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Relativistic Green's-function approximation to the low-energy
nucleon -nucleon interaction
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From a unitary approximation to the nucleon-nucleon Green's function we derive the phase
shifts for the Yukawa model and the nonlinear 0 model. The results agree with the experi-
mental data except for the lowest waves: So, Q, Po where, however, we get good scatter-
ing lengths.

INTRODUCTION

In order to explain the low-energy nucleon inter-
action' various authors have derived unitary ap-
proximations from field-theoretical models. On one

side, Schr6dinger's equation was used with potentials
reproducing the relativistic one-particle-exchange
contribution. ' On the other, numerical solutions
of the Bethe-Salpeter equation were tried' for the
pion exchange and the J= 0 waves and some semi—
relativistic equations were developed. ' The first
method gives numerically good results but depends
on a very large number of free parameters, and
the off-shell extension is arbitrary. The second
one in the ladder approximation has no solution for
the physical value of the coupling constant.

The field-theoretical input is usually inserted
only at the lowest order a in the nucleon-boson
coupling and the integral equations merely provide
a unitarization method. The same procedure can
be extended to the next order n', but the computa-
tional difficulties are such that it seems better to
use a field-theoretical approximation to the S ma-
trix such as the [1/1] Padd approximation (P.A. )
which can be derived from a variational principle
(Lippmann and Schwinger) using a perturbative
(Cini-Fubini) ansatz.

The [1/1] P.A. to the S matrix improves, for the
Yukawa theory, the unitarized Born approximation
which reproduces correctly the very high waves. '
The introduction of two-pion forces seems to de-
scribe the lower waves, but the wrong threshold
behavior of the Born term in the 'S, and the '(4-1)~
waves produces some spurious effects in the [1/1]
P.A. phase shifts.

This anomalous behavior of the Born term is re-
lated to the pseudoscalar nature of the pion. In-
deed, a virtual pion cannot be emitted by a real
nucleon at rest, and one can check that the one-
pion-exchange amplitude vanishes at zero energy.
The S waves have zero scattering lengths and be-
have as P waves. If we want to avoid the intro-

duction of other fields to restore good threshold
behavior' we have to imagine a coupled-channel
system of nucleons with both parities. This pic-
ture can be justified rigorously using, in a suit-
able basis, the relativistic nucleon-nucleon
Green's function. ' These negative-parity states
are related to the structure of the Lorentz group
and seem to play a crucial role in a Yukawa theo-
ry, as has been shown using the Bethe-Salpeter
equation.

A partial calculation involving only the states
with nucleons of the same parity (physical or not)
was done for the Yukawa model and the nonlinear
v model. ' The results were satisfactory except
for the S waves above threshold. The complete
calculation was first performed for J = 0 (see Ref.
9) and showed no sign inversion of the 'P, wave.

A generalization' of the formalism of Goldber-
ger et a~."has made it possible to perform the
partial-wave expansion for any J. Following this
scheme we have in this paper analyzed once more
the Yukawa model and the nonlinear cr model. We
confirm the results of Ref. 9 for the J=0 waves
and find an excellent stability of the solution for
the J) 2 waves (j) 1 in the nonlinea. r g model).
The only open problem is the inversion of the 'S„
St Pp wave s. In a forthcoming paper we shall

investigate models to explain the S-wave physics
above threshold. Including vector mesons we
should obtain a short-range repulsion effect. A

calculation based on the Bethe-Salpeter equation
has been performed recently. " The results dis-
agree with those obtained in Ref. 9 for J= 0 due to
a different renormalization procedure. We have
chosen the same renormalization prescription as
in Ref. 9 and found exactly the same results for
J=0. In this paper we give also the other phase
shifts for the Yukawa and the nonlinear 0 model.

In Sec. I we shall review the Yukawa model and
the nonlinear 0 model with a special emphasis on
the renormalization conditions, and in Sec. II we
shall discuss the results and the physical rele-
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vance of the models we have investigated. Some
details of the calculation will be given in an ap-
pendix.

I. THE MODELS AND THE RENORMALIZATION
CONDITIONS

A. The Yukawa model

The interaction Lagrangian for the Yukawa mod-
el reads

g~ = —igNy, rN '
m —gA(m ' m)'.

