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Deep-inelastic structure functions in an approximation to the bag theory*
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A cavity approximation to the bag theory developed earlier is extended to the treatment of forward

virtual Compton scattering. In the Bjorken limit and for small values of co {co = ~2p ~ q/q') it is

argued that the operator nature of the bag boundaries might be ignored. Structure functions are

calculated in one and three dimensions. Bjorken scaling is obtained. The model provides a realization of
light-cone current algebra and possesses a parton interpretation. The structure functions show a
quasielastic peak. The spreading of the structure functions about the peak is associated with

confinement. As expected, Regge behavior is not obtained for large co. The "momentum sum rule" is

saturated, indicating that the hadron's charged constituents carry all the momentum in this model.

vWL is found to scale and is calculable. Application of the model to the calculation of spin-dependent

and chiral-symmetry-violating structure functions is proposed. The nature of the intermediate states in

this approximation is discussed. Problems associated with the cavity approximation are also discussed.

I. INTRODUCTION

In the bag theory" the hadron is taken to be an
extended region of space (the bag) containing quark
fields. The quarks are confined to the bag by a
universal pressure, B, but are only weakly cou-
pled to one another (by vector gluons) inside. It
seems clear that such a hadron should allow a
parton interpretation and exhibit Bjorken scaling.
Indeed these considerations were fundamental in
motivating the model. The calculation of current
matrix elements has so far proved prohibitively
difficult —even in one space dimension where a
quantum theory exists' —so a rigorous calculation
of deep-inelastic structure functions and verifica-
tion of scaling is not yet possible. In an earlier
paper' a semiclassical approximation was de-
veloped which allowed us to estimate current
matrix elements at or near zero momentum trans-
fer. Here I wish to extend the approximation
scheme of Ref. 2 to study deep-inelastic scatter-
ing structure functions.

Bjorken scaling is obtained in this approxima-
tion. However, this should not be taken as a deriv-
ation of scaling in the bag theory since the relation
of my approximation to a true quantum theory of
bags is not understood. Here a parton (or light-
cone) interpretation of the bag will be developed
and the lore of parton models (or light-cone al-
gebra) carried over to help explicate the bag
theory. One can see, for example, how confine-
ment modifies the structure function of a free
particle. Furthermore, the semiclassical cal-
culations provide a framework in which more
realistic approximations can and will be discussed.

The approximation developed in Ref. 2 and ap-

plied here ignores quantum fluctuations. Further-
more, it is necessary for me to treat the final
state (in the electroproduction amplitude) in a
way which violates momentum conservation.
Nevertheless, the deep-inelastic phenomenology
which emerges from these calculations supports
the intuitive picture of scaling which originally
motivated the bag theory. At present, it is im-
possible to gauge whether quantum fluctuations
and a proper treatment of the final state (which
are closely related) will obliterate this simple
picture. Calculations in progress' will reflect on
this question but are outside the scope of this
paper.

The paper is organized as follows. Section II
contains a brief review of the general bag theory'
and of the semiclassical quark model based on the
bag. ' Readers familiar with the theory should
ignore this section. In Sec. III I extend the semi-
classical approximation to the Compton scattering
problem and develop the general framework for
structure-function calculations. Section IV is
devoted to the one-dimensional problem where all
calculations may be performed analytically as a
check on some of the approximations made in
Section III. The real three-dimensional problem
is treated in Sec. V. W„vW2, and (where ap-
propriate) vW, are calculated explicitly, various
sum rules and relations among structure functions
are verified, and parton distribution functions are
extracted from the structure functions. In Sec.
VI several further applications of this approach
are listed. In Sec. VII the principal results of the

paper are summarized and the approximations
forced upon us in Sec. III are discussed further.
Appendixes A and B deal with the definition of the
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structure function in the bag theory, with gauge
invariance, and with details of the three-dimen-
sional calculation.

II. REVIEW OF THE CLASSICAL BAG THEORY
AND SEMICLASSICAL QUARK BAG MODEL

(I/t)y" 8&q (x) = 0 inside the bag,

ty" n„q~(x) =q (x) on the surface,

(2a)

(2b)

a massless Dirac field, noninteracting within the
bag, these are

n" S„g q (x)q„(x) =2B on the surface. (2e)

Before proceeding, it is necessary to review
several features of the general bag theory' and of
the semiclassical quark model based on the bag. '
A bag is a finite region of space which contains
fields, which I will take to be the fields of colored
quarks. 4 The quark field does not exist outside
of the bag: It is confined (in a Lorentz-invariant
way) by endowing the space it occupies with a
constant, universal energy per unit volume, B.
The Hamiltonian of the bag consists of a field term
and a term arising from the pressure B,

d'x To(fields) + BV .

