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This paper is concerned with the description of noninteracting dynamical systems in Penrose's twistor

theory. We begin with an introduction to the formal treatment of massive systems relying on the

angular momentum twistor A'~. Expressions for dynamical data in terms of A ~ are given. The
internal-symmetry transformations involved in the parametrization of A P by one-index twistors are

shown to be of the canonical type. The case of two supporting twistors is discussed in detail. Relative

to the frame of these twistors (a rest frame of the dynamical system) the classical spin has the
remarkable structure s = /crt. When decomposing A ~ into three twistors, the minimal symmetry

transformations define a 14-parameter group. W'e show that this group of symmetries is locally

isomorphic to the inhomogeneous SU(3).

I. INTRODUCTION

It has been stressed by a number of authors' '
that a profound reconsideration of our current
concepts of space-time structure is a prerequisite
of any theoretical approach to gravity quantization.
Particularly lucid arguments due to Wigner and
Salecker" show that the Riemannian point con-
tinuum description of space-time geometry ceases
to be meaningfully implementable in the quantum
domain. The majority of quantum gravitation the-
ories put forward in the past' cannot be recon-
ciled with this observation. However, an attempt
has been made by Penrose' " to incorporate it,
at an elementary conceptual level, in physical
theory.

Penrose's twistor theory is centered around two
propositions. According to the first of these, the
points of space-time are composite objects which
may have structure in terms of more fundamental
entities, called the twistors. The second proposi-
tion is that rest mass should also be considered
a derived property of matter. So it emerges that
the underlying objects (i.e., twistors) are closely
related to massless particles.

Under circumstances when the quantum pro-
perties of space-time are suppressed, twistor the-
ory offers just an alternative picture of physical
phenomena. In this picture, the role of space-
time points is taken over by points of the twistor
space T. A. fortiori, then, it is possible to trans-
late all statements of the conventional theory into
twistor relations and conversely. Already at this
stage the twistor picture may (and does in fact)
yield a simpler treatment of some parts of
physics, thereby leading to new insights. ""

No such correspondence is available whenever
quantum properties of gravity prevail (essentially
the reason is that a space-time point should, by

then, be thought of as a kind of a "fuzzy" proba-
bilistic structure). The ultimate goal of the
twistor approach is the theoretical description of
this situation. '

The present paper has the modest aim to con-
tribute to a better understanding of the treatment
of dynamical systems in the framework of twistor
theory. We shall restrict our attention to the clas-
sical relativistic mechanics of noninteracting sys-
tems. No attempt will be made at the description
of quantum properties at this stage.

Characterization of the (conformally invariant)
zero-mass systems becomes straightforward in
the twistor picture. " These systems may be
represented simply as points of T (cf. also Sec. II).
Conformal invariance must be broken in order to
be able to incorporate rest mass into the theory.
A formal way of doing this (formal from the view-
point of hvistor theory, though still equivalent to
the conventional approach), following Penrose's
suggestion, is to include the Poincare-invariant
concept of an infinity turistor '" In Sec. I. an
introduction to this approach will be given as well
as some explicit expressions for dynamical param-
eters of the system in terms of its angular mo-
mentum tui stop.

Section III is concerned with the parametriza-
tion of an angular momentum twistor by one-in-
dex twistors. This can be done in many ways. "'"
We shall show here that the symmetry transfor-
mations involved in the parametrization are of
the canonical type. The corresponding generating
functions will be explicitly given. This result
points toward the general twistor quantization
rules for massive systems (cf. Sec. VII).

In Sec. IV we discuss some aspects of the two-
twistor description of massive systems. Particu-
lar attention will be paid to the twistor structure
of internal spin. Section V is mainly devoted to
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the internal-symmetry group of the three-twistor
description. We shall show that the number of
generators of this group can be reduced to 14,
without destroying its transitivity over the angular
momentum surfaces. In the next section it will be
proved that this minimal symmetry group is
locally isomorphic to the inhomogeneous SU(3)
group. Section VII concludes the paper with a
discussion of possible implications of our results
for the general treatment of interactions and quan-
tization in the framework of twistor theory.