The constant X does not affect a second-order cal-
culation. We have used the standard renormaliza-
tion conditions for the pion and nucleon propaga-
tors. For the mNN vertex we have expanded the
amputated Green's function through

r, (q;p, p') =1,~,(v, +tv, + ,'&v, + ,'-[@,&1v„),-
(1.2)

where

Q=a'-p, &=&'p,
and the only divergent amplitude V, is renormal-
ized by

u(p')r, (p'- p; p, p')u(p) Ii, »2=„~ =g u(p') r.~;u(p),

(1.3)

where u(P) and u(P') are the Dirac spinors asso-
ciated with the nucleons. If we consider the non-
physical nucleon parity states' the vertex ampli-
tude still has a pole at t = p, '. Such a pole can be
canceled by the introduction of the nucleon self-
energy graphs. These graphs should be absent if
we amputate the Green's function using the exact
nucleon propagator. Consequently, we have am-
putated the Green's function using a free nucleon
propagator to get the same contribution for the
physical amplitude and to cancel the pion-pole
contribution of the mNN vertex.

The divergent graphs of the nucleon-nucleon
Green's function are the pion and nucleon propaga-
tor s, the pion-nucleon vertex, and graph (f) of Fig. 1.

The propagators are renormalized using the
standard prescriptions. For the vertex we have
now two divergent amplitudes Vo and V. The first
one is renormalized through the Ward identity"

f„r,(0;p, p) = 2, ~, [r„s-'(p)1, ,
1 (1.5)

where S-'(P) is the exact inverse nucleon propaga-
tor. If we now impose Eq. (1.3) we get

g= +go +9

II. DISCUSSION OF THE RESULTS

Before comparing the theoretical results with the
experimental data" one should estimate the en-
ergy range where a theory which includes one-
and two-pion exchange contributions is expected
to work. According to a suggestion we relate the
impact parameter to the range of the n-pion ex-
change force. We obtain for the pion kinetic en-
ergy T

TL
with

(2 1)

where g, is an arbitrary constant connected to V, .
Our choice for g, and consequently for V is to
require

m/ .
[1-~go(~&f.)'1'" '

With such a choice, a [1(11P.A. to the S matrix
gives a residue at the pion pole equal to the physi-
cal coupling constant n =g'(4m.

Graph (f) of Fig. 1 is logarithmically divergent
and its subtraction point a', which affects only the
J ~ 1 waves, is fixed by a best-fitting condition. It
is found that the results do not depend critically
on this parameter.

B. The nonlinear 0 model T ~" = wo n' L (L + 1), (2 2)

The effective Lagrangian for the one-loop dia-
grams in the nonlinear g model reads

where L is the orbital angular momentum, 7, is a
constant, and TL"' is the energy below which the

+, (w ~ s„v)', (1.4)

2

Z, ~
= —i Ny, 7 N—~ r —,NNm ~ w —,(p ~ z)' I

I

I
I

(a) (ht (h) (c) (d) (d)

where f, is the pion decay constant, and m and p.

are the nucleon and pion masses, respectively.
This model is not renormalizable, but we can ob-

tain its Green's functions by expanding the linear
o -model Green's functions for a large cr mass.
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FIG. 1. Feynman diagrams contributing to the four-

nucleon Green's function (up to one loop) in the Yukawa
model and the nonlinear o. model.
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FIG. 2. Relevant portions of the Feynman diagrams
for the Yukawa model.
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FIG. 3. Relevant portions of the Feynman diagrams
for the nonlinear o model.

contribution of more-than-n-pion exchange is neg-
ligible. From (2.1) we can derive the following
ratios:

TJ '. TD.' TF: Tc: T„=1:3:6:10:15 . (2.3)

These are roughly verified by our results. In fact,
we cannot expect our results to hold above the
first inelastic threshold in the S channel. The de-
tailed results can be summarized as follows.

Hughes partial uaves J~2. For such waves we

find excellent agreement of the results with the
results of Ref. 8 and with the experimental data.
Some quantitative disagreement appears only for
the 'P, wave which is somewhat lower than the ex-
perimental data.

Lou uaves J=O, l. In the case of the nonlinear
o model we find excellent P and D waves for J= 1.
The 'S, wave exhibits a bound-state behavior with

a qualitatively correct scattering length. Again
for the nonlinear v model the 'S, scattering length
has the correct sign and magnitude, but above
threshold the phase shift is monotonically increas-
ing. The 'P, wave is correct for very low energy
(~30 MeV), but we do not find the change of sign
we can expect with more sophisticated models ac-
counting for hard-core and spin-orbit effects.

