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Impact-parameter structure of two-component absorptive models
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The impact-parameter structure of several two-component multihadronic production models is studied
in the framework of elastic initial-state absorption. Models in which both the diffractive and the
nondiffractive mechanisms lead to increasing cross sections are used to exemplify the nonlinear nature of
absorption. It is found that absorptive effects may result in a large range of impact-parameter
structures. On the one hand, diffractive components barely distinguishable from nondiffractive
components are encountered and, on the other hand, absorption may lead to a "splitting" of the
Pomeron into peripheral diffractive processes and central nondiffractive processes.

I. INTRODUCTION

Phenomenologically, it has been established
that high-energy multihadronic production pro-
ceeds through two mechanisms. " The first is
the dominant nondiffractive component which is
of a multiperipheral nature and leads to decreas-
ing zz-particle production cross sections o„(s).
The second mechanism is of a diffractive nature
and may involve Pomeron exchanges in a multi-
peripheral manner leading to asymptotic energy-
independent a „(s).

It has further been experimentally observed
that the total cross section, a„, ,

' increases with
energy. This behavior is reproduced in various
theoretical models. 4 A particular class of such
models' ' invokes s-channel initial-state absorp-
tion to achieve an increasing a „, consistent with
unitarity. However, these models usually involve
only one production mechanism at a time.

In this work we attempt to investigate the fea-
tures of various two-component models in the
presence of absorption. Each component was
constructed to lead to an increasing a'„, . The
nonlinear nature of absorption may induce addi-
tional structure when the two components are
combined.

In Sec. II the initial-state elastic absorption
procedure is reviewed, with emphasis on those
of its properties which will be utilized latter.
Two production models' ' that include absorption
are reviewed in Sec. III, and they will serve as
representatives of the diffractive and the nondif-
fractive components. In Sec. IV we analyze a
simple two-component absorption model, and a
classification of the possible solutions is per-
formed by characterizing the different unabsorbed
overlap functions with the help of two parameters:
the coupling constant and the radius of the appar-
ent unitarity violation. It is shown in Sec. V that
this classification survives essentially unchanged

in a more complex two-component model based
on the models presented in Sec. III. A case in
which the nonlinear effects lead to an interesting
structure in impact-parameter space is pointed
out ~ They result in peripheral diffractive pro-
cesses and central nondiffractive processes. In
Sec. VI we conclude by surveying models in which
diffraction is treated perturbatively.

11. THE ABSORPTIVE PROCEDURE

The application of multiperipheral dynamics
to hadronic production processes has had con-
siderable successes. Attempts have been made
to describe both components of multihadronic
production in terms of t -channel iterations.
Multi-Regge exchanges (or elementary exchanges)
have the short-range characteristic of the non-
diffractive component and consequently predicted
the scaling of the inclusive cross sections and
the logarithmic increase of the average multiplic-
ity of the produced particles. A multiperipheral
scheme incorporating the exchange of an exclus-
ive Pomeron is able to account for and predict
many of the properties of high- and low-mass
diffractive excitations. ' However, it has been
realized" that the multiperipheral scheme does
not have built in s-channel unitarity constraints.
In fact, elastic amplitudes constructed via uni-
tarity by both Pomeron and non-Pomeron ex-
changes may violate the Froissart bound, and the
approximate constancy (up to lns factors) of the
measured total cross sections must be traced to a
special value of the coupling constant.

In order to overcome this difficulty, a way to
tame any multiparticle output function was sug-
gested" as follows: The unitarity equation in
b (impact-parameter) space has the form

lm T,(s, b) =
~ T„(s,b)P + T, (s, b),

where T,„„ is the inelastic overlap function which

1969



1970 E LIE & E R RABINOV ICI

T.
,„„(s,b) = f (S) T', (s, 5), (2)

where S is the S matrix. Assuming that the elas-
tic amplitude is purely imaginary,

is the sum of all inelastic production at a fixed b.
Caneschi' has suggested that T,.'„„as calculated
from any model should be replaced in the unitarity
equation [Eq. (1)] by T,„„. T is. related to T,'„„
through

teractions must be manifest in the input overlap
function M to insure that.

