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The form factors for K74 decay as well as the s-wave scattering lengths for Km scattering
have been calculated using the (8, 8) representation of broken chiral symmetry. The results
compare favorably with available experimental data and theoretical estimates.

I. INTRODUCTION

Chiral symmetry, first proposed by Gell-M3nn'
more than a decade ago, has proved to be a good
approximation for the study of strong interactions.
Since so far we have no well-established, exact
theory for the strongly interacting particles, we
have to extract as much information as we can
from the approximate theories, such as chiral
symmetry. Therefore, it is important to know

the SU(3)3 SU(3) structure of the symmetry-break-
ing part of the Hamiltonian density. For many
years, the most widely used form of the symmetry-
breaking Hamiltonian density was a single rep-
resentation of SU(3)8 SU(3), viz. , the (3, 3', 8 P, 3)
representation, ' and it was fairly successful. How-
ever, some recent experimental data have shown

the above-mentioned form of symmetry breaking
to be unsatisfactory, ' and interest has shifted to
the search for alternate models of symmetry
breaking. A very promising alternative seems to
be the (8, 8) representation of broken SU(3) @SU(3),
which has been used by many authors for various
calculations. ' In this paper we report the calcu-
lation of the K)4 decay form factors and Kn' scat-
tering lengths using the (8, 8) representation of
broken chiral symmetry.

Broken SU(3)3 SU(3) symmetry has been used
to study the effects of symmetry breaking in K, 4

decay. ' But these calculations were performed
by using the techniques of perturbation theory
around the SU(3) 8 SU(3)-symmetric limit and

neglecting terms of second and higher order in
the symmetry-breaking parameter. However,
these perturbative calculations suffer from the
drawback that the possibility of an enhancement
from the higher-order symmetry-breaking terms
cannot altogether be ruled out. In fact, such an
enhancement has been shown to occur in the case
of K» decay. ' Therefore, although the experi-
mental data available at present on the K,4-decay
form factors are few in number as well as un-
certain due to the presence of large experimental
errors, it is important to calculate these form

factors by other methods. In the absence of pre-
cise experimental data, only such nonperturbative
calculations can show us whether the first-order
perturbation calculations for K, 4 decay are really
justified.

It was shown by Deshpande' that the general low-
energy theorems on the K»-decay form factors
can be derived on the basis of the (3, 3) (3, 3)-
symmetry-breaking model along with the hypoth-
esis of partial conservation of axial-vector current
(PCAC). His results are valid to second order in
momenta, but to all orders in the symmetry break-
ing, provided the PCAC hypothesis is taken to be
an exact rule in K» decays. Recently Bose and
Narayanaswamy have extended Deshpande's method
to calculate the K,4-decay form factors using the
(3, 3) e (3, 3) model. ' In this paper we follow
essentially a similar approach using the (8, 8)
representation of broken SU(3) 8 SU(3) to calculate
these form factors. Therefore, we assume that
the symmetry-breaking Hamiltonian density 0'
belongs to the (8, 8) representation of SU(3) 3SU(3)
and is given by

H —zo+dz8.

Here d is the symmetry-breaking parameter. The
quantities z, and z, are, respectively, the even-
parity SU(3) singlet operator and the T = Y=0
member of the SU(3) octet of operators in the SU(3)
decomposition of the (8, 8) representation. These
operators are written as the products of the
SU(3) 8 SU(3) currents, as follows'.

z, = ~ (V A)&~(V +A-)„8,
1

z, = (-', )"'d, „8(V-A)„"(V+A)„8,

where

u, P=1, 2, 3, . . . ,

p. =0, 1, 2, 3.

The K» matrix element plays a crucial role in
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the analysis of the K„ form factors. Bose and

Narayanaswamy have calculated even this K»
matrix element using the (3, 3}6& (3, 3) model. But
in this paper we shall not employ the (8, 8) model
to calculate this K» matrix element. Instead, we
shall employ an approximate expression' for it,
derived by Dashen and Weinstein' and valid to
the first order of the symmetry-breaking param-
eter, regardless of the model of symmetry break-
ing.

II. E, DECAY FORM FACTORS

The axial-vector K,4 form factors are defined by

(& (P}v (q)IA,' I&'(k)&

p+~ E+ p —~ E+k

where mK is the mass of the K meson and k'
= (k-P-q). The off-shell Kv scattering amplitude
is given by

(m„'-P')(m, '-q')(m '-k')(m '-k )
E„EK'm~ mK'

d'xd'yexp -ip x iq y+ik z T D, x D", y D, z D, 0)

where A '(s, u, f; P', q', k', k") are the f-channel
charge- conjugate eigenamplitudes. We assume
PCAC:

D', («) -=s„A„'(x)=&,m, 'tp, («),

where E, are the meson decay constants. The de-
cay constants for the m and K mesons will be de-
noted by E, and EK, respectively. The amplitudes
A.