CONCLUSION

If we keep in mind that our results are derived
from models without free parameters we can con-
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elude that the phase shifts obtained agree for J~ 1

with the experimental data, especially if we use
the nonlinear 0 model. This agreement appears
within an energy range depending on the orbital
angular momentum.

Two ways are now open for a future investiga-
tion. On the one side, we can use more sophis-
ticated models including, for instance, the vector
mesons to which the S-wave inversion is usually
associated in potential theory; this will be the
object of a subsequent paper. On the other, we
can look for a better approximation by computing
a [1/1j operator Padd approximant with a suitable
procedure for choosing discrete momenta. "

With this choice T„represents the physical am-
plitude, the other T 8 representing transitions be-
tween states with nucleons of negative parity. The
various diagrams which have to be taken into ac-
count in the Yukawa model and in the nonlinear 0
model are drawn in Figs. 1-3. We shall now give
for the Yukawa model the decomposition of each
graph over the basis of the generalized Fermi in-
variants ( 0, ) and ( 0', ) defined in Ref. 7.

Accordingly, we introduce the following vectors:
I I

The Green's functions for the various graphs
are as follows.
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Born:

G = ((P, —3(P),y, 8 y, .1 0 ] ~2 5

Pion self -energy:

(A4)

APPENDIX

G = —((P, —3(P0) —,
' g'H(t )y, 8 y, . {A5)

Let 6 be the four-nucleon Green's function and
let Tz be defined by

T8„=~( p, )c &(p2)l,cr.~(p, )e ~(p, ), {A1)

where P„P, (P'„P,') are the incoming (outgoing)
nucleon momenta and where, according to Ref. 7,
the I' are defined by

1r, = 1e 1, r = ~, e y„ 1; = ~ (14' y, + y, e 1),
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Nucleon wave -function renormalization:

G=(6', -s6', ) . 4o. ~a~, — (yea~. —~ a~ a)]
Vertex:

G=(5', —86',), (2V y, Sy, + Vo(y, S yk —y54Sy, )+ Vpo(y5S y5[ tt( tt2 I
—y. j ~ tie]Sy58 . {As)

Box:
2 2

G = g ((P„+RP, )1 —,'By„Sy" + —,
' B(tt, —X,) S ( g, —),) +-,' B,(tt, + tt, )S ( tt, + tt, )

——,B,[(tt, —tt, )S (tt, —m) —(p, —m) S (x, —tt, )j B,($,-—m) S ( tt, —m) + ,B,Q-S& I,
(A8}

where 6'I is the projector over the state of isospin I; the amplitudes Vo, Vz, V&z, 0, O„B„are the same
as in Appendix F of Ref. 8.

The decomposition of T8~ on the invariants (0;), (0';) is given by (i) Table I for the Born graph; (ii}
Table II for the nucleon wave-function renormalization; (iii) Table III for the vertex where the amplitudes
V„, V, , V read

V„=Vo —2mVe (+t —4m')V~q, V = V 02+mVq (+t —4m')Vro, V, = V, +tVpq.

For the box we have

(A9)

g 2 2

T8„= — (6', +96',) Q [(0;)(A,)8 +(0,') (A', )s ],4~ (A10)

where (A;)s, (A';)8 are linearly related to the six basic amplitudes B, (which are given analytically in
Ref. 8) by

(A, )„=a,(m, m}, (A;), = b;(m, m),

(A,), =b;( m, —m), -(A, } =a, (- m, —m),

1 1
(A', )„=~ [c;(m,m)+d;(m, m)], (A';)„=~ [c;(m,m} -d;(m, m)],

1 1
(A,'), = ~ [c,(- m, —m) +d;(- m, —m)], (A', },= —~ [c,(- m, —m) —d;(- m, —m)],

1 1(A~)„= —~ [c,(m, —m)+d;( —m, m)], (A;'), = —~ [c,(- m, m)+d;(m, —m)],

5 1(A';)„ = —~ [c,(m, —m) d, ( m, m)],-(A-,'), = ~ [c;(-m, m) —d;(m, —m)],
{Al1)