Some notational innovations will be encountered
in Appendix A. Appendix B contains the derivation
of an identity for the twistor 5z by use of a natural-
ly chosen basis.

ture. The real four-momentum is then expressed
as the Hermitian spinor P». =P, and the skew-
symmetric M' uniquely corresponds to a sym-
metric spinor p,

" satisfying"

Mad ~AB~ A '8 '
+PA'8'~ AB (2.6)

(We are adopting here a slightly modified version
of the Battelle convention. For details, see Ap-
pendix A. ) Its dual, M,*~= ~B„,~M'A, can be writ-
ten"

Mal t( A' B+ AB I AB A'B'} (2.7}

Equations (2.6) and (2.7) give us the spinor expres-
sions for the center of mass (m &0) and Pauli-
Lubanski vector, respectively,

II. ELEMENTS OF TWISTOR MECHANICS

A Poincare-covariant characterization of some
material system in the Minkowski space-time hh

is given by the total four-momentum P' and total
angular momentum M". Using these data, we
obtain the Pauli-Lubanski vector S, proportional
to the total spin, "

S, —-~g~,~M P (2.1)

For m & 0 the spin vector is S,/m, where the in-
variant mass m satisfies P,P' = rn'. The magni-
tude of the spin is expressed s' = -S,S'/m'. The
condition m = 0 implies" that S, =sP, , with the
factor of proportionality s as the helicity of the
massless object.

When the system is isolated, (P', M") are con-
stants of the motion and for any positive rn, the
history of the center of mass consists of the points
of M

XAA ~(T ) = —(QABPA
~

+ pA~B~PA }+ PAA'
pyl' '0'l

8 8'
AA' ~(uAB A' I A'B'PA

(2.8)

(Z ) = ((uA, BA, ) . (2.&)

This is represented in the CM picture as the locus
of all complex points ~"" for which

Equations (2.8) suggest that Z"" (r) =X"" (r)
+ iS"" /m' may be considered as coordinates of
the spinning system's world line in the complexi-
fied Minkowski space-time CM. In fact, for any
(complex) value of r, the total angular momentum
can be made to vanish by shifting the origin to
Z"" (T) The n.eed for a CM description frequently
emerges in twistor theory" though, despite the
resulting mathematical simplicity, thus far no
motivation appears to arise from physics. Let us
take the simple example of a one-index twistor
Z with the components

X'(r) =M"P, /m'+7P'/m (2.2) A 2~
AA' (2.10)

Denoting proper time (r) derivatives by a dot,
(2.2) yields the four-velocity

X'(r }= P'/nm, (2.3)

with X'X'g„=1.
The behavior of these quantities under space-

time translations (unlike Lorentz covariance) is
not apparent in the tensor notation. The real point
tr ansfor mations

PAA' ~A~A'

and angular momentum spinor

(2.11)

where this two-complex-dimensional locus is a
totally null plane. " [When some solutions BAA of
(2.10) lie on a real null line, Z is a null tBjistor].

The twistor Z may also be considered as a set
of constants of motion for a free, massless par-
ticle. Such a particle will have the four-momentum

(2.4) )L(.AB = 2(d(A1TB) (2.12)

affect them as follows:

P' =P' M'" =M'" —2&'P" (2.5)

This interpretation of Z shows that under a
Lorentz rotation its components transform as

Hence it is seen that S,=S, and that the coordi-
nates X' of the center of mass change according
to the general rule (2.4).

When wishing to obtain a twistor formulation of
these relations, one first finds their spinor struc-

A
(d

, pA 8
8-

0 (d

(2.13)
1TA I 0 5 „, 1T8,

where det[A"B]=1. Translations of the form (2.4)
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are represented by

-A 6A ~AB B
B

(2.14)

AB 0 0 0
(2.15)

0 0 0 ~A'Bt

The invariance group of (2.15) is just the Poincare
group: Fixing where infinity is amounts to de-
stroying the conformal invariance.

Twistor indices are raised and lowered by com-
plex conjugation. The Z bvistor has the complex
conjugate Z of components

(Z ) =(Tr„, 2" ),
so that contractions (of which the simplest repre
sentative is Z Z ) are invariant under twistor
trans formations.

Real light cones correspond to self-dual skew
twistors. In particular, the dual of the infinity
twistor, Ia*8 = &E ns& ~I", satisfies

I+a=I 8 (2.16)

We may omit the asterisk or the bar over I 8
without affecting the consistency of notation.

