to the inhomogeneous scalar wave
equation ®,,%=4nT, where T is a bounded source.

Outside of the source radius, the field is

Z— &ur(x,limw){ @, T), (2.20)
with

(&, T) =J\/Gd4xq>*T. (2.21)

Notice that ®(x) is given by a sum over a complete
set of scattering states ®,;? 6 satisfying the ap-
propriate boundary conditions at spatial infinity;
the amplitude of each state depends on the strength
with which an associated state @' couples to the
source of the waves.

With the knowledge that the above holds for
scalar test fields in a Kerr background, Chrzan-
owski and Misner'* conjecture that the most
natural generalization of (2.17) holds for retarded
Green’s functions for test electromagnetic and
gravitational potentials:

gPPA“P(x ImwP) A% (x,lmwP’)*,

Iw!

r(x)>r(x")

G“u(X,X,):
Z ol gF AR (x,lmwP) A% (x', ImwP’ )%,

r(x)<w(x")

(2.22)
ZT:I PR (x Imw PR S(x, ImwP’)*,
r(x)>(x")

Gy aslX,X)=

Zl (gpp ki, (x, Imw P)ESS"(x" ,lmw P)*,

r(x)<r(x’)
(2.23)

with 71 g =l o5 — 3 €ash. As before, the various
scattering solutions are superscripted with the
boundary condition satisfied and are normalized
via Klein-Gordon inner products to give
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(YR AmwP), g (U'm’ W' P}) gt
w ’
1B 8= ),
(2.24)
(g (lmwP), :,u"‘d"“"(l’m’w’P’)),.h

w

=mgpp,6”,6mm,6(w—w’),

where ¢, denotes either of the homogeneous
potentials A, or k,,. [As shown in Ref. 14,
these normalization conditions follow from (2.22)
and (2.23); they need not be conjectured separate-
ly.] Included in the symbol Y are summations
of P and P’ over the two linearly independent
physical polarization states. The quantity gpy is
a two-dimensional metric for the polarization
states proportional to 64 should the states be
chosen to be orthogonal.

The potentials generated by a bounded, arbitrary
perturbative current J ® or stress-energy T°8,
then, are given by

Ay :E% g™ A% (ImwP) A’y (ImwP'),J*),
. (2.25)
Ry = %’lgﬂ"ﬁ;g(zmwp)( ROy (LmwP'), 4T )

at radii 7(x) outside of which the source term
vanishes. The factor of 4 in the gravitational
case is due to the fact that 1677°8 is the source
term in the gravitational perturbation equation,
whereas 4n7T and 4nJ © appear in the other equa-
tions.

The above formulas, together with appropriate
expressions for the stress-energy tensor of the
generated field, may be used to find that'*

E:Zwl(A‘;;“(lme),J"‘)lz, (2.26)
w>0
E=) wlhy(lmwP), T°)|? (2.27)

w>0

are, respectively, the electromagnetic and grav-
itation radiation energy flux at infinity provided
that the electromagnetic (gravitational) polarization
states have been normalized to give gppr = — Oppr
(gppr =20 ppr). The notation “w> 0” signifies that
the integral over frequencies in the mode sum
is restricted to positive frequencies.

In addition to the aforementioned fact that the
Green’s function takes a factorized form for
scalar perturbations of Kerr, there is other ev-
idence in support of the conjecture of factorized
electromagnetic and gravitational potential Green’s
functions. The successful treatment,'* employing
(2.26) and (2.27), of radiation emission by test

METRIC PERTURBATIONS... 20417

charges and test particles in ultrarelativistic
circular orbits about a Kerr black hole indicates
that the Green’s functions are valid at least in the
high-frequency limit. More importantly, the
existence of these factorized Green’s functions
for electromagnetic and gravitational potentials
can be established for perturbations of a nonro-
tating black hole. This is done in Appendix A.
Hence, the factorized Green’s functions are known
to exist for the Schwarzschild geometry, for
scalar fields in the Kerr case, and for high-fre-
quency electromagnetic and gravitational test
fields in the Kerr case.

That the Green’s functions take the form indi-
cated in (2.22) and (2.23) seems well justified but
has not been proved at this stage. The ensuing
derivation of the perturbed potentials relies on the
existence of factorized Green’s functions, so the
validity of the resulting expressions for the po-
tentials must be checked. Once the derived poten-
tials have been verified as correct, (2.22) and
(2.23) are established as valid Green’s functions
and can be used in future computations.

III. DERIVATION OF THE PERTURBED POTENTIALS

To obtain the expressions in Table I for the
perturbed potentials, one first finds a formula
for the perturbed field component @, [see (2.1)]
generated by an arbitrary perturbative source
by using the factorized Green’s functions. The
inhomogeneous Teukolsky equations lead to an
alternative expression for §2,, which, when
compared with the first formula, yields the re-
sults displayed in Table I.

Consider, then, (2.25) which give at large radii
the potentials generated by a bounded source.
They follow from the assumption of factorized
Green’s functions and may be written in the com-
pact form

Py (x) =Z’%)-I g Pu(x,lmwP) ( Py (ImwP'), $8)
(8.1)

where P,=®,A,, Ew is one of the three perturbed
potentials generated by the appropriate source
term S, =T,J,,4T,,. Of course, in the scalar
case one has g% =1.

Now act on P, (x) with the operator (D% which,
by definition, extracts the Q; field component
from the potential. The exact form of (D%, al-
though not needed, may be deduced from the re-
sults of Appendix B; the operator ,0!", for ex-

ample, is given by
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) S —3{(D-p*-3e+e*)(D = p*=2€+2e*)mPm’ + (6 + 1% =3B = a*)(6 + 1% =23 = 2 ¥)IH] Y
-[(D=p*=3e+e¥)(6+2m*=28)+ (5+m*=38— a*)(D=-2p*=2¢€)|l Fm¥)}. (3.2)

(For the scalar field (D =1.) The result of this
operation is

82 {:% & D*PP(lmwP)( Py(lmwP’), S8,
(3.3)

The quantity  D*Pi(lmwP) appearing in the above
equation is known to be a solution to the equation
for ;. In fact, it is convenient to define the lmw
mode of the potential to be that which obeys

sDP ¥ (IlmwP) =\ (P)Q (Imw), (3.4)

with A (P) an amplitude factor. As given in (2.2),
2, (lmw) is a separable component of 2, here
suitably normalized and labeled by the boundary
condition satisfied by the field function. Combin-
ing (3.3) and (3.4) with the definition

Poylmw) = D A (P)*g™ Po (ImwP"), (3.5)
pP,P
one obtains a formula

93=Z-%ng (Imw){ Py (Imw), 58 ) (3.6)

to be compared with a second expression for £
derived from the Teukolsky equations.