A bag with fixed energy cannot become too large,
lest the potential energy BV exceed E. Allowed
classical motions are those for which the field
pressure balances the universal pressure J3 at
each point on the bag's surface. No energy or mo-
mentum flows across the bag's surface. Clearly,
the shape of a bag cannot be fixed a Prio~i inde-
pendent of the field inside: The pressures in
general would not balance. Formally, this is re-
flected by the fact that the variables which de-
scribe the bag's surface are dynamical variables
of constraint which are determined by the field
degrees of freedom.

Equations of motion for the bag are developed
from an action principle in Ref. 1. An alternative
beginning with the stress-energy tensor is de-
scribed in Ref. 5. One obtains both equations of
motion for the field inside the bag and boundary
conditions at the bag's surface. For the ease of

Here n is an internal symmetry index, e.g., color
or SU(3), and nz is the covariant normal to the
spacetime hypertube swept out by the bag. Equa-
tions (2) determine both the field q„(x) and the
boundary of the bag.

Although the theory as it stands confines quarks
to finite regions of space, it does not remove
quark quantum numbers from the spectrum (a one-
quark bag is allowed). To do this, ' colored gluons
must be added to the bag and coupled in a Yang-
Mills fashion to the quarks. Then application of
Gauss's law shows that, regardless of the strength
of the quark-gluon coupling, only color-singlet
bags exist. If the gluons are too strongly coupled
they will presumably ruin Bjorken scaling. I will
therefore assume that they are weakly coupled
and ignore them for the moment, except to re-
strict my considerations to color singlets. '

Equations (2) admit exact, classical solutions
where the bag's boundary is a sphere of fixed
radius, R,. In Ref. 2 these solutions were ex-
ploited to construct a semiclassical model of the
hadron. This model is equivalent to solving
Dirac's equation Eq. (2a) in a spherical cavity of
fixed radius R» subject to the boundary condition
Eq. (2b), except that the radius R, is fixed by the
quadratic boundary condition Eq. (2c). The result
is a set of quantum modes characterized by the
quantum numbers of Dirac's equation, ' j, a, and

m, and by frequencies v„„&. Equation (2c) not
only fixes R, but also limits j to be 2. The solu-
tions are specified as follows: The Dirac field is

q (x, t ) =

8~0 ~ K=&1 ~ m= & 1/2

N(nKgb~(n Kj = z m)g„„&=i (x, t)+ d (n Kj = 2 m)$ „„t- ~(X, t)),

where b~ and d~ create quark and antiquark ex-
citations with wave functions P„„& (x, t ) in the bag.
N(nK) is a normalization constant'

&nK
N(nK) =-

2R,'(&u„„+ K)sin'(u„„

and the wave functions p are defined by (e.g., for K=-I) j,(z) are spherical Bessel's functions; U are two-
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component Pauli spinors. The K =+1 solutions
are higher frequency and are not needed here.
The allowed frequencies are determined by Eq.
(2b) and satisfy

(dnKtancu„„=—
~nK+ ~

(6) FIG. 1. The electroproduction cross section as the
imaginary part of forward virtual Compton scattering.

The lowest frequency is ~, , =2.04. Equations
(3)-(5) could be (and indeed have been9) developed
without reference to the bag. The bag and B enter
essentially via the quadratic boundary condition

4mBRO'= Q (u„„[bt(num)b (num}

CX 11 K Nl

+ d„(nKm)d (nKm)], (7)

which determines the oPe~ato~ R, in terms of the
field inside. The parameter, R„which occurs in
Eqs. (4) and (5) is interpreted as the expectation
value of Rp in the state in question. This is the
heart of the semiclassical approximation and
limits our attention to diagonal matrix elements.
Finally the semiclassical Hamiltonian is given by
a virial theorem

E =4B(V) = ~3m BR,', (8)

in conjunction with Eq. (7). Since the virial theo-
rem applies only to bags at rest Eq. (8) is also
the mass operator.

Since only the lowest mode {n=1, K=-1) will be
of interest, I will use a somewhat abbreviated
notation:

N=—N (n=1, K=-1),

4m(» & }= 4'i - i t m(» f ) )

b (m) = b(n =1, v— = —l, m).