The transformation properties (2.5) shaw that
momentum and angular momentum constitute the
components of a single symmetric twistor A.

according to the scheme

2ipAB PA

[A ~]= (2.1 t)
PA' 0

A, the angular momentum twistor, satisfies for
any given Z

ZQ I 8qZ") 0 . (2.18)

BI
%At 0 6AI 1TAI

Since zero-mass particles are conformally in-
variant objects, the transformation properties of
Z under dilatations, inversions, and reflections
are also well defined, ' even though their explicit
representation will not be required for our present
purposes. Dilatation and inversion invariances
are destroyed when introducing the concept of null
infinity. The Minkowski space-time PA should be
completed by adding points "at infinity" since the
inversions x' = x'/x„x" carry the light cone of the
origin into the set of these points. " This already
implies that null infinity has the topological prop-
erties of a light cone less its vertex point. Light
cones are represented by skew twistors'" (the
reverse statement is not necessarily true: It ap-
plies only to twistors which are also simPle' ). In
the present basis, the infinity twistor I and its
dual I 8 have the components

This semidefiniteness property of A is equiva-
lent to the non-negative character of energy.
With the four-momentum P' pointing into the
future, for any future-pointing null vector l' we
have

P'l, ~ 0 . (2.19)

We now see that (2.18) is the twistor version of
this condition. A and its conjugate X 8 satisfy
also the constraint equations

=I '2
8& ~

The twistor A.~s contains all Poincare-covariant
data about the system. Thus its determinant,

(2.20}

det[A '] =.a'

yields the rest mass,

~=m'/2 .

(2.21}

(2.22)

The matrix [A 8] is nonsingular for a, massive
system. There exists, then, a symmetric twistor
B z as the inverse to A such that

A 'B (2.23}

The solution of (2.23) for 8 z can be written in the
explicit form

Boe = -6 ~apA +as —2h 2~8 (2.24)

get $ CX

8 B 7 (2.26)

and in the present twistor frame it has the com-
ponents

0 0
(2.2'I )

A'B

Hence we will call S~ the spin tuistor. When
the spin vanishes, we find, from (2.27) and (2.25),

(2.28)

(a zero subscript indicates zero spin). By using
this relation we get

oas 0 Aoa8 ' (2.29)

It is a bit more complicated to extract the mag-
nitude s of the spin from the spin twistor, the
latter being singular and nilpotent [cf. Eg. (2.2'I)].
Penrose's method" is based on the existence of
two expressions, each quadratic in the spin

This expression becomes simpler when the sys-
tem is spinless. Let us define

(2.25)

S is a Hermitian twistor [let us, however, re-
call here the indefiniteness property of the sig-
nature (+, +, —,-) inherent to twistor invari-
ants]
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twistor and infinity twistor, respectively, which
are proportional to each other:

S~ S&' —SB S~'=-,'s'I~&I (2.30)

This relationship can be easily verified by com-
paring components on both sides in a given twistor
frame.

III. STRUCTURE OF THE ANGULAR

MOMENTUM TWISTOR

We have seen in the previous section that two
alternative twistor descriptions are available for
zero-mass systems. One can either specify their
(singular) angular momentum twistor A 8 having
the components (2.11) and (2.12) or one can use
the one-index twistor Z . By comparison of (2.9)
and (2.17) we get"

W"-2Z'"I""Z . (3.1)

This structure suggests that Z will provide a
more elementary description of the zero-mass
system than does the angular momentum bvistor
which is already composed from the quantity Z .
One should prefer a similarly fundamental object
for the description of massive systems as well.
This is facilitated by the observation" that &
can be decomposed into the sum of a finite num-
ber of zero-mass angular momentum twistors,

A 8=2Z I ~Z +2Z Ia ~Z +'''+2Z I~ ~Z1 lY

(3 2)

A ~=2' I8 "Z~y (k=1, 2, . . . ,P) . (3.3)

This decomposition of the angular momentum
twistor is not unique. If Z& with k =1, 2, . . . ,P is
an appropriate set, so is the linear combination

Z' =U +~ (i, k, . . . =1, 2, . . . ,P), (3.4a)

with the complex coefficients U» satisfying

U~~U~~ = ~&~ ~

Thus, [U~„] is a unitary matrix of dimensionP.
The expressions

(3.4b)

(3.5a)

define another symmetry operation with

where Z& (k= 1, 2, . . . , p) represents the kth mass-
less system. Extending the summation conven-
tion to the labels 0, l, . . . of massless subsystems,
we concisely set (3.2) as

piete characterization of the dynamical system.
The gravitational interaction Hainiltonian can de-
pend only on the combinations A. " and A. 8 of
twistor variables:

H„,„=H(A 8(Z~, Z~ ); A„~(Z~, Z )) . (3 8)

Condition (3.6) expresses the principle of equiva. -
lence in twistor theory.

Nongravitational interactions, on the other hand,
are expected to violate the internal twistor sym-
metry. It may well be that this is the way that
the twistor structure of dynamical systems be-
comes manifest in physics.