The decoupled Teukolsky equation for &g, after
a suitable choice of tetrad, reduces to radial
equation (2.11), (2.12), or (2.13) depending on
the coordinate system and angular equation (2.5).
With the definitions

dr * _1’2+a2

o T a o = RONETa) 8 (3.

the radial equation becomes

—Er—iiz + Vs (T*)u = (1’2+a2)'3/2AK“s /ZT, (3.8)

where T is given by (2.14) and the precise form
of V, (r*) depends on the coordinate system and
tetrad chosen.

Equation (3.8) may be solved by method of
radial Green’s functions, a procedure discussed
at length in Refs. 14 and 22. The result is that
the Green’s function

[—Eii*; +Vs(r*)j|G(1’*,r;‘)=6(r*,r(’)") (3.9)

rrE>rx
Gr* v¥)=—— X

o (R,
Tl 2wl

u“"(fg‘)u’"(r*), T* < VJ.
(3.10)

The labels “in” and “up” on the radial functions
refer to the boundary conditions satisfied by the
field quantities
Q=) R()Z(6, p)e™iT (3.11)

constructed out of source-free solutions to (3.8).
The normalization condition imposed on these solu-
tions to (3.8), with the numerical factors that
appear in (3.10), is not given here since it is not
needed; moreover, spurious overall numerical
factors will be discarded in the remaining steps
since they just affect the amplitude of the homo-
geneous potentials to be derived.

Equations (3.7) through (3.10) and (2.14) combine
to give

R(r)= T&f jz“"(r)f V=g d'x TA,S R Z*eieT

(3.12)

outside of a bounded source, so the generated field
is

iw
Q=3 Toy S me)

xf Vog dix TAS R™ Z*'T (3.13)
or, with the aid of (2.16), one has
QS:Z%Qgp(lnzw)
xf Vg dix[_ R Z emiUT|* T, (3.14)

To obtain from this an expression for £, compara-
ble with (3.6), the inner product between the source
term and the test field must be integrated by parts;
as written, derivatives of the source term appear
rather than the source term itself.

Consider, for definiteness, the case s =2 for
which the inner product in (3.14) is

[VRganl Rz ey

- (_zkuulzz eoiwr’2T>, (3'15)
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where, from Table II,
LT =(0+7%—a*-38-47)(D -2€ - 20*) T}, = (6 + 1% = 2a* - 28) T},]
+(D=3€+e*—4p—p*)(6 +27* = 2B) T}, — (D — 2€ +2€* = p*¥) T, ] . (3.16)

The T;, term in the inner product, denoted by ( , ),;, is given by

Cy Y=- f\/—g d“x[_zk"”‘zz e HTIXO 4 — a* =33 -4T)(0 + 1 = 2a* - 28) T}, (3.17)
Integration by parts yields

(, >,,=-[\@d“xT,,(—é+rr*—2a*—ZB—m*;xx—hn*—a*—33—4r—m‘;x)[-zk°“‘zz e iUT]Y, (3.18)

and, using the fact that

mry=1*+f-a* -1, (3.19)
one finds
¢, >u=—f¢¥d“xT”[(5*+a+3B*—T*)(6*+4;3*+3r*)_,1'2°“‘zz eTteT)*, (3.20)

Similarly, with the aid of the result
I}, =€+e*—p=p* (3.21)

the T;, and T,,, terms become

C dim= [V=E d' T, {[(D +p - p* +e +36™) (0% +48* + 37%)

+(6*+38*—a—-7-7*)D +3p* +4€*)]-zk°mzZe"“‘”}*, (3.22)
) Ymm= f VEZ @i Ty {=(D = p* +3€* = €)(D + 3p* + 4€¥) R Z ™ +¥T}*, (3.23)
Hence, the inner product in the equation for &, is
(X%, T%)= [ V=g d (X3 Ty = Xlomy Tim+ X o T, (3.24)
with

o8 {1 1g (6% + @+ 38% = T*)(6* + 4B* +37*) = mEmF(D — p* +3€* — €)(D + 3p* + 4¢*)
+l<amg)[(D +p=p*re+3€*)(6* +4B8* +3T*)+ (6* +38* - a - H—T*)(D+3p*+4€*)]}-2R°‘"ZZ e ivT,

(3.25)
Exactly the same procedures, together with the formula
T T Ak A (3.26)
may be used to find similar expressions in the other three cases. The general result is
Q=Y %’r QU (Imw)( X", S), (3.27)
with
X u=p* om0, (6 - 3%~ B45TF)(0 — 4a* + 7¥)
+n [0 +57% + 3=3@* 4 7)(A +u* - 4y*) + (A +5u* = = 3y* = ¥)(6 - 4a* 4 7*)]
—mum, (B +5u* = 3y* +¥)(A + p* = 4y *)RON_Z e (3.28)
X =R em, (B p* = 27%) 40, (6 4 T - 2a%)] RO Z et (3.29)

X =[-1,(6% +2B* 4+ 7%+ m(D +p* + 26 %) L R Z €T, (3.30)
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and X}, given by (3.24).
Comparison of (3.6) and (3.27) reveals that

(P (Imw),5%) = (X' (Imw), 5%, (3.31)

and since S* is arbitrary except for the fact that it
is divergence-free, one has

AR (Imw) = , X (Imw) + Vo 01, (3.32)
a8 (Imw) = , X GE (Imw) + V. €53, (3.33)

with ¢*! and £%? arbitrary functions. That is to
say, the result of identifying (3.6) and (3.27) is

AR (Imw) =, XQNImw), hGE(Imw) = X oE (Imw)
(3.34)

modulo gauge transformations. Henceforth, the
label “out” will be dropped. Since the entire argu-
ment carries through using, for example, the ad-
vanced rather than the retarded Green’s function,
the above derivation is completely independent of
the imposed boundary condition.

What remains to be done is to decompose the
potentials given by (3.34) into the two linearly in-
dependent solutions which constitute the perturbed
field. [Recall that P,(lmw) is a composite poten-
tial formed in (3.5) by summing over the polar-
ization states.] Since the form of the Kerr metric
is invariant under the parity operation
P=(6-m—-6, ¢~ ¢+m), the definite parity states
P, (lmw) £ PP, (Imw) are the obvious choice for the
two linearly independent solutions for each lmw
mode.