III. COMPTON SCATTERING IN THE CAVITY
APPROXIMATION

In Ref. 2 the bag was treated as a spherical
cavity of fixed radius. The quantum modes in the
cavity were populated with colored quarks to con-
struct hadrons with the correct quantum numbers.
The radius is not a free parameter but fixed by the
field excitation in accordance with Eq. (7). For
brevity I shall refer to this as the "cavity approx-
imation. "

The cross section for inelastic lepton scattering
is given by the imaginary part of the appropriate
forward Compton scattering amplitude as shown in

Fig. 1. Viewing the leptoproduction process as
forward Compton scattering —that is, as the re-
sponse of a hadron at rest to the correlated prod-
uct of local currents —allows me to use the cavity

approximation. The picture I have in mind is
shown in Fig. 2. The virtual photon momentum in

qadi with ~= —&p'qlq', &=-p'q, and )=1/tu. There
the spherical cavity of radius R, is probed by
currents at arbitrary points (x„ t, ), (x„ t, ) in its
interior. The currents I use are the cavity cur-
rents

J„'(x, t) = Q:q, (x, t)y„Xq, (x, t }:, (10)

Mlx, -x, l-~ (12)

in the Bjorken limit. When ~x, —x, ~
exceeds 2R,

the cavity approximation does not make sense:
Both currents cannot act within the static bag.

FIG. 2. Currents scattering off quanta in a static
spherical cavity.

where X are conventional SU(3) matrices and

q, (x, t ) are the fields of Eq. (3), with R, treated
as a c number. The sum on conventional SU(3)
is implicit; the index a denotes color degrees of
freedom only.

Clearly, this approximation ignores the possible
dynamical role of the bag's boundary. It is not
possible to gauge the validity of the approximation.
Some insight may be obtained by estimating the
values of

~ x, —x, ~
which are important in the

Bjorken limit. It is well known" that the current
correlation becomes lightlike in the Bjorken limit.
As q'-", lx, -x, I'-(&, —t,)'- 0. Also the vari-
able P (x, —x, ) is conjugate to ur,

"
P (x —x )-(u

where I'„ is the target four-momentum. Combin-
ing these I obtain (in the target rest frame)
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(x, —x, ~
=2R, corresponds to

(d,„=2MB, =—14 .
vanish at least like E for small E:

(15)

I have used the value of 8, for the proton found in
Ref. 2: 8,= 1.4 fm. Conversely, for (d substantial-
ly less than ~ „the currents are more closely
correlated in coordinate space and may act within
the bag relatively far from the boundaries. In
this regime I propose to treat the boundary as a
c number. One field operator in J„(x„f, ) destroys
a cavity quantum at x, and t

y
one field operator

from 8„'(x„t, ) and another from P„(x„f,) form a
cavity propagator,

(q~(x» t, ), q~. (x„ t, )]=—S„„(x„x»f, —t, )5

(i4}

which propagates the excitation to (x„t, ) where
the quantum is recreated by the remaining field
operator. In principle, the structure function may
be directly calculated. This mill be done for the
case of a one-dimensional bag in the next section.
In three dimensions the calculation of
S.,„(x„x„f, —f, ) seems prohibitively difficult.
S,.„. „differs from the usual free-space, free-field
anticommutator function S(x, —x,) only by virtue of
the cavity boundary condition Eq. (2b). If the
boundaries are indeed negligible in the Bjorken
limit for small e then it should be possible to re-
place S,,„by S within the bag.

In one dimension the structure functions can be
computed using either propagator: The results
are identical" to leading order in the Bjorken
limit. " Stated simply, the light-cone singularity
of the propagator is not altered by boundary con-
ditions. This is an important check on the cavity
approximation: If the propagator in the Bjorken
limit depended on the boundaries it mould be dif-
ficult to accept a treatment which ignores their
dynamical structure. In three dimensions the
free-space propagator must be used mithout the
explicit verification that it gives the same result
as the cavity propagator.

Many effects of using the cavity approximation
may be estimated from general considerations.
If the quarks were not confined their structure
functions would be 5 functions in )=1/&u. The
larger a bag, the more quanta it contains, the
less important is the confinement. Therefore,
one expects structure functions which go over into
5 functions in the semiclassical (large quantum
number) limit.