The Hamiltonian formulation of free particle
dynamics is trivial in the present theory since
the corresponding twistor variables are constants
of the motion. Certain interactions of zero-mass
particles have been studied by Penrose. " His
results have been extended to the treatment of
massive particle scattering by Tod and this
author. " The canonical equations of interaction
show that

p~ = -gZ~ and g~~ =Z~f„ (3 7)

are canonically conjugate variables. A necessary
condition for (3.7) to have an invariant meaning
is that (3.4) and (3.5) be transformations of the
canonical type. We now show that they, in fact,
are. We achieve this by finding the corresponding
generating function.

Given a function S(q, p') of the old coordinates
q and new momenta p', the canonical transforma-
tion (q, p)- (q', p') generated by S has the form

»(q, p) -, »(q, p)p=
~ ~ q=

q p
(3.8)

We choose S so that it does not depend explicitly
on time, hence H'=K The reality condition H =H
imposed upon the Hamiltonian will be unaffected
even if we allow S to take complex values.

Equations (3.7) tell us that S=S(Z, -iZ'™)and

aS(Z~a, —iZ~™)
(3.9a)

JR gga&

BS(Z~, —iZ~")
(3.9b)s ( 'Z/Ix)

We first choose S=-iZ Ut+& with [U~&] as a
p&p unitary matrix. This gives

-iZ =-iU qZ~
~ a t' &a

(3.10)
A.~

——-A~~ . (3.5b) Z~~ = U»Z&

Equations (3.4) and (3.5) are the invariance
transformations of the twistor description of iso-
lated systems. In gravitational interactions, the
angular momentum twistor provides again a com-

What we obtained is the inverse and the complex
conjugate to transformations (3.4a). Next we take

get



TWISTOR VARIABLES OF RELATIVISTIC MECHANICS 2085

-sZ = -z(Z~~ —A I,
I"~Z~g),

(3.11)
Z' =Z +A ~I yZ'& .

From (3.11}it follows that I„8ZB=I BZ~ U.sing
this result in (3.11) we obtain transformations
(3.5).

IV. DECOMPOSITION INTO TWO-TWISTORS

Already two-twistors (p = 2) suffice" fordecom-
posing an arbitrary Aa . These represent 16
real data, whereas the angular momentum twistor
is given by 10 real parameters. The remaining 6-
parameter freedom in choosing (Z j gives rise
to the internal-symmetry transformations (3.4)
and (3.5) withP =2. Indeed, the (2&&2) unitary
matrix [U~&] depends on four real parameters
and [A z] depends on two real ones. It has been
shown by Penrose' that the group structure of the
two-twistor transformations is locally isomorphic
to that of SU(2}xE„where E, indicates the double
covering group of the Euclidean motions in the
two-dimensional plane. His result follows from
the fact that the SU(2) part of [U &] commutes with
all the rest of the transformations. The U(1) part
of [U ~] represents the rotations in the plane and

[Az& gives the two tra. nslations. A peculiar fea-
ture of the group manifold is that two elements,
[o,] and [0',], are contained both in the SU(2) and

the E, factor groups.
We wish to express the physical properties of

the system directly in terms of the twistors Z~
and Z~. Let us write

(4 'f)

We introduce the spinor dyad of Newman and
Penrose"

A 2 ~A& A. 2 ~A (4.8)

normalized to 0„~"=1. This defines the null tetrad

L'=0"0 n'=c"7"' ~'=0"L" ~=&"0"

ln terms of (4.9), a real orthonormal basis is
given by

T'=2 ' '(I'+s') X'= 2 ' (m'+m')

(4.9)

F'=2 v i(m' —m'), Z~=2 ~ (f —s') .
(4.10)

Four-momentum (4. 'l) has the components in the
(4.10) frame

sion for the spin twistor which is readily converted
to the conventional form (4.5).

In order to get an insight into the invariant struc-
ture of the spin, we first note that I pZ and
I g p& uniquely define a real orthonormal basis
in the rest frame of the dynamical system. Let
us denote their components

(I pZP) =(0, v„), (I„pW~) =(0, p„,) . (4.6)

Equation (4.4) provides the normalization
~
v„p" ~'

=m'/2 for the momentum spinors. Using (4.6),
the four-momentum takes the form

Za Za Za ~a (4.1)
(P') = (m, 0, 0, 0) . (4.11)

The conjugate twistors are

Zga =Za~ Zga =+a

Decomposition (3.3) of the angular momentum
twistor takes the form

A. 8=2Z~ I ~~Z +28'( I ~"S"

The determinant yields

m'=2[Z I„BW

(4.2 }

(4.3)

(4.4)

Equations (4.10) define, indeed, a rest frame of
the massive system.