(c) In order to study the behavior of the inelas-
tic processes after absorption one has to specify
the manner in which the absorptive factor subdues
an increasing M,

1 1 1
4M 64M'

T,(s, b) = iA(s, b),

the unitarity equation becomes

(3) Thus, the absorbed inelastic overlap function's
contribution to the total cross section is given by

A =A'+ f(S) T',„„. (4)

In a multiperipheral model one may try to associ-
ate the presence of f (S) with absorptive correc-
tions, in particular, with initial-state elastic re-
scattering. In this case f(S) may have the form

j(S)=1 —2A .

This suggestion neglects both inelastic diffractive
absorption channels" and final-state rescattering
corrections. " However, this over-simplified pro-
cedure not only restores unitarity but also allows
for a self-consistent Pomeron. ' We will thus
pursue the results following from this type of
implementation of absorption.

Denoting T,'„„byM and substituting Eq. (6) into
Eq. (4), one obtains

A=A +(1 —2A)M.

This equation can be explicitly solved for A:

A= ~[2M~I (4M +I) ~ ]

This solution ha, s the following properties:
(a) It obeys the unitarity constraints [Eq. (5)]

for every b.
(b) if the inelastic overlap function increases

indefinitely at a fixed b as a function of s, A re-
acts by approaching the value 2 ~

1 1 1 1
2 4M(s, b) 64M'(s, b) M'

(S —+ oo}

At each b where unitarity was threatened the scat-
tering process is characterized by complete ab-
sorption. However, the absorption procedure
does not insure that the Froissart bound mill be
respected. The short-range nature of strong in-

Once T',,„„ is given, this constitutes an equation
for the elastic amplitude. A rather large class
of functions f (S) (Ref. 6) would ensure that for any
T,

' „A(s, b) is always mapped in between the uni-
tarity bounds:

(5)

(1 —2A)M
1 1 1 1
4 16M 64M M

(S ~ oo)

(11)

We will make an extensive use of Eqs. (10) and
(11).

(d) The elastic cross section is given by

1 1 1
4 2M 16M~ (12)

III. TURBO ABSORBED MULTIPERIPHERAL MODELS

A. A self-consistent diffractive model

The t -channel iteration of a fixed pole at j =1
lea, ds via unitarity to a pole above one in the elas-
tic amplitude

A)(g, f = 0) = Q . 1)„= (14)

where g is a (positive) coupling constant. This

In this scheme the elastic and inelastic cross
sections approach a common limit as M —~; how-
ever, the next-to-leading term in the total cross
section will always originate from the elastic scat-
tering.

(e) With the help of Eq. (8) one can study the be-
havior of the absorbed n-particle production
cross section which is given by

o'„(s, b) = [(4M'+ 1)' ' —2M]M„(s, 5), (13)

where M„(s, b) is the unabsorbed contribution of
the n-particle production to the inelastic overlap
function at a fixed b. This result can be simplif-
ied by the approximation of Eq. (10). However,
when M is of order unity, so is the absorptive
factor.

Thus, given a certain model for the inelastic
overlap function, one ca,n find the detailed struc-
ture of the model after absorption has taken place.
In order to clarify the effects that absorption has
on the basic features of multiperipheral models
two models" were already investigated. We next
review these models which mill later be utilized.
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i e(RO' Y —b )
el 2 (15)

result neither respects unitarity bounds nor is
self -consistent. Finkelstein and Zachar iasen'
have shown that in the framework of the absorp-
tive procedure one can obtain a self-consistent
Pomeron. Qne assumes that only the Pomeron is
exchanged in the production process, and it is giv-
en by an expanding black disk of radius R,Y (Y is
the total rapidity),

behaved. M will always be of order unity at those
6 values where unitarity has not yet been violated
(in this model, at b of the order R,1'). Thus the
question of the survival of o„(Y) reduces to the
question of the behavior of m„(Y, b) at b of the or-
der R,Y. In models (like this one) which exhibit
a random walk in impact parameter the energy
behavior of o„(Y) can be traced to the energy be-
havior of the length of the random step (a).