As &u-~ all values of ~x, -x, ( are probed. With
the spatial integrals cut off at r =A, they are uni-
formly convergent and the structure functions mill
be found to be analytic in g even at $ =0. Since
&,($) (for electroproduction) is odd in ( it will

[&,(() is the Bjorken limit of W, (q', v) which is
defined conventionally as in Eq. (B11).] Conven-
tional Begge theory leads to the expectation that
+I ($ ) is not analytic at $ = 0. Specifically, one
expects

with o. (0) ~ 1. There are several ways this might
arise in refinements of the cavity approximation.
In a realistic theory the bag's surface must fluc-
tuate. Fluctuations mill enhance the structure
function for small f (small f, corresponds to large
~x, -x, )) and concomitantly reduce it at larger
values of $. Conserved-quantum-number sum
rules such as Adler's" (which are valid in the
cavity approximation, see below) fix the area un-
der &,($). Whether fluctuations are sufficient to
induce the spatial integrals to diverge as g- 0
depends on the magnitude of individual fluctuations
and on the possibility of a divergence in the sum
over all the fluctuations to which the photon might
couple. Another (more conventional) possibility"
is that +,(() is enhanced at small E owing to high-
momentum quark-antiquark pairs polarized out of
the vacuum inside the bag by the colored gluons.
In this case gluon-induced logarithmic violations
of Bjorken scaling mould have to be treated at the
same time. In the cavity model pairs are associ-
ated with fluctuation in the bag's surface: If one
tried to construct a state of three quarks and a
color-singlet pair [qqq(qq), ] the quadratic boundary
condition Eq. (2c) could not be satisfied with a
fixed radius' —the surface must fluctuate. In any
case, the absence of Regge terms in the bag struc-
ture function, which mould be ascribed to the
absence of a sea of pairs in a parton language, is
also associated with the absence of pairs in the
cavity approximation.

Returning to the shape of F,($) in the bag theory,
it is well known" that present data require E,(() to
be large near ( =0 to saturate sum rules such as
Adler's. Since the cavity structure functions sat-
urate the sum rule but vanish at )=0 they must
exceed the present data for values of $ away from
zero:

E,&($)»;"~'($) for $ not near zero.

So far I have systematically ignored the state
intermediate between absorption and emission of
the virtual photon, which corresponds to the final
state in lepton scattering. The cavity current
scatters a quantum in the target into a highly ex-
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cited mode in a cavity of the same radius (8,).
According to Eq. (7} this is not the radius appro-
priate to the new state. In fact, in three dimen-
sions the intermediate state in general will not
satisfy the quadratic boundary condition for any
fixed radius because of the angular dependence
introduced into Eq. (2c). So the intermediate state
is not simple: It is a complicated superposition of
fluctuating (perhaps many-hadron) states.

The approximation I have made is an adiabatic
one: I assume the photon is reemitted before its
influence propagates to the bag's boundaries. The
validity of Eq. (2c}is a prerequisite for momentum
conservation. If it is not satisfied there is un-

balanced pressure on the cavity walls. Therefore,
rnomenturn is not, in general, conserved in the
intermediate state. Energy is conserved since the
model is time-translation invariant. The absence
of momentum conservation destroys the spectral
properties of the structure functions: They do not
vanish below the physical threshold 2v = -q'. In
practice this is a small effect. Outside the phys-
ical region the functions are an order of magnitude
below their maximum. In principle it is a dis-
turbing artifact of the approximation.

The quantitative formulation begins with the cur-
rent correlation function, defined for the bag theo-
ry by

M
dt

2n
d'x, e" ' '~'~"'

""(TI�NG@„'(x„

t },P„(x2) 0}ll» .

This expression is derived from the conventional
definition of W&'„ in Appendix A. In Eq. (17) the
target state

~
T) is normalized to unity, and p (21)

where n'-=(n+-,'). I use off-diagonal y matrices:

IV. STRUCTURE FUNCTIONS IN ONE DIMENSION

A cavity approximation may be developed in one
as well as three dimensions. Here the static bag
is a line segment of length 2L centered, for con-
venience, at the origin. Equations analogous to
Eqs. (2) have the following solutions:

&-&n'gC-x)/ 2~

q (x, t)= b (n)~
1

( ( I))) e-()))))() +x)/a& f
&&n'm(t-x) /2t

+ dt(n)
)) ) '4')/ ) (20)

and the spatial integrals are restricted to the bag:

(19)

Parenthetically, one can see the sort of difficulty
associated with a rigorous calculation of current
matrix elements where the integrals in Eq. (17)
would have operator-valued limits.

If the bag boundary receded to infinity, Eq. (17)
would go over into the conventional W„„of local
quantum field theory, where the structure function
of a free Dirac particle is a 5 function in $. Con-
finement eliminates frequencies from the 6 func-
tion smearing out the structure function. Before
evaluating 5'„„for the physical case of three
dimensions, it is enlightening to study the one-
dimensional analog.