We obtain the rest-frame components of the
Pauli-Lubanski vector by comparing Eq. (4.5) with
(2.27)":

(S') = -~m(0, Z "Wq + W "Z~, i(Z"W„—W"Zq },

Z "Z„W"W„) . (4.12)—

The spacelike projection of Eq. (4.12}gives us the

Spin twistor (2.25) is next expressed as

+(Z"Wgl pW I 'Z~+(W"Z„)I pZ~I W, .

(4.5)

The structure of relations of this kind can be made
particularly transparent in Penrose's "blob nota-
tion" (Appendix A). In fact, the expression (4.5)
has been obtained by blob manipulations and by us-
ing the completeness relation derived in Appendix
B. Figure 1(a}shows the resulting blob expres-

s = - @ - + +

1 + 2 2 b

I"IG. 1. Structure of (a) the spin twistor and (b) the
inverse of the angular momentum twistor in terms of the
zero-mass constituents Z (hollow blobs) and W

(filled blobs).
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gP

(s) = —,'(Z„, W„)(o) (4.14)

where (o) stands for the set of Pauli matrices

(Dl) (0
—

) (1
0'I

In a somewhat symbolic notation, "
s=Pa

(4.15)

(4.16)

where we have set g =2 ' '(vv). Eventually, (4.16)
relates the structure of the spin with the factor
group SU(2) of internal symmetries.

The quadratic invariant

S,S = Iz I„sw-I ((Z"Zp —W Wp ) +41 Zwpl ]

components of the spin three-vector

(s) =-,'(Z"w„+ w "z„,f(z "w„-w"z„),z"z„-w" w„) .
(4.13)

Rather surprisingly, we can write this as

shown in Fig. 1(b) for the two-twistor decomposi-
tion of the inverse B 8 of the angular momentum
twistor. The defining property of the inverse
twistor & B~& =6& amounts to the identity of Fig.
6.

V. THREE-TWISTORS

In the space T(ST(3T of 24 dimensions of the
three-twistors Zs (a = 1, 2, 3), the angular momen-
tum twistor represents a 14-dimensional quadratic
surface A. generic point P(Z") of this surface de-
fines (in more ways than one) a basis in the twistor
space T. For example, {Z~,I Z s) is an over-
complete basis. Therefore, the coordinates of an
arbitrary point P'(Z' ) are expressible as linear
combinations of the form

Z' =a ~z&+b~ Bz&8 (a, 6, . . . =1, 2, 3) .

(5.1)

When P' lies on the given A surface we must
have

(4.17)
Z~" = Uss(Z~ + A~~I Z,s) . (5.2)

gives for the square of the spin

s'=-'(Z"Z -W"W )'+iZ"W„i' (4.18)

From the structure of (4.18) we see that the spin
magnitude is conformally invariant.

We complete this section with the expression

with U & and A~ satisfying (3.4b) and (3.5b), re-
spectively.

Transformations (U, A) of the form (5.2), such that
UE U(3), A = -Ar, are elements of a nonsemi-
simple group. The group operation may be
written

IU„A,)fir„A,) = I,v, v„A, + v,'A, v,) . (5.3)

Qx(s of xy

o trajectory of the

Pr-par emender gf'oup

0(

ga SPQC6'

(2It reai dimensiOns)

FIG. 2. The subgroup of stability of P'.

This 15-parameter group has minimal transitivity
surfaces of 14 dimensions, each given by a fixed
value of [A s] (10 real data). Hence the question
arises whether the group (5.2) itself is a minimal
group in the sense that it has no proper subgroup
transitive anywhere in the A. 6 surfaces.

It is clear that the minimal symmetry group
must have at least 14 parameters. So we come to
considering the following possibility: In an appro-
priate basis for the Lie algebra we drop one of the
generators (Xo, say) and still then we may be left
with a group which can carry an arbitrary point
P on A into any other point on it. (See Fig. 2.
This is essentially a three-dimensional slice of
the full picture. The A surface may extend to
infinity in some directions which are not shown on
Fig. 2. )

Let the point P be carried into P' under the ac-
tion of a group element g(6)) generated by Xe. A
necessary condition for the existence of the sought-
for transitive subgroup is that the same point P' be
attainable from P by the action of a group element
g'(P, &) generated by the remaining 14 generators.
This is equivalent to saying that the elements of
the subgroup of stability of P (now a one-param-
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eter group) must be separable in the form

r '(~h'(P, ~) . (5.4)

whence

I as vs -AIasZB+BIa BM
8 (5.9b)