In general the dispersion of the impact parame-
ter after n steps is given by

its j plane structure is (b')= na'. (22)
1

[(
'

1)2 R 2f]3/2 (16) In this model one has, due to the strong shrinkage,

Calculating the n-particle overlap function one
obtains

Y 2

(b )= n
Y
n

(23)

(Y b) g [(R. ) ] ,(R .~ b. )2 (3n —5)t 0

For each fixed multiplicity n, (b2) increases like
Y'; m„(Y, b) can be approximated for this purpose
by

The total overlap function is found to be"
b2

„IY, bI=e*p(- ~, ~
(24)

where

cD exp[(g/2)'~'(R, ' Y' —b')'~'] e(R,' Y' —b')
(R 2 Y2 b2)l/2

(18)

.. /32-2/3
cD =

3 (19)

Once M is calculated, one can solve Eq. (7) for
Qne finds that it is indeed given by Eq. (15)

to first order, and that the Pomeron is self-con-
sistent.

Using Eqs. (10), (13), and (18) one finds o„(Y, b)
to be

At the critical b-ROY, where M is always of the
order one, m„(Y, b) is energy independent and al-
lows for constant cross sections. The model also
results with a rising plateau and long-range cor-
relations; for a detailed study of this model, see
Ref. 6.

B. A nondiffractive absorptive model'

Harari studied production models which may
secure the intercept of the Pomeron at one and
simultaneously relate the intercept of the nonlead-
ing trajectory a„ to the internal coupling constant
g. The input was taken to be

c'[(g/2)'"(R ' Y' —b')' ']'"-'
a„(Y, b) =

(3 n —5)!
(g Y)" exp(- b'/4a' n)

4a n
(25}

X/3

x exp —— (R,' Y' —b')'~' e(R,' Y' —b') .

(20)

Integrating over b one can show that o„(Y) ap-
proaches a constant as the energy increases.
This significant feature of diffractive processes
comes about as follows:

where c~ reflects the external coupling constants
and 4a' is the slope of the form factor associated
with each vertex. In terms of the j plane such
an assumption represents the t-channel iteration
of a fixed pole at j = 1:

(26)

{21)

Over most of the integration range m„(1', b) has
a, power behavior in 1' [Eq. (17)] while M is ex-
ponentially behaved [Eq. (18)]. The only way in
which the cross section can survive at high en-
ergies is to be approximately energy independent
at those b at whichI ceases to be exponentially

The total inelastic overlap function is found to be

j-1
A.

, (j, I) = g n~„(j, f) = .

n

{27)

c exp(g Y —b'/a'gY)
a'g Y

(28)

a tApproximating e' ' by its first two terms one ob-
tains
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The b range over which unitarity wouM be violated
without absorption expands like F; so it is clear
from Eq. (9) that the result is once again an ex-
panding black disk. The total cross section in-
creases like ln's. However, comparing the ex-
change of a cut [Eq. (16)] to an exchange of a pole
also situated at one [Eq. (26}], we find that the
asymptotic behavior of o„(Y) is drastically
changed:

(Y) (g Y)" (qg Y)',~
n! (gY -n) (29)

IU. TWO-COMPONENT ABSORPTION: A SIMPLE EXAMPLE

It is assumed that two mechanisms participate
in the production process leading to "unabsorbed"
inelastic overlap functions M, and M, . One fur-
ther assumes that each of the mechanisms sepa-
rately would lead to an increasing total cross sec-
tion.

The behavior of the two-component model in
the presence of absorption is investigated by con-
structing the total driving term K, where K re-
flects the properties of M, and M, :

K=M, +M, . (30)

A is then obtained by solving Eq. (7) after replac-
ing M by the total E. Since Eq. (7) is quadratic,
one expects the model to have a different struc-
ture than each component separately. Several
attempts to build the driving term K and investi-

In this case the length of the random step is con-
stant (a'), and the radius of the violation of uni-
tarity has remained of order 1'. Thus m„(Y, b)
will be a decreasing function of energy at b - F
and the cross section will be a decreasing func-
tion of the energy. (This result would also hold
for a lower exchange with an intercept P as long
as its coupling, g6, is strong enough so that

g8 —2P -2&O. ) This type of energy behavior is
one of the dominant features of nondiffractive had-
ronic production.

Experimentally, it has been established that
there exist two components which are simultan-
eously responsible for the production of n par-
ticles. We have just presented two models which
have the desired properties of each of the com-
ponents. In the first model we have a c„(Y}which
tends to a constant while in the second model o„(Y)
decreases to zero as the energy increases. It
may thus be interesting to study a model in which
both mechanisms participate. Up to now each
component was investigated independently of its
companion. However, absorption is a nonlinear
process and may lead to new features in a two-
component model.