' satisfy the following crossing relations:

A'(s, u, t; P', q', k', k")
= +A'(u, s, t; P', q', k", k')

= sA'(u, s, t; q', P', k', k"), (6}

relations, along with the symm etry-breaking
Hamiltonian defined in Eels. (1) and (2), we get the
following commutation relations to be used later:

(3vttt+d
) ~

«+,-, 3 ~10+6d
5d

In obtaining these relations the I= -,' part only of
the commutator has been taken into account.
These relations are analogous to the relations'

where s=(k-q)', u=(k-p)', t=(p+q)'. The
cha, rges Q' and Q'„defined by

q' = Vt(x)d'x,

(ddd d) p
(8 )

q,'= W,' x)d'x,

satisfy the well-known SU(3) 3& SU(3) current com-
mutation relations. By using these commutation

derived for the (3, 3) 6& (3, 3) model; c being the

symmetry-breaking parameter.
By standard reduction techniques, the K„form

factors can be related to the three-particles-on-
shell limit of the I= & Kw amplitude:

&"(p)v-(q) ID," (0) IIf'(k)&
K~K

(kd 2 m„') {k'(p+ q)+, + k"(p —q)&, + k"&,}. (9)

By considering various on-shell limits of the amplitudes defined in Etl. (4) and using the relations given
in Etl. (8), we get the following relations:

(10)

( dd ) tw td&ltd' I& td-d», (U&
fr K K
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(i2)

* ( qq )& fe)l))' I& )) ~ rr)) . ))&)

Now we utilize the Weinberg-Khuri technique"
and expand the amplitudes A' in powers of the in-
variants, retaining terms up to quadratic in the
invariants and satisfying crossing symmetry. We
write these expansions as

{13}and comparing the coefficients, we get the
following relations:

A+Bm»'+Cm, '+Dm»' &+m, '+m, 'm»(G+H)

= -(Q mg'+ Pm~'mg' +ymg'+ 5m„'mg'+ 5'm, 'mg' )
A' =A +B(s +u) + C t +D(s + u}' +Esu

+ Ft'+ Gt (s +u) +H(p'+q')(k'+k"),
(3)) 10+d}m„'a,

1Mm~'F~Fx (18)

A = n(s-u) +Pt (s-u) +y(s'-u')

+ 6(s-u)(p'+ q') + 6'(p'-q')(k'-k") . (16)

B+2 Dm»'+Em»'+(G+H)m, '

=n + pm, '+ m„'(Pi+6')
Assuming the form factors to be constant, one

can derive various relations among the form fac-
tors and expansion coefficients A, 8, C, . . . ;
n, P, y, . . . . These relations are given in Etl. (13)
of Ref. 8. Next we come to the K» matrix ele-
ment (» (q)lD lK (q-k)) given in Eq. (11). In-
stead of calculating this matrix element in the
(8, 8) model and thus risking the introduction of
furhter model-dependent uncertainties in the K)4-
decay calculations, we shall employ an approx-
imate expression for it, given by Dashen and
Weinstein. " This expression is valid to first or-
der of the symmetry-breaking parameter, as
mentioned earlier, regardless of the model of
symmetry breaking. An essential point of the
calculation of Dashen and Weinstein is that the
meson pole dominance of the divergence of the
axial-vector current is valid up to symmetry-
breaking terms of second order. According to
Dashen and Weinstein,

E o {1g)
( 3 V 10 + d) (a,m»'-a, )

10dm~'F E~

-(3))10+d)a,
10dm~' F„&g

(20)

=-(nm, '+ pm 'm»'+ym, '+(6+ t}')m ' m»')

(3~10 + 6d) m„'a,
10dm 'F„E~ (21)

B+2Dm, '+Em, '+(G+H) m»'

= n+ pm»'+(6+ 6')m»'

(3v 10+6d)(a,m, '-a, )

10dm„'F, +~
(22 }

-(3~10+Gd)a,
I.Odm„' F, &~

(23)

A+Bm, '+Cm»'+Dm»'+Em» +(G+H)m, 'm»'

(» (q}lD lK (q-k))=t(a, +k'a, ),
&tt (q)ID 'IK (p q))+=t( +pa'a, ).

The quantities a, and a, are given by

a, = (m»'-m„'),

(i6)

(17)

From Eqs. (20} and (23}one gets

m»' 3 ~10+d

m, ' 3 ~10+6d

which gives the following expression for the sym-
metry-breaking parameter d":

3 ~IO (m, '-m. ')
2 26m~ -m„ {24)

These expressions, given in Eqs. (16) and (17)
and used in the calculations mentioned in Ref. 5,
are valid to first order of the symmetry breaking
parameter d, and the corrections are of third
order in d.