When this condition holds, it remains to be seen
if the 14-parameter set of transformations (with

Xe ignored) has a group structure.
Let us first consider whether (5.4) can be satis-

fied. The stability transformations of P(z )
arise from (5.2) by setting Z =Z". Contracting
both sides with U„„, the equations to be solved,
given Z~, are

Z V =AZ Z" +BZ W +DZj W~,

W V~ =AW Z +BW W —CZJ "sW~,

Z I g =BZ gW

~aI V 8 AZaI gr 8

(5.10)

Contracting with elements of the conjugate basis
(Z, W, I BZ, I sW 8'I we get

We introduce the detailed notation Z~ = Z,
Z =Wa, Za= V,

ct' p y 0 -c -Q

& p, v, [A,]= c 0-a
pa 7 6 a 0

Equations (5.5) take the form

(5 5)

(5 6)

The coefficients in Eq. (5.9) are related to some
twistor invariants. Let us introduce the blob nota-
tion shown in Fig. 3(a). Solution of Eqs. (5.10) pro-
vides the result in Fig. 3(b). Equations (5.6) are
written

Z" = (n +Ay)Z + (P+ By )W" + (bA+ Cy )I Zs

+(bB+Dy+c)l Ws,

W = (X+Av)Z" + (p+Bv)W + (aA+ Cv —c)I" ZB
~5.11~

+ (aB+Dv )I ~ W&,

V~=(p+Ar)Z +(o+BT)W +(Cr —b)I Ze

0 c b I Z8

+ -c 0 a
~

~

I WB

—b -a0 I VB

(5.'l )

(5.6)

A set of four linearly independent twistors
(Z, W, I 8Z&, I 8Ws] is available whenever the
decomposition of the angular momentum twistor

A =2Z I ~Z +2W I 8' +2V I "V

+ (Dr —a)I Ws .

Comparison of coefficients on both sides and use
of the expressions in Fig. 3(b) yield the solution
shown in Fig. 4, with y as an arbitrary real param-
eter and rn the rest mass,

~'=2((Z I.,W'~'+ IZ I.,V')'+(W"I.,V'(') .

(5.12)

From Fig. 4 we see that the phase 8 of the deter-
minant

is nontrivial (this implies that Z I „&W e0). The
twistor V can be expressed, then, as the linear
combination

detU= e'

is related to the parameter y by

(5.13)

V =AZ +8%'"+CI 8Z~+DI 8$'8, (5.9a) cot(&/2) = -y/m' . (5.14)

zg-b, z,-gz,&

c=

FIG. 3. (a) Decomposition of the angular momentum
twistor into three null subsystems. {b) The expansion
coefficients. FIG. 4. The stability transformations.
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Let us introduce the unimodular matrix U,
=e ' 'U. In terms of U„ the stability transfor-
mations can be written

(5.15)

Product rule (5.3) tells us that the group element
appearing in Eq. (5.15) is of the form

isomorphic to the inhomogeneous generalization
of the group SU(3). The generalization arises by
taking the semidirect product of translations in a
three-complex-dimensional Euclidean space with
SU(3) rotations. Let us introduce complex coordi-
nates {q,) (a =1, 2, 3) in this space. We consider
point transformations

(c"~'U„A) =fe"~', o)[u„~j . (5.16) q~yt, , (6.1)
Comparing with (5.4) we see that our necessary
condition is satisfied and Xe generates the phase
rotations e '

Now we have proved that imposition of U~ SU(3)
in transformations (5.4) does not destroy their
transitivity in the angular momentum surfaces.
Product rule (5.3) immediately warrants that this
restriction still leaves us with a group.

VI. INHOMOGENEOUS SU(3)

We shall show that the minimal twistor sym-
metry group found in the previous section is locally

with [U„]H SU(3) and t, as a complex three-vec-
tor. The quadratic form dq, dq, is invariant under
transformations (6.1). From the unimodularity of
[U,~] it ensues that the alternating tensor e,~,
[with (e~2) =1]is another invariant.

We write (6.1) in the form

(6.2)

From (6.2) we immediately obtain the generators

[x;]= -', [y,']=I — —', [y, ]=I — —', i =1, 2, . . . , 8, a=1, 2, 3
(~,. 01, (0 i.l (0
(0 of (0 0/ (0 of

where we set

(') ('l
[V, l= 0, (V.)= I

-1, (i,)='

(oj
'

Dj

(6.3)

(6.4)

The SU(3) generators &, will be chosen the Gell-Mann matrices" except that we conveniently relabel them
as follows:

(0 o

X, =I 0 0
0) (0 0

0 0of, o

(0
0

4

-i 0 0 0 j.