81 I@1 2 2 1
1

(31)

(32)

An exclusive model leading to such an overlap
function was reviewed in Sec. IIIB.

Given this global information the problem ad-
dressed will be the following: What is the contri-
bution of each mechanism to the total cross sec-
tion at a fixed impact parameter b7

Both mechanisms increase indefinitely, thus
justifying the approximation stated in Eq. (10)
for the absorptive factor. The two inelastic con-
tributions I„I, resulting from absorption are giv-
en at fixed b by

Mi
'~„„4K ' (33)

', „4K (34)

The total inelastic contribution of the first inelas-
tic mechanism to the total cross section is ob-
tained by integrating Eq. (33) over the whole avai-
lable b range,

yg Ri
" I+(g,4,}(R,'/ft, '}exp[a(q}Y]

'

(35)

gate the mutual interactions between its compo-
nents will be discussed. In order to keep calcula-
tions as elementary as possible, we wil) deal first
with a simple example which will nevertheless
possess many features of more complicated mod-
els.

A large class of overlap functions is roughly
characterized by two quantities:

(a) R —the radius over which the unabsorbed
overlap function would violate unitarity (we will
only deal with the case where the radius is log-
arithmically expanding with energy), which would
also eventually reflect the magnitude of the total
cross section should only one mechanism be op-
erative.

(b}g—the internal coupling constant between
the produced particles and the two adjacent t-
channel exchanges in the process which builds
up M.

The structure of a two-component absorptive mod-
el will thus be exemplified by using two overlap
functions M, andM, which differ in their radii R„
8, and their coupling constants g„g, . Each would
violate unitarity in the absence of absorption and
lead to increasing cross sections
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The upper limit of integration is the larger of R1
and R„. we have chosen it to be R, . q is given by

lb I

0 (36

and h(t)) is a function given by

&lnl (z =-z,.)-(z*, —„'. n*
2 1

(3'I )

A similar result is obtained for the second com-
ponent. After absorption has been completed the
elastic amplitude will, of course, turn out to be
an expanding black disk, but one may still in-
quire how that black disk is built up from the
production mechanisms at a fixed b.

This structure will be governed by the behavior
of the function h(q). Whenever h(r)) has a positive
definite sign over a certain range of q, that is,
whenever I, is greater thanl„only the mech-
anism which builds up M2 will contribute, asymp-
totically, to the total cross section corresponding
to that range of q. From the range where h(q) is
negative only contributions due to the first mech-
anisms will appear in the total cross section. The
elastic cross section responds, for each b, to the
behavior of the inelastic cross section.

The analysis of the function h(q) shows that one
must distinguish between several cases:

(a) R, &R, and g, &g, . In this case the first
mechanism completely dominates the total cross
sections for each b.

(b) R, =R, and g, &g, . In this case the conse-
quences are the same as in (a).

(c) R, =R, and g, =g, . In this case, both mech-
anisms have identical overlap functions and con-
tribute equally for each b.

(d) R, &R~ and g, &g, . In this circumstance, ab-
sorption results in a very interesting structure:
The Pomeron in b space splits in two. For every
value of b in the range qp Y& b&R, Y, it receives
asymptotic contributions only from the first mech-
anism. For values of b in the range 0& b & qp Y
the absorbed overlap function is determined sole-
ly by the second mechanism. The transition point

qp occurs at

V. TWO-COMPONENT ABSORPTION: DIFFRACTIVE
AND NONDIFFRACTIVE MECHANISMS

In the former section a model consisting of two
overlap functions having rather general features
was investigated. In this section we try to study
the fashion in which the results obtained are
altered in a two-component model actually con-
sisting of diffractive and nondiffractive compo-
nents. Specifically, we will utilize the two mod-
els mentioned in Sec. III. The diffractive model
leading to constant multiplicity cross sections is
de sc ribed by Eq. (18) and the nondiff rac tive model
leading to decreasing cross sections is described
by Eq. (28).

We proceed as in Sec. IV. Concentrating on the
diffractive mechanism one obtains for the total
inela. stic diffractive contribution, oD,

where

R Y Ct~2, I+Kxexp[f(x)(g„/y) y] '

kl gN CDg2 2 1/3
A'D—

(39)

b = qR, I', x = (1 —q')'~', (40)

and

f (x) = x ——x+ y —I.2 'y
(41)

g„ is the coupling appearing in Eq. (28) and gD is

case (d). The expanding black disk is composed
of two parts, each of which consists of a "black"
and a "gray"~ region. One part is a peripheral
expanding ring and the other is an expanding cen-
tral disk.