Combining the relations (16) with the Eqs. (10)-

Using the average values of the observed meson
masses in the above relation, we get d= -1.48.
Finally, eliminating the constants A, B, C, . . . and
n, P, y, . . . from the relations (18)-(23) we obtain
the following expressions for the K,~-decay form
factors:
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-m~(3 v 10+d)
5dF, (2m '-, )

(2a, + 3a, m, '},

m~ a~
E„m~'-m, ' a, (3v 10+6d)

5d
(25)

a, = 0.2272 GeV',

a, = 0.2494.
(26)

Using these values of ao and a„ in Eqs. (25), we

get the following values for the K,4-decay form
factors:

F,= 4.08,

I"2= 3.88,

I'3= 2.55 .

(27)

-mr(3~10+d)
F, = „(, ,

)
[g, +a, (m, '+mr')j .

For numerical calculations, we take the average
values of the observed meson masses. For the
decay constants, we take Fr/F, = 1.28 and F,
=0.95m, . Then Eq. (17}gives

The present results are similar to those of Wienke
and Deshpande and somewhat higher than those of
Bose and Narayanaswamy' for the (3, 3)+ (3, 3)
model and those of steinberg' for current algebra,
but almost the same as those of Lane' for the
perturbation calculations.

The currently available experimental data on
the K,4-decay form factors are not only scant but
also uncertain due to the presence of large ex-
perimental errors. Consequently, no serious
comparison of theoretical calculations with the
experimental data is possible at this stage; all
such comparisons should be regarded as tentative
at best. However, a glance at the various values
of the form factors given above indicates that the
present calculations of the K,4 form factors using
the (8, 8) model of broken chiral symmetry are in

better agreement with the available experimental
data than other theoretical calculations. Thus,
the (8, 8) model seems to be a promising alterna-
tive to the popular (3, 3) 8 (3, 3) model of Gell-
Mann, Qakes, and Renner.

I', =5.6~ 0.6,

E, =5.5 s 1.2.
(29)

By comparing the various numerical estimates
of the K,4-decay form factors given above, it is
observed that the values of these form factors ob-
tained from the (8, 8) model are only slightly dif-
ferent from those given by other calculations.

It is interesting to compare these results with
those obtained for the (3, 3)+ (3, 3) model. Wienke
and Deshpande" have calculated the K«decay
low-energy axial-vector form factors using the
techniques of current algebra. and the (3, 3)

(3, 3) model. Their average values are

F, =3.97 f
( for Fr/F, =1.33,

Z, =4.01)
(28)

F, =4.22
L

I
for Fr/F„=1.23.

I'2 = 4.11

The results of Bose and Narayanaswamy' for the
same model are I",= 3.56, &,~ 3.4, and +,~2.5.
Lane has calculated' the K, 4 form factors in the

(3, 3)e(3, 3) model, using the perturbative treat-
ment and the model-independent approximate ex-
pressions given in Eqs. (16}and (17) for the K»
form factors. His results are &, =+, =3.95 and &,
= —10.1 (k'p)/(mz' —k"). On the other hand,
%'einberg obtained +,=+, = 3.7 from current-algebra
calculations. ' By fitting the experimental data,
Berends ««. find" the following values for &,
and &,:

III. K7t SCATTERING LENGTHS

%'einberg has estimated the mm scattering
lengths" using low-energy theorems from SU(2)
8 SU(2} current algebra and the PCAC (partial con-
servation of axial-vector current) self-consistency
conditions. For this purpose it was assumed that
a linear expansion of the amplitudes in Mandelstam
invariants is approximately valid up to threshold.
Griffith used similar techniques to estimate the
s-wave Kv and KK scattering lengths" in the (3, 3)
63 (3, 3) model. In this section we estimate the
s-wave Kv scattering lengths in the (8, 8) model
following an approach similar to that of Griffith.

There are two independent s-wave scattering
lengths in the I=-,' and 2 states, to be denoted here
by a"' and a'~', respectively. The momenta of
the incoming (outgoing) K and v will be denoted by

P and q (P' and q'), respectively. Other useful
kinematical quantities are s=(p+ q)', t=(p'-p)',
and u = (P —q')'. We shall extrapolate to threshold
a linear expansion of the amplitude 4'(s, t, u; q',
q' ', P', P") in terms of the invariants s, t, . . . ,
assuming that there are no J =0' bound states and
that unitarity effects do not lead to rapid variations
of the amplitude at low energies.

Now we write the definite isospin s-channel
amplitudes in terms of amplitudes with definite
t-channel charge-conjugation properties satisfying
the crossing relations

y (30)
Azg A+ +
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where

A'(s, t, u; q', q", p', p' ')
A'(s, t, . . . ) =A, + B,(s+ u) + C,t+ D, (p'+ p''),

(32)
A (s, t, . . . ) =A'(s —u).