The quadratic boundary condition fixes l:

4BI'=w g n'(bt(n)b„(n)+ dt(n)d' (n)) . (22)

The virial theorem in two dimensions implies

M= 2B(2I), (23)

so

M' =4vB g n'(b" (n}b„(n) + dt(n)d„(n)) . (24)

=&ma &~„., (25}

with all other anticommutators vanishing.
Unfortunately, the Compton amplitude vanishes

in the Bjorken limit in one dimension for scatter-
ing off Dirac quanta. There is no transverse
amplitude and the longitudinal one vanishes via
the Callan-Gross" relation. Instead I use a scalar
current,

P(x, t ) = g:q. (», t )~~q. (x, t ): . (26)

Only the sum over color indices is kept explicit.
Conventional SU(3) indices are summed implicitly.
The structure function is defined in analogy with

Eq. (17),

The operators b and d„obey canonical anticom-
mutation relations

(b (n, ), bt (n, }}=$d (n, ), d„" (n,}}
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oo

dt dx, dx, e" ' "+& '& (r~[J'(x„ t), J&(x„0)]~g. (27)

The commutator may be expanded in terms of the fields

[P(x„t},P(x, 0)] = P[q (x„ t)X S, , (x„x, t)A!q, (x, 0)- q (x, 0)A~S „(x, x„t)A'-q, (x„t)], (2s)

and the cavity propagator may be calculated explicitly from Eqs. (20) and (25),

( I))) «))(& &g &2&)'2( -&))')((&-&)++2)/2(
&,,(*„*., ))=(e(*„&),i(*., 0))=

4—,I; )n
jn K(t+xi-x 2)/2l / 1xn -fn'm(t+xl+x2~~

The sum in Eq. (29) ranges over all positive and negative n F.or the target state I will take a state of N,
quanta in the mode n =0, &, in the mode n =1, etc. I assume that the color group is chosen such that these
form a color singlet.

To reach the Bjorken limit define

q' = qo+ME

and let q'- ~. Straightforward calculation then yields

( -') M/)'m)v"(q', ()=—Q +))(q'+ —( — ))( l
)())&~&'5 ()(T').

, a n

-~ 5 q'- —(m-s) (r~b'(m)~'~(b (m)~ r)

(30)

(31)

The index a denotes color; SU(3) indices are summed implicitly. The 6 functions enforce energy conser-
vation: W vanishes unless q' equals the energy difference of two cavity modes. Realistically these 6 func-
tions would be smoothed out by the finite widths of the intermediate states and by the experimental accept-
ance. Here I will define a smeared" structure function Wby averaging W over a Gaussian,

where I assume w/2/& 6; i.e., many resonances are smeared. Finally the quantity M/ may be eliminated
from Eq. (31) by using Eqs. (23) and (24),

M/ = w g N (m+ ~) —= wA, (32)

leaving the fundamental result of this section

»mR"~(qo g)= —~ [""', ' (r(b'(mP'~~b (m))r)-"" ', ' ~ (r(b'(m)~&A (m)(r)[.
Bj SS wg

(33)

Equation (33) displays Bjorken scaling explicitly:

Crossing, implicit in Eq (27), is now. manifest:

Several assertions of Sec. HI are borne out ex-
plicitly: (1) As a number of quanta increases
(A- ~ and the bag grows large) the structure func-
tion becomes a sum of 6 functions appropriate to
free quarks; (2) 7'~($) vanishes as $- 0 and is

analytic there ["Regge" behavior in one dimension
leads to the expectation E($)-I/$ as $-0]; (3)
F'~($) does not vanish for

~ $ )
& 1; however, the

importance of the region
~ $ ~

& 1 decreases with in-
creasing A. The importance of

~ $ (& 1 is some
measure of the reliability of this treatment and is
discussed further below.

The second term in Eq. (33) raises some deep
questions. For certain choices of X' and X~ (e.g. ,
"neutrino" scattering quantum numbers, X' =A, ,
A~ =X') it causes F"($) to be negutive in apparent
violation of the positivity restrictions F'~($). Also,
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over, they provide some checks on both my ap-
proximations and algebra. From the definition,
Eq. (27) of WII, it is easy to show that

J 8) 7 ' I ~ ($) =
2 Q ( T

~ b, (m)[X, X'] b, (m) ~ T),
0

(34)

the archetype of the Adler and other conserved-
quantum-number sum rules. " Likewise, it
follows from Eq. (27) that

r
OQ

( Il)F»" )(g) = — dx T',(fields) .
0 M

T""(fields) is the quark contribution to the stress-
energy tensor, as distinct from the bag contribu-
tion (in my approximation there is no gluon term),
and X' = 2(X, +-iX2) In .one dimension the right-
hand side of Eq. (35) is 2. It is trivial to verify
that Eq. (33) satisfies both sum rules.