Specifically, consider again the s =2 case as an
example. The effect of the parity operation is

PX=X, PY=Y* PZ=-Z% (3.35)
with

X=Il,n,,D,A,

Y=¢€,p,u,y+c.c. terms, (3.36)

Z=m,06,7,maB+c.c.terms,

These relations together with (2.6) and (3.28)
yield the solutions

hyy (x, ImwP = 1) =zm,(xy ImwP = 1)
=hy, (Imw) £ PR, (Imw)  (3.37)
given by the &,,l" =#," =0 gauge expressions in
Table I. The results in the s=-1,1, -2 cases are

listed in Table I as the potentials in, respectively,

—

the A, =0, A; =0, and h,n" =h," =0 gauges.
Verification that these potentials are correct is
presented in Appendix C.

IV. THE HOMOGENEOUS POTENTIALS

The homogeneous potentials listed in Table I
merit some discussion before the inhomogeneous
equations and Green’s functions for the potentials
are reconsidered in detail. To appreciate fully
the expressions in Table I, it is worthwhile to
examine the question of gauge conditions, to
establish the reality conditions obeyed by the
potentials, and to understand the relationship in
the Schwarzschild limit between the metric per-
turbation radial functions and the radial functions
found by Bardeen and Press.?

It is noteworthy that the electromagnetic poten-
tials are not presented in the Lorentz gauge;
rather, the two gauge conditions specified in
Table I are the gauges “naturally selected” by
deriving the potentials from the field functions
@, and ¢,. The potential in the 4, =0 gauge, for
example, was found in the previous section by
integrating by parts the source term in the ¢,
equation and reading off the coefficients to J° in
the inner product. Since no J, source terms ap-
pear in the ¢, equation source term (see ,T in
Table II), the quantity A;, which is the coefficient
of the J, term in the invariant inner product
(A" J%), must vanish. This result that A,=0 is
then identified as a gauge condition.

As noted, the A, =0 expressions follow from the
equation for ¢,, the “ingoing” field component.
In this gauge the potential is transverse at the
future horizon and past infinity. Hence, A,;=0 will
be referred to as the ingoing radiation gauge and
will be used to do computations in these asymp-
totic regions. Alternate expressions for the po-
tentials follow from the “outgoing” field function
¢,; this outgoing gauge condition A,=0 is useful
near 9 and the past horizon, where it is trans-
verse. Similarly, the gravitational potentials
are presented in trace-free ingoing and outgoing
gauges.

Now consider more closely the actual expres-
sions for the potentials to see that, within overall
phase factors, they are in fact real. Summing
over modes, one finds that the vector potential in
the outgoing gauge is

A= p* 2 [no(6+7% =20%) = ma(A + p* = 29%)] _,R ,Ze -7

£ p 2 [na(6% +7 ~20) — mi(A+ p —29)]) R _,Ze~"T @4.1)
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or, with the aid of (2.6) and (2.15),

Ag= Z {p*?[na(6+ 7%= 20%) = mo(A + p*=2y%)] R Ze " zc.c.}. (4.2)

Hence, the vector potential is simply

A (P=+=M)=2Re Z p* [0+ T = 2a%) = Mo (A + ¥ —29%)] R, Ze T 4.3)

Ao(P=—=E)=2iIm D, p*"2[ng(6+1*=20%) ~MalA + u* =2y%)] _R Ze ™17, (4.4)

The notation E,M anticipates the result that in the
Schwarzschild limit the “E” modes are the elec-
tric parity potentials and the “M” modes are of
magnetic parity. Analogous results hold in the
other cases, e.g., in the ingoing trace-free gauge

hy,(P=+=E)=2Re ) ,X,, ,

4.5)
hyy(P===M)=2iIm D, ,X,,,

with , X, given by (3.24).

The Schwarzschild limit of the above equations
is most interesting in that it reveals the connec-
tion between the a =0 Teukolsky functions, first
found by Bardeen and Press,? and the radial func-
tions which appear in studies'®"'® of metric per-
turbations of the Schwarzschild solution. Rela-
tionships amongst the Bardeen-Press, Regge-
Wheeler, and Zerilli radial functions have been
found recently by Chandrasekhar? using other
methods; what is sketched out here is a simple
alternative approach to the subject based on the
expressions in Table I and work done by Mon-
crief.?®

The idea is the following: The combinations of
derivatives of spin-weighted spherical harmonics
that appear in the definite-parity solutions &,, (E)
and h,, (M) are the tensor spherical harmon-
ics,'®2%27 and the coefficients to these harmonics
are the metric perturbation radial functions ex-
pressed in terms of derivatives of ,,R(¥). As
shown by Moncrief, there exist gauge-invariant
combinations of the metric functions which sacisfy
Schrddinger -type equations

2

[_diz e V(E)J R (r)=0, (4.6)
dz

[_ e Wt V(‘”] R(M)(,',):O (4.7)

for, respectively, the electric and magnetic parity
cases. (The effective potentials V'® and V¥ are

given in Ref. 19.) One may then find these gauge-

invariant quantities R'®) and R™ as functions of

1o by using the ingoing or outgoing gauge metric
radial functions read off from Table I.

In the notation of Regge and Wheeler,'® the “06”
component of the metric perturbation, for exam-
ple, is
1 3Y e

_1,(E) Y —iwt _
hoo=ho™(7) 26 ¢ ho(r) sinf a ¢ € ’
(4.8)

and from (4.5), one has that in the ingoing radia-
tion gauge

hoo(E) | Re o3 2
he ;:{ }lom“;r <Dw-—;>
00 (M) iIm

¢} i 9 _ -iwt
X <8—6 * Sind a—(p 2 cot0> R Ze ,
(4.9)

with

2M\ . d
Dw=<1_7> <—zw+d7*>. (4.10)

Here and for the remainder of this section the
Boyer -Lindquist coordinates and the Kinnersley
tetrad are used. Equation (4.9) reduces to

e~ (2-2) [

IS ST S
x<89+smeaq)>Ye , (4.11)

so the radial functions may be identified as being

v

¥

Consideration of the other components of the met-
ric leads to the identification of the remaining
metric radial functions with the results shown in
Table III.
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Moncrief has shown?®® that the electric parity
function

4r(1 =2M/7 Pk, + (L + 1)k,
T+2) (1 -1)+6M/7

R(E) =[(l+2)(l _ 1)]1/2[

]
(4.14)

with
dG 2

k=K +v o 7

(1 -2M/7r'E
(4.15)

& ]
ar |’

is both gauge invariant and satisfies the Zerilli
equation (4.6). In the ingoing radiation gauge this
reduces to

R® =[(1+2)(1 - 1))

kBy=3(1=-2M/7)" [Hz -(1-M/(r -=2M))K -7

vH, - 1(1 +1)h{® }
(1+2)(1-1) +6M/r) ’

(4.16)

X l:rK -2(1- 2M/r)(

Similarly, for the magnetic parity case, the quan-
tity
L dh,

RW) = -} (1- 2M/r)(h1 +=

1
e -;hz) 4.17)

is gauge invariant and is a solution to (4.7). Equa-
tions (4.16) and (4.17) together with Table III al-
low one to construct R*) and R‘®) from solutions
to the Bardeen-Press equation.