=*A'(u, t, s; q', q", p", p') .
Using the t-channel crossing symmetry given by
Eq. (31) and the kinematical condition s+ t + u
=q'+ q''+ P'+ p'', we write the linear expansions
with constant coefficients as follows:

Here the subscript 1 has been attached to the ex-
pansion coefficients in order to distinguish them
from those of Sec. II.

In order to evaluate the expansion coefficients,
we consider low-energy limits in current-com-
mutator identities of the form

E"(s, t, . . . ) =q'"q'T" —q'" d'xe" "(p''i 5(x,)[A„'(x),A', (0)] ip)

+ 2 d'x e" '" (P'
i 5(x,)[A,' (x), s "A'„(0)J i P), (33)

where

E"=-t d'xe" *(P''iT]»A„'(x), O'A'„(0)j iP),
(34)

T'„'„= id'«" '*(-P'i T]AI, (x),A'. (0)) IP&,

Now we take various low-energy limits in Eq. (32)
for, say, A'~' =A (K ' m' —K ' e' ) .

(1) q-0 (or q'-0). Keeping the other three
particles on their mass shells (Adler's PCAC con-
sistency condition), we have

are Fourier transforms of axial-vector current
and divergence time-ordered products. Together
with the normalization condition

which gives

A, + 2mx'(B, + D, )+ m, 'C, =O. (36)

and
(2) q', q-0 with K's on the mass shell. In

this case

we assume the following relation between the off-
mass-shell boson-boson amplitude A" and the
amplitude ~'~ for low-energy applications:

(q" —m, ')(q' —m, ')
m, 'I', /~~)(m '~ /

(35)

A ~'-A ~'(mx' + 2p' q, 0, mz' —2p' q; 0, 0, mx', mx')

= [A, + 2 mr (B, + D,)] —4(p' q)A' + O(q2, q'2, q' q')

= (2 t/~')«'( p) I
[A", s "A„"]IK'( p)&

+2(p q)/&. '+O(q q')

A' = - I/2E„',

A, + 2 mx'(B, + D, ) = (6/F, ')(K '
( p) i ([1+ (5 )'~'d] z, + [ —, + (r~) "'d] z g I

K '
( p)& ~

(37)

(38)

Evaluating the right-hand side of Ecl. (38) in the low-energy limit P'- 0 we get, with the value d = -1.48
obtained in the previous section,

(6/+ ')] (-')"'[1 --' (-' )"']+ (-')'"[1—(-')'"14m '
A, + 2mr (B, + D, ) =

~2 (l)y/2d

2

= 4.278 (39)

(3) P-0 (or p'-0). Keeping the pions on the mass shell and using low-energy limits for kaons, we have
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which gives

A, + 2 m„'8, + m„'(C, + D, ) = 0 .
(4) p, p -o.

A~~2-AM~(m 2 + 2p q, 0, m„2 —2p q' m 2 m 2 0, 0)=A, + 2m 'B, —4(p q)A'

= (2 i/F ')&1r'(q)
~ [A, 8"A ] ~

1T'(q)) +2(p q)/+ ',

(40)

and in the low-energy limit q'- 0 we have

A' = —1/2F, ', (41)

2
= 26.85 F", (42)

Comparing Eq. (37) and (41), we observe that simultaneous v and K low-energy limits would require the
approximately valid equality F =F&.

The expansion coefficients A1 B] C
y Dy and A can be obtained by solving five independent equations:

(36), (37), (39), (40), and (42). The s-wave scattering lengths are given by

-8w(mz + m, )ar =A ((mz + m„}', 0, (mz —m, )'; m„', m, ', mz', mz') . (43)

At threshold

A', „=A, + 2(mz'+ m, ')8, + 2mr'D,
26.85(4w)m,
(mr'/m, ')-1

A,„=4@m~m„A'
= -8mm~L,

(44)

(45)

These results for the Kw scattering lengths are
similar to the theoretical estimates of Griffith"
for the (3, 3} (3, 3) model, which are

a'" =2 I = 2L= 0.22m
m

mg +m+

(48)

a»'= 2
m~+ m„

13.43 m7f

(mr'/m, ')-1 m» + m,

= 2 L —0.24L

= 0.19m„'
mg

mg + m71

13.43 m7f

(mr'/m„')-1 mr + m„

L —0.24L
mg+m,

(46)

where

I.=m, /4v+'= 0.11m,

Making use of these values of A',„ in Eq. (30) and
the average values of meson masses, we get

a' '= — L= —L~ —0.11m„' .
mg + mff

We observe that these expressions can be obtained
from Eqs. (46) and (47) if the rather small second
term on the right-hand sides of the latter ex-
pressions is neglected.
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