In Eqs. (34) and (35) g must be integrated from
zero to infinity in order to project out the equal-
time commutator in Eq. (27). F($) is expected to
be zero for $ & 1, but in the cavity approximation
it is not. A measure of the approximation is the
saturation of the sum rules over the interval [0, 1].
Table I displays this information.

The sum rules guide the development of a parton
interpretation of the structure function. The parton
distributions must be normalized consistent with
Eq. (34). This leads to the following assignments:

F' (5)=2[U(5)+D(5)],

F '($) = 2 [D(f.) + U($ )],

where U($), D(f, ), etc., would be the probability
distributions of up and down quarks, etc., in an
infinite-momentum frame. Purely on parton con-
siderations a momentum sum rule can be derived:

) (()
P(fields)

0 P

cavity propagator, Eq. (29), by the free propaga-
tor. III. review of the steps leading from Eq. (29)
to Eq. (31) reveals that the diagonal terms in the
cavity propagator do not contribute in the Bjorken
limit. Effectively,

(x x f ) [(yo+ yl)e-tn x(t+ xl- xx) /2l1

+ (
o )l&

I'-n(xt x+-lx)/22]I

in the Bjorken limit. The sum on n yields a
periodic (cavity) 5 function

S„„(x„,x„ f )--,'[(y'+ y')br(t+ x, —x, )

+ (y' y') -br(t —x, + x,)], (37)

where

4(&) -=e """g5(~+ 4mf).

On the other hand, the free Dirac propagator in
one dimension is merely

S(x„x„f ) = ,' [(y'+ y') e(-f + x, —x, )

+ (y'-y')5(t x, +x-, )] . (39)

S„.„(x„x„t) of Eq. (37) yields the "discrete"
structure function, Eq. (31). Substitution of
S(x„x„t) yields directly the smeared structure
function, Eq. (33). This is expected: A discrete
final state yields a discrete structure function; a
continuum approximation yields a continuous struc-
ture function. S,,, and S yield the same structure
functions in the Bjorken limit, supporting the con-
tention that the boundaries are unimportant inso-
far as the internal propagation is concerned. In
three dimensions the calculation from S„„(x„x»t )
is quite difficult-I shall use S(x„x„f) from the
outset.

The integral sums the longitudinal momenta of the
partons. For the bag in the cavity approximation
comparison with Eq. (35) yields

P(fields)
P

TABLE I. Saturation of the Adl. er and momentum sum
rules over the physical region 0~$ ~ 1 as a function of
the number of quanta in the target, Ã0, in one dimension.

All the momentum is on the fields. My earlier'
conjecture that the bag carried momentum in the
infinite-momentum frame in proportion to the
energy it carries in the rest frame is wrong.

Finally I turn to the question of replacing the

45.t%
85.2'
92.Q
94.59'

20.4%
73.4%

85.770

89.2%%uo
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V. STRUCTURE FUNCTIONS IN THREE DIMENSIONS

The starting point is Eq. (17) for W„", . I consider
only vector currents here. The extension to
chiral currents is straightforward and is quoted.
Performing the commutator and introducing the
free propagator

S(,—x„f)= -(2 ) ' f 1'k((ft)' )6().' )

-i k (x -x ')+ ikonj(e I 2

I obtain

(40}

where I have used

+a ~& -(k+ q)
1 2

V. bag

&&[8 „(Tiq, (x„ t)y')(. 'A'q, (x„. 0) —q, (x„0)y"a"X'q, (x„ t) iT}

—tf (()) „,o(T iq, (x„t)y'y'X'X'q, (x2, 0) + q, (x„0)y"y'X'X'q, (x„t) iT}l,

(41)

, o o 5
YyXpWv ~p pvo~ + jt pvo~

Sit pvo A jf pavo+ RpoAvp g)tvgpa

A Priori, it is not obvious that W„'„given by Eq. (41) is a gauge-invariant symmetric tensor (when eval-
uated between spin-averaged target states). In Appendix B this is shown to be true to leading order in the
Bjorken limit. In particular the antisymmetric term vanishes, W~(q', (r) goes to zero in the Bjorken limit,
and the coefficient of g„„ is ~', (q', &).