In a more thorough discussion of the metric
perturbation and the Bardeen-Press functions,
Chandrasekhar?® finds remarkably simple first-
order differential relationships amohg R(E ), RW ),
and _,R. Similarly, (4.16) and (4.17) may be re-
duced to first-order equations by using the Bar-
deen-Press equation to eliminate higher-order
derivatives of _,R.

Schrédinger -type equations with short-ranged

PAUL L. CHRZANOWSKI

1
effective potentials have yet to be found for per-
turbations of the Kerr solution except for the
special case of axially symmetric perturbations
which has been investigated by Chandrasekhar

and Detweiler.?®

V. THE INHOMOGENEOUS POTENTIALS

With the verification in Appendix C that the po-
tentials in Table I are valid, the homogeneous po-
tentials may be used in turn to construct the
Green’s functions postulated by Chrzanowski and
Misner. That is to say, for the Kerr metric, the
potential Green’s functions introduced in Sec. II
are valid. The form taken by these Green’s func-
tions was presented in that section, and the ex-
pressions for the homogeneous potentials which
appear in the Green’s functions have been derived.
All that remains to be done is to use (2.24) to nor-
malize the radial functions in the various scatter-
ing solutions. In this section these normalizations
are fixed, and energy and angular momentum flux
formulas for the asymptotic regions »* -+ are
derived together with Green’s functions for the
special case of stationary perturbations. As in
the previous section, only the Kinnersley tetrad
and the Boyer-Lindquist coordinates will be con-
sidered.

Examine first the potentials generated outside of
a bounded source. As presented in Sec. II, the in-
homogeneous potentials are

-iw
4a=2 T

AP (ImwP){ AP (ImwP),J 5}, (5.1)

2iw
has= 2 T hB(ImwP) (R (ImwP), TV, (5.2)
where, according to (2.24), the “out” and “up” so-
lutions have a common asymptotic form near 4*
and are normalized to give

TABLE III. Schwarzschild pertuibation radial functions (in ingoing radiation gauge).

P r) = —(1 = 2M/r B (r) = [

Gr)= 2 K@) =

=11 +2)
L(+1)

=2

1/2
:| (Dw _127> R )

L(l+1)

Hytr) =Hy ) = —H, r) =———

pa+1nae+2)a

1 3
— 1)]1/2 (Dw+;)(Dw‘;) —R@)

1

ho(r)=—=(1—=2M /r)h @) =_[

—27°

b =TT Da 20

ri—2Mr L1 +1)1 +2)( -
=1 +2) |17 2\,
T +1) ] Dy =3 Jli 2R )]

1 3\,.
)7 (Dw +,’,) <DuJ —;)ll 2R ()]

1)]1/2 -ZR )
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(Ao(ImwP), A%(I'm'w'P"))

o
:llwgl 8pp10;; By (W= w"),
(Rap(lmwP), k*B(U'm’ ' P")) 4+ o)
:lz_jl Opp 011 Opm Ow=w).

The polarization metric has been chosen® to sat-
isfy gpp:= — 0pp' in the electromagnetic case. In
the gravitational case one has gpp/=28pp:, and the
“bars” have been dropped since the gauge condi -
tions used here are trace-free.

In the above expressions it is understood that
the sums over [ do not include the modes [<s, for
the Teukolsky functions (and hence these poten-
tials) are not defined when [<s. From the work
of Wald'! and Fackerell and Ipser,® it is known
that these modes cannot be radiative; they carry
information as to the total charge, mass, and
angular momentum of the system. (See Appendix
A for an analysis of the /<2 modes for the
Schwarzschild solution.) The /< s potentials have
not been found by the procedures discussed here,
basically because one does not obtain the con-
stants of integration of the system by determining
the potentials through differentiation.

The outgoing gauge potentials are transverse
near 9*, so they are used in the construction of
the Green’s function outside of the source radius.
Equations (5.3) become

4—;7 f dt dQ v [A%" (I'm'w'P')* 5, A (ImwP))

w

lwl

8pp1 01710y O(w-w’), (5.4)

# fdtdn 2[R (I'm' w' P )* 5, hi%(ImwP))]

2w ,
= Tol Oppr0;116pm Olw=—w’). (5.5)
By substituting the outgoing gauge potentials into
these equations one finds that the Table I expres-
sions are properly normalized provided that near
infinity the e'“"* piece of the radial functions obeys

1 eiwr* .
) s-2
ROV~ (- i/ w)® —(le)”z ST V2
+ (e~ term for “out”) (5.8)

for s=1, 2. Hence, the outgoing gauge expressions
in Table I together with (5.1), (5.2), and (5.6) con-
stitute Green’s functions (valid outside the source
radius) for electromagnetic and gravitational per-
turbations of the Kerr solution.

These Green’s functions may be used to calcu-
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late the energy and angular momentum flux at in-
finity. What one uses are

E:}im szdtdﬂ T7,, (5.7)

J=_}Lmrzfdtd9 T ,, (5.8)
where T"", in the gravitational case, is the Isaac-
son®! effective stress-energy tensor. Substitution

of (5.1) and (5.2) into (5.7) and (5.8) gives the pre-
viously quoted results for the energy flux

E=) wl{AZ(UmwP),J%), (5.9)
w>0

E=Y wl|(h& (mwP), T®), (5.10)
w>0

and

J= 9 ml(A% (lmwP),J*) |2, (5.11)
w>0

T= 2 m|(hSY (ImwP), T°P) (5.12)
w>0

for the angular momentum flux. These formulas
may be shown to be equivalent to the correspond-
ing formulas of Teukolsky."