Although all cases are logically possible, once
the possibility of splitting the Pomeron has arisen
one is tempted to inquire whether it is possible
to construct a model which leads, under reason-
able assumptions, to case (d). In the next section
we will try to point out such a possibility.

~012gg2gR2 (38)
xx -GRAY FRINGE

LL,—BLACK DISK
Thus qp is smaller than both R, and 82.

The process with the larger radius and the
smaller coupling constant is turned by absorption
into a peripheral mechanism, while the process
with the smaller radius and the larger coupling
constant is confined to a circle of radius Qp Y
around b =0." All other cases involve changing
the roles of the two mechanisms. In Fig. 1 we
show the detailed structure of the Pomeron in

FIG. 1. The central and peripheral components of
the Pomeron.
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the coupling constant of Eq. (18).
The nondiffractive component violates unitarity

in a radius b&ag„Y, while the diffractive compo-
nent violates unitarity in the range b &ROY (inde-
pendent of g~); thus a priori the largest absorbed
b is given by

RY= max(RO Y, ag„Y) . (42)

To obtain Eq. (39) we have assumed that R =R,
but we will also discuss the other possibility.

The function f(x) will determine [as the func-
tion h(q) in Sec. IV] the dominant mechanism at
each x. The function depends on two parameters:

(a) y —which reflects the ratio of the radii of
the two components;

(b) 1/z=gD/g„which is the ratio of the internal
coupling constants of the two mechanisms.

The following cases occur (for more details, see
Appendix A):

I. y~1 ~

(a) z &1 (g„&gD). In this case the black disk is
fully diffractive.

(b) z =1. Also in this case the disk is totally
diffractive [unlike the simpler case (c) in Sec.
rv].

(c) z &1. In this case, when the nondiffractive
coupling constant is greater than the diffractive
coupling constant while the radius of the nondif-
fractive mechanism is smaller or equal to the
diffractive radius, one finds that the Pomeron
splits; it has a nondiffractive nucleus and diffrac-
tive periphery. [This occurs also for @=1, unlike
case (d) in Sec. IV.]

II. For y&1 the results are similar; the main
difference is in the region 1 &y &@, (where [y„y,]
is the interval of y values over which the function

f(x) has no roots; see Appendix A). In that region
the Pomeron consists of three parts: a nondiffrac-
tive nucleus, wrapped by a diffractive ring which
is wrapped again by a nondiffractive ring.

Before presenting in detail all the possible con-
figurations we will try to figure out what physical
assumptions could help locate that section of the
y-z plane which is consistent with the knowledge
we possess of production processes. In the ab-
sorption three radii are involved, two of which
must be equal: ag„ is the radius of the nondiffrac-
tive processes, R, is the radius of the diffractive
mechanism, and R is the radius of the resulting
Pomeron.

If we now impose a self-consistency demand,
that is, we will require that there exists only one
Pomeron in the model, we obtain that R of the out-
put Pomeron must be identical to R„ the radius of
of the input Pomeron. Thus self-consistency con-

strains us to the region of the y-z plane where
ag -R =R„ that is, to the region y» 1. If we fur-
ther insist that the Pomeron built up by nondiffrac-
tive processes alone will also be identical to the
Pomeron exchanged in diffractive processes we

are led to the line y=1.
In order to complete our location in the plane

one shouM try to estimate the expected value of
If we accept the experimental indications that

coupling constants characterizing nondiffractive
processes are larger than those attached to dif-
fractive processes, we are naturally led to the
conclusion that physics could occur at the region
y- 1 and z &1. However, this is just the region
where the Pomeron splits. In that region the
Pomeron is built up by a diffractive peripheral
component and a nondiffractive component which
is responsible for the more central collisions.

In Fig. 2 we demonstrate the various possible
structures of the Pomeron in the y-z plane.

For z & 1, motion along a line with a fixed z
will describe a pure diffractive Pomeron as long
as A. ~ 1. When y exceeds 1, a nondiffractive ring
is added to the Pomeron.