0 0
~,

A., =~ 0 0 0

0 0/ 1 0 Dj
(6.5)

0 D~

0 -1 0

ko o o)'

~,. matrices satisfy

000010100
0 0 1, A., = 1 0 0, g=~ 0 1 0

0 1 0 0 0 0 0 0 -2

[~(, ~g] =» Aye ~a

[g, Zj=2d, ,„a, +—', 5,, , i, j, 0=1,2, . . . , 8

(6.6a)

(6.6b)

where the nonvanishing components of the completely skew f;» are given: f», ——f„,=f„e=f„,=+f,e, = f«, -
= -2,. f», ——1; f « f« ——-v 3 /2 and d——» =d«» have the independent components d« =d»8 ——d~ =-das = 1/v'3;
d», =d»8 ——d«~ —-d«8 ——-1/2v3; -d», d, » ——-d, «=d»——, —-d»8 ——d«, =d«, ——-d,«=-,'. We note that (X, Is=1, 2, 3[
constitute a particular subalgebra of (6.6a) with

[A, , A. ,] = —ie,~, X, , a, b, c =1, 2, 3.

Generators (6.3) of the inhomogeneous group provide us the Lie algebra

(6.7)
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[x» ix ]=2»f»»k xk& (6.8a)

[y'. , y', ] =0, [y'. , y, l =0, (6.8b)

[x o y»] = '-eave y c

[x„,y', ] =*2id, „y'., i' =4, 5, 6, 7, 8.

(6.8c)

(6.8d)

(6.9)

(6.10)

Let us write the transformations of the minimal twistor group of Sec. V in the matrix form

jz, ) /v. , 6», 0 '} /Z, ''} (2, ) / 6„68 A„f"')}(z,')
Z.„f ( o U.,6„') H»f kZ.„) tA. ,I., 6.P„' g (Z„)

[here we have U& SU(3), A=-A ]. The labeling of the &, matrices we are using here has the advantage
that the corresponding generators may be written concisely:

(&»68 0 ) [,]
/ 0 iX I } [y )

/ 0

0 -Xi6~) k-i X 1„»» 0 ) (A. I 8 0

Straightforward computation shows that the Lie
algebra of generators (6.10) is isomorphic to (6.8)
and that we have the correspondence in our basis
x, -X, , y', —~', . This result establishes the
local isomorphism of the minimal symmetry group
of three-twistors with the inhomogeneous SU(3).

VII. CONCLUSIONS AND ANTICIPATIONS

The fact that the internal-symmetry transforma-
tions have a canonical structure (Sec. III) provides
further support to the view that the quantization
rules Z -Z", Z~- -s/BZ" first obtained for
zero-mass particles" hold, more generally, to
massive systems (obviously, the exact proof as-
sumes an exact twistor theory of interactions).
Already at the present stage of development, the
same rules can be attained by considering the
equations of massive particle scattering on certain
shock waves. ' Assuming that these rules are the
correct ones, the Hilbert space of massive par-
ticle states consists of analytic functions of sever-
al complex variables. Penrose's analytic bitwistor
functions F(Z", W„) for Dirac particles" '2 may be
recalled here as examples. However, the general
scalar product between states remains to be found.

Another question intimately tied to the theory of
interactions is whether in all cases three-twistors
will suffice for describing massive systems. When
dealing with free particles, two-twistors will al-
ways do. On the other hand, the approximate
SU(3) structure of fundamental interactions togeth-
er with the results of Sec. Vl make hard to avoid
the conclusion that systems with three constituent
twistors actually will have to be considered.
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APPENDIX A: BATTELLE AND BLOB NOTATION

Here we are explaining some notational innova-
tions which facilitate the discussion in the main
text of the paper.

The representation of twistors in space-time
is best achieved by resorting to the theory of two-
component spinors. We shall be using a slight
modification of Battelle convention" for exhibiting
spinorial structure. The basic idea of this is to
consider indexed quantities as representing geo-
metric objects, as opposed to comPonents in a
given frame. Example: One puts T„for a second-
rank tensor. The labels a and b cannot have nu-
merical values since their only function is to dis-
play the structure of the entity.