Equation (41) may be simplified considerably. Indeed, it may be reduced to a single integral over the
angle between k and q, which has to be performed numerically. The algebraic reduction is also carried
out in Appendix B for the case in which the target consists only of quanta in the lowest cavity mode. Other
more complicated target states present no additional difficulties. The result is as follows:

"Q(&(b 'I )& & & (. )l&)'—'(.--;
m, a

(42)

where

and

A =— -', g (T ib,"(m)b, (m) iT),
m, a

(43)

(44)

for targets consisting of various numbers of
quarks are shown in Fig. 5. The matrix elements
are taken to be unity:

(T ib, (m)A'A'b, (rn) i T) = (T ib, (m}A.'X'b, (m) iT)
m,

t..(e, t})= ( '-eP') 'i(e —I)i.(tt) tty. (P)j, -(45)
t„(,t)) = (

' - ft') 'itic. (it) i,(P)], -(48)
where j„j„and y, are spherical Bessel's func-
tions. e and the operators b, (m) are defined in
Eq. (9). Equation (44) is a reminder of the approx-
imations I have made: A occurs in the mass of
the target and its radius, R„both of which have
been treated as c numbers equal to their expecta-
tion values throughout this calculation.

Bjorken scaling is manifest in Eq. (42): The
integrals are uniformly convergent and are only
a function of g. Actual evaluation of F,"(()was
carried out on a computer. Structure functions

(47)

(dfiF", (5)+ F",'(5)] = 1. (48)

Note the expected absence of Begge behavior
[F)($)- $ as $-0] and the failure of F)(g) to vanish
for ()1. Neutrino and antineutrino structure
functions are shown in Fig. 6.

Explicit calculation verifies that the structure
functions obey the Adler and momentum sum
rules:
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Since the pion is so light, the bound on (d developed
in Sec. III becomes much more strict.

(8) Scattering off bags with some spin-zero con-
stituents may be computed and compared with
fermion bags.

(9) The approach to scaling may be studied ex-
plicitly. I have already done this in one dimension
and find"

lim W" (q', v) = F"(()—,t' —+"(5) .
M

This corresponds to early scaling in the variable
referred to in the literature as &u(light cone),

1 v q'M'—=— g .,=- —1 — 1+ =—gM — E2 .M V 2V

Of course it is of great importance to improve
upon the approximations I have been forced to
make. In particular, the relation of my semi-
classical and static treatment to a real, fluctuating
quantum theory must be established.

VII. DISCUSSION AND SUMMARY

I have treated the bag as a cavity of fixed radius
filled with quark fields. The forward Compton
scattering of currents off the quanta in this cavity
is a well-defined calculable process and has been
the subject of this paper. Of course the bag is
not a cavity. Its boundary must respond in a causal
way to changes in the field degrees of freedom
produced by local currents. This paper is pred-
icated on the assumption that the response of the
boundaries to the current does not play an essential
role in the dynamics of Compton scattering in the
Bjorken limit. Arguments were proposed to mo-
tivate this for small values of ~. %hen m is
greater than approximately 14 the picture is un-
tenable. Little can as yet be said about Compton
scattering for large values of co. Hegge behavior
requires the integrals which define the structure
functions to diverge as ~-~. As long as they are
restricted to r &R, this daes not seem possible.
A physical picture quite different from the one I
have discussed seems necessary to account for the
Regge region. This is not to say Bjorken scaling
does not hold at large co, but it is not motivated
from the naive treatment I have given.

The problems with large ~ are inseparable from
the question of boundary operator fluctuations.
This, in turn, raises the more fundamental ques-
tion of whether the bag theory in fact even pos-
sesses local currents at the quantum level. This
is a difficult problem in any interacting theory.
For the bag it is probably best studied in one
dimension, where at least a quantum interpretation
of the bag already exists. '

In principle, the Compton scattering from fields
in a cavity is directly calculable. In practice, I
have replaced the cavity quark propagator by the
free Dirac propagator. To leading order in the
Bjorken limit this should not matter. In one di-
mension the replacement may be studied explicitly
and is found to be benign.

The principal phenomenological results of the
calculation (in three dimensions) are summarized
below:

(a) W, and (v/M')W, (i = 2, 3) scale in the Bjorken
limit.

(b) W~ vanishes and (v/M')W~ scales in the limit
and is calculable.

(c) The structure functions satisfy the conven-
tional quark light-cone algebra and in particular
obey quantum-number sum rules such as Adler's.

(d) The "momentum sum rule" is satisfied and
all the momentum is found to be on the quarks.