For z &1 one finds that as y increases, the non-
diffractive nucleus also increases. In the interval
1 & y & y~ a nondiffractive ring appears and at y
greater than y, the whole Pomeron turns nondif-
fractive. Motion along a line with a fixed y shows
the increase of the nondiffractive component as z

increases. For y&1 the increase is felt only after
z becomes larger than 1. When 1&y&2 the non-

z ~v. ~~
I

ND BLACK DISK-

D BLACK DISK-

FIG. 2. The various possible structures of the Pomeron
in the p-~ plane. p~(p, s) is defined in the Appendix.
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diffractive component is a ring as long as z & 1.
When z &1 it also appears as a nucleus forcing
the diffractive component into a ring. For y & 2

and ~ &1 the whole Pomeron turns nondiffractive.
For completeness we add some details on the

structure of the model in the case in which y=1
and the Pomeron splits. The total nondiffractive
inelastic cross section is given by

2

R2P 1
AM

and the diffractive contribution to the inelastic
cross section is

2

=R ' Y'~D
D P 2

CM
{44)

One thus finds that the ratio of the cross sections
coming from the different components is

2
~M AM

2
~D CD

(45)

Vl. TWO-COMPONENT MODELS: A PERTURBATIVE
APPROACH

The main assumption involved in the model
presented in the former section was the ansatz
of the driving force K in terms of two overlap
functions, each representing a familiar model.
In this fashion no account was taken of production
processes initiated by exchanging simultaneously
both t-channel objects, In other words, we have
essentially neglected the coupling between a pole,
a black disk, and a produced particle. In this
section we will sketch the structure of a model
in which this coupling is treated perturbatively;

Experimentally, this quantity is much larger than
one. This may serve as another indication that
the assumptiongM &gD was reasonable.

Each multiplicity cross section o„(Y) is com-
posed out of two components: one constant and
one decreasing with energy. Both components
sum, however, to increasing cross sections.

The special way in which absorption has taken
place affects the average multiplicity. The dif-
fractive processes were absorbed in the center
of the proton, thus losing the high-multiplicity
events. The nondiffractive processes were ab-
sorbed on the periphery; thus also they lost their
high-multiplicity events. The over-all average
multiplicity has decreased as a result of having
both components absorbing each other.

We have described in the last two sections the
results of absorbing a two-component model. Be-
tween the possible results we were led by self-con-
sistency arguments to the interesting "splitting"
of the Pomeron.

namely we will continue to assume the existence
of two production mechanisms. The nondiffractive
mechanism will again be represented by the mod-
el described in Sec. IIIB. The diffractive mech-
anism will include those processes in which only
one black disk is exchanged accompanied by a
chain of usual poles. Such a model may be of
interest if one infers from the ISR data" that
complete absorption is far from having been
developed. In such a case an exclusive exchange
of more than one or two black disks will be im-
possible for any energy available experimentally
for quite some time. The results will be pre-
sented in a qualitative manner and the approxima-
tions involved will be stated.

exp[g(Y —y») —(b ~b, )'/a'g(Y-—y»)] (28')
a'g{1' —y„)

yy2 and 6», are respectively, the difference in
rapidity and impact parameter between the first
and second produced particles. The black disk
is indifferent to the amount of the rapidity axis
it covers provided that it should always exceed
the amount of b that it has. Thus one finds that
the favorable configuration is one in which the
rest of the particles fill all the available rapidity
and impact-parameter space and the black disk

B.D .D.

FIG. 3. The unabsorbed diffractive overlap function.
B.D. is the exclusive black disk and V.M. is the total
nondiffractive component of the B.D.-proton scattering.

A. The overlap function

We begin by treating the diffractive component
independently and later add the effects of a two-
component model.

The general nature of a model is reflected in
the behavior of its overlap function. In this case
the overlap function is built out of two elements
(Fig. 3): a black disk (which for the time being
is confined to the end rungs), and from the pro-
cess in which a black disk collides with a proton;
one assumes that this collision is given essential-
ly by its nondiffractive component. (The black
disk behaves in a factorizable manner due to the
pion propagator which actually separates it from
the next exchange. ') Thus a black disk given by
&(y„' —b»') and a pole given by Eq. (28') will com-
pete over the whole (Y, b) space:
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is left with ( b»(=y» =0.
This indicates that the addition of a black disk

to the production process will not radically alter
the structure presented in Sec. GIB. In particular,
the cross sections o„ that contributed the main
bulk of the total cross section, at a fixed energy,
before the addition of a black disk, will persist
with their behavior. This does not mean that one
cannot find quantities whose study will expose the
existence of an exclusive black disk. For in-
stance, following the behavior of the cross sec-
tion for producing a fixed number of particles
n as a function of energy, one discovers the in-
fluence of the exchanged black disk.