One advantage of this convention is that sym-
metry operations can be explicitly carried out in
a frame-independent way. Thus the symmetric
part of the second-rank (n =2) tensor T„will be
written as T&,» = (I/&! )(T,», + T„) and the skew part
is denoted T&,» = (1 /»»! )(T„—T„)

In certain cases one wishes to refer to compo-
nents in. some given frame. Normally, no extra
index letter types will be needed for this purpose.
We shall enclose components in matrix brackets.
The Minkowski metric g,~, say, has the compo-
nents in standard real coordinates [g,~]

=diag(1, -1,-1,-1). Evidently, indices inside the
bracket can have numerical values. ' Thus the
alternating tensor q„„is given by the components
[»!»~,] =-1, [»}0»~']=1. Also, for the fundamental
spinor e„s we have [&0,] =[eo»] =1.
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FIG 6. Completeness relation for the (t") basis.

achieved by connecting the corresponding lines.
In accordance with this, the twistor && is repre-
sented by a vertical line segment.

The blob notation for symmetry operations is
demonstrated in Fig. 5(b) by the simple example
of the outer product of two [,'] twistors. The gen-
eralization to more complicated cases is straight-
forward. Skew-symmetric twistors of importance
are displayed in Fig. 5(c). Note that the skewness
of the infinity twistor entails, for any twistor Z

FIG. 5. Blob notation. {a}A [~~j twistor. {b) Symmetry
operations. (c) Skew-symmetric twistors. (d) Properties
of the infinity twistor.

Z r, Z'=0,

and, from Eq. (2.15), we have

I Isy =0.

(A2)

(AS)

In the abstract index notation, a tensor index a
is equivalent to a pair AA' of spinor indices. "
One immediately obtains the spinor structure of an
arbitrary tensor X"'"'„,... by writing

Properties (A2) and (A3) of the infinity twistor
can be stated in terms of blobs as shown in Fig.
5(d).

xtt QQ ~ ~ ~ ~AA'BB' CC''
rs ~ ~ RR SS"' (A1) APPENDIX B: THE g BASIS

An apparent drawback of using matrix brackets
for components is that one can thus never consider
"mixed" quantities, i.e. , those which possess both
abstract and component-type indices. Seldom
occurs the need, however, for introducing such
quantities" (never at least in this paper).

The structure of certain covariant expressions
may be obscured by the abundance of indices. This
difficulty is overcome by Penrose's "blob nota-
tion. "" The use of blobs will be limited to twis-
torial expressions in the present paper A[~].
twistor may be drawn as a blob with P upward
pointing and q downward oriented adjoining index
lines [Fig. 5(a)]. The contraction of indices is

Whenever the symmetric terms in the expres-
sion Z'"1 ' Z&+W' I ' S'& are both nonvanishing
and it is mI' possible to find a twistor X for which

Z&"I'»Z +W& I'»R =X&"I')&X
Y 'y

the set (Z",W, I" Zs, I Ws) consists of non-
zero twistors satisfying Z I„BW 40. This set
will be denoted also as (f,") (a=1, 2, 3, 4). Its
four twistors are linearly independent and they
form a basis in the twistor space T. The corre-
sponding basis in the dual space T* is given by
{r„,j=(Z„,W~, I„sZ, I~sWs}.

In terms of this basis we define the Hermitian
matrix

[G..],=,„[~:E..l =

Z.Z

Z I 88'8

W~Z"

-Z~l" 8'g

-Z I 8$'

Z~I. ,W'"

a, b, . . .=1, 2, 3, 4.

The elements of [G,~] are invariant scalars and they have the properties G, ~
= G~ and

det[G„] =(Z"I sWs('. (as)

We shall refer to the nonsingular matrix [G„]as the metric. Its inverse [G—"], satisfying G„G—"=5—',
consists of the elements
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[G"]—=[Z"I„„W")
-Z I~gS'

Z I~8%'

(B4)

z ~I~8+8

An arbitrary twistor X"H T may be expressed
as

X = X—'4"- (B5)

with some complex coefficients X—'. The X—''s are
obtained from Eq. (B5) by contracting with t~ ~G

(B6}

[On allowing basis indices to be lowered and raised
by the metric G,~ and its inverse, it is possible to

&8 =Z, G—Z~8. (B7)

Identity (B7) is a completeness relation for the

(K,j basis. When written out in detail, it becomes
rather unwieldy. A more convenient form, shown
in Fig. 6, results in the blob formalism.

bring (B6}to the form X—' = X"E '„]—.Using this re-
sult in equation (B5) we find X"=X~G—"Z, Z, 8 for
all X H T. Hence
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