Now consider the generated potentials near the
horizon, i.e., inside the source radius. The ap-
propriate formulas are

Ag=. T;T AP (lmwP){ AL (ImwP), "),

(5.13)
2w,
hog= D2 Ty hEsImwP) (ki (ImwP), TH).
(5.14)

Here one works in the ingoing gauge and normal -
izes the “in” and “down” solutions to obey

(A (lmwP), A (I'm' w'P")) y,

w

lwl

0pp' 0110 m O(w—w’), (5.15)

(hE(ImwP), R (I'm' w’ P')) 4,

w

=2 lwl 6.P}"Gll'ém'm’é(w—W’)- (516)

and to agree in amplitude near the future horizon,
although the e ~*"* terms differ in phase by

kw i ikr ¥

down ~ in ikr

R () bl SR (r)+(e term),
s==1,-2 (5.17)

near the horizon. Evaluation of these inner prod-

ucts yields the correct normalization of the Table

I homogeneous solutions that appear in the Green’s
function. The result is
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(Dol R~

s=-1,-2 (5.18)
or
m~% I—%A e—ikr*(8M7,+)—l/2

X[(=2iMr b+ (M?-a®)'?) [k|V?]71, 5.19)

in. 1 ; - n
R~ A - 2iMy k4 2(M?-a?) )R

(5.20)
near the horizon, where
d iK ma
D’"“’—dr AK k-w—mw+—w—2Mr+ ,
(5.21)

v, =Mz (M?-a?)"2.

Equations (5.13), (5.14), (5.17), (5.19), and (5.20)
combine with the Table I expressions in the ingo-
ing gauge to give a Green’s function to be used in-
side the source radius.

It is interesting to note that these gravitational
potentials may be used to calculate the gravita-
tional energy and angular momentum flux across
the horizon. Since the radiation is highly blue-
shifted near the horizon, the Isaacson effective
stress-energy tensor is applicable in the formula’

- w( A \? ey
E= [ aan <4Mr+) My, T 1,1, (5.22)
Substitution of (5.14) into the above gives
5 in
E HJZ>()2M7+ [2(7 +a2):l lew —2R I
x| (hgp™, T |2

=) 2Mr.wk|D,.? RM?

% (2Mr + |R|)" V2 e-thr* J3 =s-2

which, by virtue of (5.18), simplifies to
down B
E- Z iklwl{h (lmwP), T°%) |2, (5.24)

Similarly, for the electromagnetic spectrum and
the angular momentum flux one finds

E=Y, lklwlmd““" (lmwP),J°)|?, (5.25)
w >0

J=2, lklmI(Ad"““(lme ),d )2, (5.26)
w >0

J= Z }k'ml(hd"““(lme),T°‘e>|2. (5.27)

Equation (5.24) may be shown to agree with the
Hawking and Hartle® result

wMr, oMz,

b (5.28)

E = J’ atdQ

with the perturbed shear given by

2 2 2\1/2 -1
HH _ _ Ag o, (M -a?) }
g [2(72+a2)] w°[lk+ 2Mr, :

(5.29)

In fact, an alternate way of deriving (5.24) is to
use the Hawking-Hartle formula together with

o'HHZ_‘%DHHhmm: l-ziihmm, (5.30)
an expression derived in Appendix B.

Finally, consider the special case of stationary
perturbations, for which the spheroidal harmonics
reduce to spherical harmonics and the Teukolsky
radial functions become hypergeometric functions.

w>o Two radial solutions used to construct a Green’s
x| (RS (ImwP), T*®) |2, (5.23) function are®?
b _ sty (1+x)*Y Tl =s+1)I(1 +1+2v) e 1. .
LRT=x o777 TU-s+2,T1+2) F(=l=-s,l-s+1;1-5+2y; —x), (5.31)
Ro=(=P¥ @@ =7,) " Q1+x D YFl+1=-58,1+1-2y;20+2; -x71), (5.32)

with

x=@-=7.)(r,-r), y=iam/(r,-7_).

(5.33)

These solutions (R* and (R” are, respectively, regular at the horizon and at infinity and have the asymp-

totic forms

(21 +2)I'(2y - s)

(=)0 "")_'-S-l[r(n i
© F(21+2)r(3—2‘}/) A - imw ¥ ¥ - — o0
SR TTU+s+DL(+1-27) ((y+ —Kr_)2> € } B (5.34)

(_)s,},—l—s—l, 7* - o0
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(1+x)~*7 [ Ay ]—se""‘”+'* T(l-s+1)'(1+1+2y)
R~{ Oemr )T L - Y T(1-s+2y)r(1+2l) °

desa T +1=8)T(1+1+2y)T(=2y - 1)
T@l+1)(=1-s)'(2y =1) ’

(5.35)

S, = Py r* —o,

The normalization of these solutions has been chosen so that the ingoing gauge potentials in Table I lead
to the Green’s function

- 27 . . .
D mAa(lmeAB(ZmP),Jﬂ), P~ —w

" 2: 2 A(ImP){(A p (5.36)
m w + 8 * oo
l(l+—1)(2l+_1) MU )< g(ImP),d >, r

for stationary electromagnetic perturbations and

8n . - y . .
Z (l— 1)(l+2)(2l4 1) h.,ﬂ(lmP)(hu,,(lmP), T > , ¥¥—-—

g = (5.37)
3 87 Res(imP) (R (ImP), T) | 7%~

-1)(1+2)21+1)
in the gravitational case. The inner products for this special case of stationary perturbations are

<¢,T>=f V=g drdodey*T. (5.38)

t= const
V1. DISCUSSION

Recent work by Cohen and Kegeles'® is suggestive that the results obtained here may be generalized
easily to perturbations of other vacuum solutions. What they find is that for an algebraically special
spacetime, solutions to the complex equation

[(A=y*+y+p*)(D+2€ +p) = (6% + a+p* = 7*)(6+2B+T7)]¢ =0 (6.1)
may be used to generate test electromagnetic fields as follows:

$o=—(D —€+€e* =p*)(D +2€* +p*)p* , (6.2)

¢, =[—(D+e*+€)(6* +2B* +T*) + (m+ 7%)(D + 2€* + p*)| p* , (6.3)

Dy =[ = (0% + @ +B* = T*)(6* +2B* + T*) + A(D +2€* +p*)] p* . (6.4)

For the Kerr case, these formulas are shown in this section to be equivalent to the equations in Table I
for the vector potential in the ingoing gauge. In addition, here it is speculated that generalizations of
(6.1) through (6.4) hold for metric perturbations of algebraically special spacetimes. The results of Cohen
and Kegeles and the formulas for the metric perturbations of the Kerr background suggest the form such
equations might take.