B. 0 (s) of the diffractive component

For simplicity we will follow the specific pro-
cess in which one additional particle is produced
by the two scattering particles. The production
occurs by exchanging a black disk and a pole with
intercept one (a different intercept will not change
the result) (Fig. 4). The cross section is

o,(Y, B)=cfe(y' f')e i—s "'dyd'b -(4.6)

As pointed out in Sec. III, the asymptotic fate of
the cross section will be determined by its be-
havior at ~B~ =Y. Both the pole and the black
disk are indifferent to the fraction of the rapidity
axis which they cover. Thus for ~B(-Y the pole
will stay at zero impact parameter and the black
disk will be forced to extend all over the rapidity
axis having y = Y. This configuration carries no
energy penalty and actually resembles an exchange
of a single black disk; the cross section is thus
energy independent. This result clearly general-
izes to any n.

The diffractive component thus leads, as de-
sired, to constant cross sections. How can this
be reconciled with the fact just stated that the
total overlap function hardly changes by the addi-
tion of a black disk'P What happens is that those
o„ that build up the ln's of the total cross section
at a fixed energy are practically unchanged by
the exchange of the black disk. In other words,
at each energy the sum of all cross sections
which have already reached their asymptotic
constant value is increasing slower than ln's.
Such behavior is exemplified in Fig. 5, which

shows the behavior of o„(s) as a function of n at
a fixed energy. Most of the cross section comes
from the region around the average multiplicity;
cross sections in that region are far from their
asymptotic value.

We have thus encountered a diffractive model
whose gross features are very much like those
of a nondiffractive model and whose distinct
properties can be found only in rather fine details.
This result should be contrasted with the behavior
of other models for the diffractive components,
such as models for single diffractive excitations. '
In those eases the structure of the diffractive
component is substantially different from that of
the nondiffractive component. Absorption which
allows a unitarity- violating unabsorbed overlap
function is responsible for the difference.

C. Two- and more-component models

The diffractive component just described con-
stitutes only part of the driving force, which will
be completed only after adding the nondiffractive
component. As a small difference exists between
the two mechanisms, one expects both to contri-
bute at every impact parameter. This can be
verified in a more detailed model that involves
some mathematical simplifications. " In this
particular model both mechanisms contribute
at each impact parameter; however, the ratio of
their contributions is a function of b. The larger
the impact parameter, the larger the contribution
of the diffractive mechanism to the total cross
section. This is reminiscent of the peripheral
structure of diffraction exhibited in the former
sections.

The exclusive diffractive process was confined
in the former analysis to the ends of the chain.
The liberty to exchange the one black disk any-
where along the chain would result in a lns en-
hancement of the diffractive processes relative
to the nondiffractive processes. The output
Pomeron would eventually reflect, at a very slow
rate, only the diffractive processes. The addition
of a finite number of exclusive black disks would
bring about the same result.

(y, b)

(v ej gY

FIG. 4. The unabsorbed cross section for the diffrac-
tive production of three particles.

FIG. 5. The diffractive Inultiplicity cross sections
0„(s) as a function of n for a fixed s. The ln2s behavior
of 0,„, comes from e-gY. The behavior at small n

should be associated with already constant cross sections.
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APPENDIX

While investigating the properties of a two-
component absorptive model including a diffrac-
tive and a nondiffractive mechanism, we found
that the contribution of each mechanism at a
fixed b [Eq. (39}]was governed by the behavior
of the function f(x) [Eq. (41)]

f(x) =x -a yx+y-l,2 g
ge

(A1)