(A, )„= ——,'[a,.(m, —m)+a;(- m, m)+b;(m, —m)+b, (- m, m)],

(A, )„=—&[a,(m, —m) -a, ( —m, m) —b, (m, —m)+b;( . m, m)], -
(A;)0, = —2[a;(m, —m) —a, (- m, m)+b;(m, —m) —b;( m, m)1-
(A, )„=— [a;(m, —m)+a;(- m, m) —b, (m, —m) b, ( m, m)]. --

The amplitudes not quoted are zero and the a;, b;, c;, d; are defined by

,( „m,)= — —, ( 4 )B ~ —,'( — ~ 4 ''IB, —(1 — ' ')(s — ~ 8c 'lB, —8( —,)( —,IB,

a, (m„m, ) = — ——(B,+B,)+ 1 — ' tB,2m

a, (m„m, ) = ——(B, -B,),1
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TABLE I. Born-term contribution to the Green's function in the basis of positive- and
negative-par ity states.

(+) (e) (0)

g 2

T
p

—(6, —36'0) t-p

{+)

(e)

(05

1
i(05)

(oi&

(05)

1—(o )

—&o', &

1

W2

—&Oi5)
1

/2

(Os) + (Oi)

——&o,'&

(0'&
1

5

(0)
1-~ (05) —(055)

1

v'2
(Og& —(Oi)

, t „,)= — 4B, ——,'t ' — —4 )B+-','t —, +4 ')B, —4 ' t — ' ') 8

j, m }= — —
t — —4 )t} ~ —t — +4 }1I — t — t — )& ],1 2 1 2 mg + PPS2

a,(m„m, ) = a,(m„m, ) = 0,
a,(m„m, ) =-', m(m, —m, ) B, .

For the b; we find

b, (m„m, ) = —,' Bo —b,—(m„m,), b, (m„m, ) = —b, (m„m2),

b, (m„m, ) =b,(m„m, ) —m, m, B, -m'B, , b,{m„m,) = -8 m(m, + m, )B, ,

b, (m„m, ) = 8 m(m, —m, ) B, , b,(m„m, ) = 0.

For the c; a.nd d; me get

c,(m„m, ) =d, (m„m, )

=
)I [2emm, B, -4~(m, —m)B, ],

c,(m„,m, ) =d, (m„m, )

1—8 ply ppLp 83

c,(m„m, ) =d, (m„m, )

= s [ rn B + m(m —m, )B,],
c,(m„m, ) =d, (m„m, )

= t} [ 2B, + 2 u(B2 —-B,)],

c,(m„m, ) = -d, (m„m, )

= c,(m„rn, ),
c,{m„m,) = -d, (m„m, )

= c,(m„m, ),
c,(m„m, ) = —d, (m„m, )

= t'} [m'B, —m(m —m, )B,],
c,(m„m, ) = -d, (m„m, )

=8 [-2B,+ zs{B)-B2)],

TABLE II. Nucleon's wave-function renormalization contribution to the Green's function in
the basis of positive- and negative-parity states.

T w = {6 i —360) t -p,
(05)

1

1 (05)

2&oi)

4 (Og)

—&oi)
3

v2

—&o~)
3

—&01)
3

v2

2(oi) +2(05)

1——,(O~g)
U2

3—(o )

2 (0~) —2 (0i)
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TABLE III. Vertex contribution to the Green's function in the basis of positive- and negative-parity states.

2V++ (05) 2V, (0))
V„+V,

v2

++ + (o')

T 8„——(6') -3Pp) t —p

2v &o&)

4 + + —
(O5)

2v (o,)
V +V,

(o i)
v2

V +V, (0 ) (V +V ) (05) +2V (O~)
va

(055)
v2

++ + &O')
v2

(O 5) (V + V ) (05) —2V (0()

where e = —1 for the direct box and e =+ 1 for the
crossed box.

Finally, the crossed box is given by the same
formulas provided that the isospin coefficients are
changed (1-5 for isospin 1, 9- -3 for isospin 0),

and that we change the B~'s through

B,(s, t)- B,(u, t -}, B,(s, t)- B,(u, t-),

B2(s, t}--B, (u, t), B,(s, t)- B,(u-, t),
B,(s, t )-B,(u, t ), B~(s, t ) - B,(u, t ) .-
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