From the calculations in Sec. III, the ingoing gauge vector potential in the Kinnersley tetrad is given by

Ag= Z [ =1o(0% +28* + 7*) + m&(D +2€* +p*)] _ R Ze T | (6.5)
or, with the aid of (2.7) and (2.15),
A= D [~ 1a(6* +28% +7%) + mE(D + 2% +p*)] _R*_,Z*e"T . (6.6)

This becomes
Ag=[—1a(0* +2B* + 7*) + m&(D +2€* + p*)] p* (6.7)

if one defines a function ¢ =[p~2¢,], which satisfies (6.1). Now use (B5) through (B7) to construct the
electromagnetic field functions ¢,, ¢,, ¢, from A,. The result is identical to the Cohen and Kegeles
formulas for the special case of Kerr perturbations, where A=0.
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It is interesting to note that there is a simple three-step prescription one can follow to obtain (6.2)
through (6.4) for arbitrary algebraically special solutions:
(1) By choosing the unperturbed tetrad such that §,=¢, =« =0 =0, obtain the decoupled equation for ¢,

[(D-€e+e*x =20 +p*)(A+p+2y) = (0 =B —a* =27 +7*)(6* +7 - 20a)] po=27,T . (6.8)

with | T given in Table II.

(2) Make a tetrad rotation to set the background ¢, =0 and define a quantity (,)*/°¢ as the function which
satisfies the source-free version of (6.8) with the tetrad legs ! and n, m and m* interchanged. Then ¢
obeys (6.1) provided that the final tetrad freedom is used to set €=0.

(3) Read off the perturbed vector potential from the equation

<¢*,1T>:<A(Y)J(Y> ’

(6.9)

as was done in Sec. III. The result, together with (B5) through (B7), is the Cohen and Kegeles equations.
One might speculate that a similar prescription holds for metric perturbations of algebraically special
solutions. In a tetrad where the background ¢, and ¢, vanish, the perturbed ¢, can be shown to satisfy

[(D-8e+e*x—4p —p*)(A -4y +u) —(6+7* —a =3p —47)(6* +7 =4 a) =3, ¥,

=27[,T =2(D -3¢ +€* —4p —p*A*T,|

_ 215 | (6.10)

with ,7 given in Table II. Rotate the tetrad to set y,=0 and define ($,)*/*§ to be a solution to the source-
free (6.10) with I~ #» and m-— m*. After one fixes €=0, the function y satisfies

[(A+3y —y* + u*)(D+3p) = (6% = T* +B* +3 ) (6 +37 +4B) -3¢,] ¥=0.

(6.11)

The speculation, then, is that, in complete analogy with the electromagnetic case. the perturbed metric

is given by
<¢*>S> :<hd5v T(Xﬂ)

or

(6.12)

Bap == Lal g(6% + @+ 3% = T)(6% +4B* +37*) — mEmg (D — p* +3€* —€)(D +3p* +4e*)

+lamg (D +p —p* +€+3€*) (8% +4B* +37%) + (6% +3B* —a —7 = 7*)(D +3p* + 4e*))

+1olgh (D +4e* +3p* )} p*

with € =0. Equation (6.13) is valid for perturba-
tions of the Kerr metric; that it holds for perturba-
tions of other algebraically special solutions is
presently being checked.
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APPENDIX A: GREEN’S FUNCTIONS FOR
SCHWARZSCHILD PERTURBATIONS

The calculations presented in this appendix serve
a threefold purpose. First and foremost, they
demonstrate the existence of factorized Green’s
functions for metric perturbations of the Schwarz-
schild solution. Secondly, these computations
illustrate that these Green’s functions, in fact,
are the most lucid way of presenting the inhomo-

(6.13)

geneous perturbation equations. The Green’s
function description clarifies the physics of the
coupling of the source to the perturbed field and
naturally gives the potentials in a radiation gauge.
Finally, with the more general overview of the
perturbation equations arising from this approach,
one can extend the Zerilli'® analysis of the [<2
modes to an arbitrary perturbative source.

The magnetic parity equations are studied in
some detail here, but for the electric parity and
1 <2 modes only results are quoted. Even the
discussion of the magnetic parity computations is
very brief since the procedures followed are de-
scribed at length in Ref. 14 and are used again in
Sec. III. The notation is that of Zerilli'®; his
work is to be consulted for the definitions of the
tensor harmonics and the radial functions. The
only change made here is that the Schwarzschild
metric is used in the inner products between the
various harmonics and the perturbing stress-
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energy tensor, e.g., €,,. is given by

Q= (1 =20/1)" [ dR cosl8, 9)* T, 8™
(A1)

J

[-di:;r —w+(1=2M/r )(l(“l) GTM )]R“”( )

8mi(1 —2M/7)

The magnetic parity Schriodinger-type radial
equation is

EE fdte““'{(r =2M)[ (- 1) +2)]*? Qe -dir((r2 -2Mr)Dy ) +2(7 —ZM)D,,,M} ,

“2mr [+ D) +2)(I-
(A2)
with
Dinu= [ 49 dosl0, 9T (a3)
and ,,, given above. This equation may be solved by constructing a radial Green’s function
2 (t+1) 6M
['df*z -l (-2M/y )< Fank >} Glr*,vg)=0(r*,78). (a4)
The result is*
uPE)unr*), re<ry
G(r*, 'ro)-zl X . (A5)
w ut(rE)uP(rr), re>v¥
where #™ and »"® are homogeneous solutions to (A4) normalized to give
1 eiqu* , ¥ o
uup - 1/2 x *
wl T—l iwrk (S/T)*e-iwr , y* - —o0
(A6)
' 1 {e-{wr* +Seiwr*’ y* =
u'™ ~ X )
lol2 L pe=ir* | e —oo,
Using this Green’s function, one can show that R™ outside of the source radius is
R(M) - ﬁiwz u"?
lwl  [1@+1D)(-1)(+2)/2]'7?
—Zﬁ 1 du°“' —-—fw - ou -1
Xf\/—g d“xT"Bl:———w—(r ey dege "+ (=D)L +2) 27 2u ™ cope ¢!
. *
+'r'2(1—2M/r)u°“'du5e"“">:| . (A7)

The quantity inside the large square brackets in
(A7) is a solution to the homogeneous perturba-
tion equation in a gauge which is transverse at
infinity. To see that it is a solution, simply make
the gauge transformation

iv2 d out
ru®];

Afmo="5 7l ; (A8)

w

the expression is then identified as being the
perturbed metric in the Regge-Wheeler gauge.
Henceforth the bracketed quantity in (A7) will be

r

denoted by 2\B**(lmwM); (R) signifies radiation
gauge and M magnetic parity.