In this work we explored the effects of elastic
initial-state absorption on several two-component
models. The models describing both components
were chosen to lead separately to increasing cross
sections. We first utilized existing models for
each of the components, and the mechanisms were
characterized by the energy behavior of their
multiplicity cross section, g„(F}. It was found

that these models offer a large range of solutions.
Particular attention was paid to a case in which

a "splitting" of the Pomeron had occurred. It
was shown that by using self-consistency argu-
ments and experimental evidence as to the dom-
inance of nondiffractive processes one may be
led to a solution in which absorption confines
diffractive processes to be peripheral and non-
diffractive processes to be central. The main
interest in this case is that it illustrates some
of the nonlinear effects of absorption. A "per-
turbative" two-component model was treated
next, and the resulting diffractive process had

many features in common with the nondiffractive
mechanism. However, its special nature could
be exposed by studying the asymptotically constant
behavior of the cross section to produce n par-
ticles diffractively. The more components added
the weaker becomes the signature of the nondif-
fractive mechanism on the output Pomeron. The
models presented may eventually have phenomeno-
logical consequences; however, they are of an

asymptotic nature. As long as a black disk be-
havior of the Pomeron is not observed experimen-
tally, "there is no possibility of applying any of
these models to the data. Finally one should add

that the data do seem to support a split Pomeron";
however, whether this behavior persists up to
the asymptotic region discussed in this paper is
yet to be found.

where gD and g„were, respectively, the diffrac-
tive and nondiffractive coupling constants. y was
given by the ratio of the nondiffractive and dif-
fractive radii [Eq. (40}]. One should remark
that the x factor that appears in Eq. (39}is act-
ually spurious at x=0."

The roots of the function f(x) are

vy+(y'y' + 4 —4y) 'i'
x lo2 2

(A2)

The edges of the interval were denoted y„y, and

they are both functions of z.
We note the following cases:
(a) z& l. In this case the large root x, is greater

than 1 for every y&0. The small root x, is neg-
ative in the region 0& y(1, zero for y=1, and
positive for y&1. Thus for each y&1, f(x) is
negative in the relevant interval (0, 1). For
y&1, f(x) is positive in the interval (0, x) and
negative in the interval (x„1).

(b) z =1. In this case x, increases from a neg-
ative value for y =0 to the value zero at y =1. For
y&1, x, is positive and smaller than 1 until y =2.
For y& 2, x,& 1.

x, has a constant value 1 between y =0 and y =2;
for y&2 one has x,&1. Thus f(x) is negative in
the interval (0, 1) for every y&1. For 2&y&1,
f(x) is positive in the range (0, x,) and negative
in the range (x„1); for y&2 it is positive in the
whole interval (0, 1).

(c) z &1. x, increases from a negative value at y = 0

tozeroat y=1. For 1(y&y&, 0(~, 1. Fory, y y„
x, does not exist. For y&y„x, decreases but is
always above 1. x, decreases from 1 at y=0 to
0&x, & 1 for y&1. For y&y„x,&1. Thus f(x) is
negative in the interval (0, x,) and positive in

(x„1)as long as y&y, &1; for y&y„ f(x) is pos-
itive in the interval (0, 1). The line appearing in

Fig. 2 describes the relation between y, and z.
We conclude by remarking that the situation

in the case z&1 is actually more involved. In

principle g& and gD could be estimated by mea-
suring the average multiplicities of diffractive
and nondiffractive events. However, it seems
that the Pomeron is still far from behaving like
a black disk even at ISR energies. " This means
that the displacement of the pole above one is
small while multiplicities are not small. One
may perhaps regard nondiffractive processes as
originating from an exchange of a Reggeon of
intercept a„ lower than one, but with a larger
coupling constant g& such that

where y = 1/z =gD/g„. The equation has two roots
for each z, except when y is in the range

2z [z —(z' —1)~ ]& y & 2z [ z + (z —1) ' i']. (A 3)
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E = 2Qg —2 +g~& 0.

In this case absorption may still be small, while

(n), whose behavior is governed by g„, is large.
In this Appendix we also analyze the case where
a new parameter e has been introduced.

In this case the function f(x) is

We will deal with the case y= l. The roots x„x,
are

ya(y' —4A, +4)'i'
xlg 2

where y =gs/g~ and k = e/g„. If 0&k&1, then for
each 0&y&k, one has 0&x, &1 and xI&0. Thus in
this range where e&gs, f(x) is negative in the
interval (0, x,) and positive in (x„1). Thus once
again the Pomeron splits.

*Operated by Universities Research Association Inc.
under contract with the United States Atomic Energy
Commission.
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