Now construct out of (A7) a solution to the per-
turbation equations in the Regge-Wheeler gauge

hog(tmwM)= —[2U(1+1)]V? [_ —— (rR®)c(%)

i
r

rz
* o R(“)cuﬂ} e~tvt
(A9)

and use -AjP

imw

to transform this expression into
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the radiation gauge. The result is
hog(lmwM) = Ig;—“’ R (M)
fo:g dAxh\ D (bmwM)*TH  (A10)
or
2iw

hog(M)=D Tol

xR ImwM), T) . (A11)

KB (mwM)

By virtue of (A8) and the definition of A% (lmwM),
the “up” and “out” states are normalized to give

(hfﬁg)“l’(lmwM), he B(R)uul(l 'm’w’M)} R

=lgu%|()”,bmm,6(w—w'). (A12)

Similarly, for the electric parity modes, one
finds

2iw

haB(E)= Iw‘

(A13)
with
B (lmwE)=V2 %faﬂe-"ww(%i terms) (A14)
and

<h$,%)“p(lme), hocB(R)our(l/m,w/E»s+
2w

= o] 8,10 mm 0w —w’) . (A15)

The radial function v(7*) is a homogeneous solution

to the Schrodinger-type electric parity equation

and obeys the normalization condition (A6).
Equations (A11) and (A13) together constitute a

factorized Green’s function for perturbations of the

Schwarzschild solution with gpp=20p5, and P=E,M.

That is, for each /mw mode, the two polarization
states in the Green’s function are the solutions of
definite parity.

The above analysis does not hold for the /<2
modes, each of which must be considered sep-
arately. Zerilli has given explicit solutions to
these equations for the special case of a radially
falling test particle.'® Listed here are the results
for the more general case of an arbitrary pertur-
bation.

For the /=0 mode, the magnetic equation van-
ishes identically and the electric equation gives

- 2
hoo= = | drdQr2T° ,
¥ Jau
, (A16)
R, = 2 (1-2M/7r)"2 drdQ r271°, .
r 2u

RBw (pwEXR B (mwE), T*) |

To linear order in the perturbation this corre-
sponds to changing the mass in the Schwarzschild
solution to

M=~M) =M+ [ drder’T°,. (A17)
2M
The /=1 magnetic parity mode gives the angular
momentum of the perturbation. Specifically, one
finds

_ (o r
oy =— 2oL Esif drdQ v+ | (Al8)
* 3 7 o

which, for the special case of an axially sym-
metric perturbation, reduces to

—_ 3 3a3 r

Rop = — 2sin’é drdQr?re, . (A19)

4 2M

Hence, the z angular momentum of an axially sym-

metric perturbation is

r
L(r)=| drdQr:T°, . (A20)
2M
Finally, the /=1 electric parity perturbation is
a gauge transformation that can be identified at
large radii as being a coordinate transformation
to the center-of-momentum frame. The gauge
function is

F
gu’_'va {:- 6M 7’I’l =1,m(6v (p)] ’ (Azl)
with

r

F= _8nf drdQ v3(1 - 2M /7 PalOF T8 . (A22)
2M

For an axially symmetric perturbation this cor-

responds at large radii to the coordinate trans-

formation

r
2/ -z= i— drdQ vl -2M/7)r cosbT°, ,
2M

(A23)

,
z'-tlEAj’I—se-aa—t f drdQv3(1 - 2M/7)7 cos6T°, .
2M

APPENDIX B: THE PERTURBED FIELD FUNCTIONS

In this appendix the field functions are recon-
structed from the perturbed potentials. These
expressions for the field functions are used in the
next appendix to check the validity of the expres-
sions given in Table I. One of these perturbed
field functions, ¥, is needed to reconstruct the
perturbed shear 0, which in turn may be used to
compute the energy flux across the horizon.

First, consider the electromagnetic field F g
=Ag.o— A4 Where F,g may be expanded in
terms of three complex scalar functions:
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¢0 =Faﬂlc(m By
¢, =F*3(lng+m*n /2, (B1)
b2 =F**ming

The field quantity ¢, for example, is given by
Go=Aq,p(m18 - 1%m"?) . (B2)
Now expand the vector potential in terms of the
null tetrad vectors
A =Amn +Al -Am¥t—A m, (B3)
and substitute this expression into (B2). The re-
sult is
$o=DA, = 0A, + (Lo, gm P, = (1, mm P)A
+(na:5m“lB+la;Bn°‘mﬁ)A,
+ (M g gm*1 P~ 1 em*%m ®)A,, (B4)
or
bo=(D—€+ex—p*)A, —(6+T* —=B—a*)A,
- 0A x+KA, . (B5)

Similarly, the ¢, and ¢, electromagnetic field

functions may be shown to be
2¢,=(D+e+e*+p —p*)A, — (A -y —y* +u* — w4,
+(0* =T —T*—a+p¥)A,

—(0+T*+T+B—a¥)A, *, (B6)

G, =(0*+a+3*—T*)A, - (A+pu* +y —y*)A &
+VA, =M, . (B7)

For perturbations of the Kerr metric, several of
the spin coefficients vanish, namely k =o0=v =X =0.
To construct the perturbed Weyl tensor, one
follows exactly the same procedures, only the
algebra is more tedious. Start with the equation®

2Ry v =N oy ; sv + R 8y san = B sy ;av = Beavy ;80
+Raouvhos ‘Rﬂcuuhca ’ (BB)

with the dot denoting the perturbed value. (When
the background quantity vanishes, the dot is
omitted.) Projection of (B8) along the tetrad legs
1°mB1*m"” and the equation
§o=—Roguwl®mBl*m’ (B9)

leads to the general expression

-2y ,=2{ kih,, - 2KOR ¥y +00R ok ik + [ =0 (D = p* +p) = (0 +27*% =353 — a* K| )

+[-k@+m*+7) = (D =2p* = 3€ +€*)0 Jo ;) +[(D - p* )k + k(D = p* +p —3€ +3€*) = Ok* oy

+[(0+7¥)0 +0(0+m* +T =3B = 3a*) + kA X[k i}
+[=(6+7* =33 —a*)K* +K(0* — 21 = T* +2B* = 2a) —00* +(D —p* —3€ +e*)(D —p* - 2€ + 2 *) |,
[

+[(D=-p* =3€ +e*M* +0(A = 2u+u* =2y =2y*) +kv* + (6 +7* = 38 —a*)(6+ 7+ - 28— 2a%)]k,,

—[o(6* -27 -27* = 20)+ (D —p* — 3 +€*)(0 +27* —253)
+ g +h(A =2u+2u% =2y)+ (6 +7* =38 —a*) (D -2p* - 2€)|h(yp ; (B10)

an expression for 11:4 follows from the above by interchanging /+-#n and m ~—m*. For the Kerr metric

(0 =k =ax =v =0), the formulas for ¢, and y, are

—2yo=(6+7* =3B—a*)(0+m* =28 —20a*)h;, + (D -p* —3€ +€*)(D - p* — 2€ + 2 * 1,
—[(D=p* =3e+e*)(d+2m* —28) + (6 +7* =38 - a*)(D —2p* —=2€)|i(y ) (B11)

=29, = (6% =T*+3a +B*)(0* = T*+20 + 28* Wi, + (A +u* + 3y —y*)(A +u* + 2y = 2y ¥k ok
—[(A+p*+3y —y*)(0* —=27% +20) + (6% — T* +Ba + B*¥)(A + 21* + 29) [ ¥y (B12)

In a similar fashion, expressions for ¢,, u:z, and
Y5 can be found.

Equation (B11) leads to a useful formula for the
perturbed shear. In the Hartle-Hawking”*® tetrad,
which is related to the Kinnersley tetrad by

A 2(r 2+ a?)
PR ) S S U (B13)
2(r2 +a?) Ag

T

the shear is

A 2 )
o= _[ K :I ; (0 .
272+ @) | ik+(M%-@)V2/2M7,
(B14)
Equation (B11) gives
o= ~3DDh (B15)
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near the horizon, so the formula for the shear
becomes

o't = z_zl_e_ R - (B16)

APPENDIX C: VERIFICATION OF THE POTENTIALS
IN TABLE I

Since the derivation of the potentials depends in
a nontrivial way on an assumed form for the
Green’s functions, the expressions in Table I
must be checked. Verification that the electro-
magnetic potentials are correct is presented here
and in Sec. VI, and it is shown that the equations
for y, and i, written in terms of derivatives of
the metric potentials are satisfied. This guaran-
tees that the physically measurable components
of the perturbed Riemann tensor determined from
the perturbed metric in Table I are correct.

Only the potentials in the ingoing gauge are
considered in this appendix. The outgoing poten-
tials also have been checked, but the details are
not given here. The calculations are to be car-
ried out in the Boyer-Lindquist coordinate system
and the Kinnersley tetrad, where the only non-
vanishing spin coefficients are

=-1/(r—iacosb), B=-p*cotf/2V2Z ,
m=1iap3sind/V2 , a=mw-p*,

(Cc1)
T =—iapp*sind/VZ, p=p®p*4./2,
Y =u+pp*(r-M)/2 .
Consider the ingoing gauge vector potential
Aa=z [=1 (0% +28* +T*) +mX(D +p*)]
X_ R Ze™twt | (c2)

This expression for A, was decomposed at the
end of Sec. III into the two linearly independent
solution given in Table I. In Sec. IV these inde -
pendent solutions were established as being the
real and imaginary parts of (C2). For present
purposes, it suffices to look at the composite
potential given by (C2) and to examine any single
Imw mode.

First use (B5) to show that the ¢, determined
from this potential satisfies the appropriate equa-
tion. With A; =0, one finds from (B5) and (C2)
that

¢°=—(D_p*)(D+p*)_1R,_Ze“w' (C3)
or

¢o=-DD _|R Ze %! (C4)

since Dp =p2%. The lmw mode of the directional
derivative D is just the operator D defined by
Teukolsky and Press’

D=9, -i[(r?+a@®)w —am]a," . (C5)

Accordingly, (C4)becomes

$o=DD R, Ze W=} R Ze it (C6)
since’
Pp.,R=3,R. (cm)

Obviously, the quantity -3,R,Ze”'“ is a solution
to the ¢, equation.

Now consider the ¢, equation. From (B7) and
(C2), one has

¢2=_(5*+a+3* —T*)(5*+2)3*+T*)_1R 1Ze-iwt ,
(C8)

which, with the aid of the Newman-Penrose equa-
tion

G}T* =T*(T*+ B* —q), (C9)
reduces to

Po==(6*+a+p*)(6*+2p%) R ,Ze~'** | (C10)
Equation (C1) and the Teukolsky and Press” defi-
nition

L£,=0y+ —r,n—e—awsin6+ncot9 (c11)

sin
simplify the above to

p?

$o= =5 Bo, R ZeT (c12)

One then obtains

p?

b, 5 BR i Ze vt (C13)

when the identity’
£,£,,Z=B_Z (C14)

is used. The right-hand side of Eq. (C13) is clear-
ly a solution to the ¢, equation since B is a con-
stant. It is also important to notice that the rela-
tive amplitudes of the expressions for ¢, and ¢,
are in agreement with the results of Teukolsky and
Press.

The demonstration that the expression for ¢,
determined from these potentials is correct is
somewhat tedious and is not given in this appendix.
Rather, refer to Sec. VI where it is shown that
the ingoing radiation gauge potentials give rise
to the equations derived by Cohen and Kegeles.
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Since their expressions are known to be solutions
to Maxwell’s equations, the ¢, field component
found from the potentials must satisfy the appro-
priate equation.
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Finally, consider the gauge-invariant, infini-
tesimal tetrad rotation invariant Weyl components
¥, and y,. Expressions for y, and ¢, follow from
(B11) and (B12) and the ingoing metric potentials

hyp =Z{—lal g(0* + @ +3p* —T*)(0* +4p* +37*) —m*m (D — p*)(D +3p*)

+ l(amﬁ)[(D+p —p*)(0* +48% +3T*) + (0% +33% —a — 1= T¥)(D +3p*)]} R, Ze Wt | (C15)
One has
~24==(D =p*)(D = p*)(D -p*)(D+3p*) ,R,Ze™ ™", (C16)
—2y, = —(B* = T 43+ B¥)(0* —T*+2a +2B%) (0% —T*+ @ +33*)(0* + 3T+ +4p%) LR, Ze ' | (c1n)
which reduce to
—24,=-DDDD _,R,Ze™ ¥ | (C18)
—2¢,=—(0*+3a +3*)(0* +2a +2B*)(0* + . +33*)(6* +43%) _2RzZe'i“J‘ . (C19)

Rewriting this as

-2y = —DDDD R, Ze ! | (C20)
p? —iwt
~2¢,= =7 £.,808,L, LR Ze , (c21)
one can use the equations’
DDDD _,R=;,R, (C22)
£_,£,8,8,,7Z=Re[C] _,Z (C23)
to obtain
—2¢y=—1,R,Ze 7, (C24)
p? .
~24=-7 Re[C] _,R _,Ze vt | (C25)

r

Clearly, the right-hand side of each of the above
two equations is a solution to the appropriate
equation; in addition, the relative amplitudes of
the two expressions are correct.

The gauge-dependent Weyl tensor components
as yet have not been checked due to the complexi-
ties of the algebra. In principle, this should be
done, but the fact that the potentials accurately
give the invariant parts of the field is compelling
evidence that they are correct as presented. The
derivation of these potentials depends on the as-
sumption of factorized Green’s functions in ex-
actly the same way that the electromagnetic de-
rivation does, and in the electromagnetic case the
gauge-dependent part of A, is correctly deter-
mined.
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