(e) The structure functions are peaked quasi-
elastically at g, = 1/N (N is the number of occupied
modes in the target}. The spread about (, is at-
tributed to confinement. As N increases the bag
grows large and the structure functions revert to
those of a collection of free quarks.

(f) The structure functions are analytic in ( at
$= 0. For F,($) in electroproduction this implies
lim&, E,(t') -((}. In Hegge language, no C = +1
singularities with intercept greater than -1 are
found.

(g) The shape of the structure functions is gov-
erned by (c) and (f) above. They lie somewhat
above the data for values of g not near zero.

(h) W„„ for electroproduction is gauge invariant
to leading order in the Bjorken limit.

Some of the major problems with the cavity ap-
proximation as a phenomenology should also be
noted.

(i) Momentum is not conserved in the intermedi-
ate state. Among the consequences of this are the
failure of structure functions to vanish for E&1,
small violations of positivity for $ near zero
(where the approximation is surely not valid any-
way}, and an ambiguity regarding the treatment of
quark bubble graphs such as Fig. 3(c).

(ii}F, ($)/F,' (t') is -', everywhere. No mechanism
for structure in this ratio is developed.

(iii} The experimental observation that the mo-
mentum sum rule is only 50% saturated is not ex-
plained.
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where the states are covariantly normalized:

(P )
P'} = (2w)'2E5'(P —P') . (A2)

Equation (Al) is not appropriate to a system like
the cavity which is not translationally invariant.
The center of the bag is at the spatial origin and
the currents should be free to act anywhere within
it. Also the normalization is not appropriate to
cavity states.

Let us define states normalized to unity (still
within the framework of conventional field theory),

~T}
—= [(2«t)«2E5'(0)] ' ' ~P), (A3)

and introduce another coordinate into Eq. (Al),

d' d4 "'(x& "2)
4v 5(0)

x(T ([J„'(x,), J'„(x,)] ~T) .

(A4)

Nothing in Eq. (A4) depends on the average time
T -=-, (t, +t, ), which may be integrated, leaving

APPENDIX A: THE FORM OF 4„'
IN THE CAViTY APPROXIMATION

The structure function is conventionally defined
by

W„'"„=— d'x e " *(P)[J'„(x),J„(0}]( P), (A 1)f j 1

dt d'x d'x e" '
2m 1 2

x (T ][8'„(x„t), J',(x„0)] ]T)

(A5}

E has been replaced by M since the target is taken
to be at rest. Equation (A5) is carried over into
the bag-cavity model by restricting the spatial
integrals to the interior of the bag ]x ( &R,. The
result is Eq. (17) in the text. Equation (A5) could
equally well be derived directly from a considera-
tion of Compton scattering from a cavity.

APPENDIX B: EXPLICIT CALCULATIONS IN THREE
DIMENSIONS, GAUGE INVARIANCE, ETC.

This appendix consists of two parts. In the first
part the calculation of structure functions in three
dimensions is illustrated using the coefficient of

g„„ in Eq. (41) as an example. In the second part
gauge invariance and other tensor properties of
W„, are studied.

1. Calculation of W,

Consider the coefficient of g„„ in Eq. (41}. In
Appendix B2 this will be shown to be W, (q', v).
I assume that the target consists of a collection
of quanta in the lowest cavity mode whose wave
function is given by Eq. (5}. The time integration
in Eq. (41) may be done outright. The resulting 5

function and the 5(k') allow the k' and ~k
~
integra-

tions to be performed. Substituting liberally from
Eqs. (3)-(5) and introducing the notation of Eq.
(9), I obtain

M1V
W,"(q', g) =', dn, (kp

e-'""' '" I, k —tf, x g(T]b.'(»)t '~'b. (»») ~T&

—(e —-e; I—j) . (B1)

Performing the angular part of the x integration and the azimuthal k integration one obtains

M~2 1 I Rp ~~ ~~~
2

W,"(q', $) = dcos8« ~k]' x'dx j, —j,(Px)k- j, —j,(Px)P2F
2 0 Rp Rp — lk I =0 +&/Rp

x (T (b, (m)A'A'b«(m) ~T)
«0

(&- &«~ f) (B2)

where

p-=q+k,

and 6„ is the angle between q and k. So far this expression is exact. The x integrations may be done ana-
lytically without passing to the Bjorken limit. In the Bjorken limit
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[ql-~ with q'= lql+M(.

lp l
is very large unless cos8, =-1. To display this dependence, it is best to change variables from cos8,

to P -=R, P. 8, = z corresponds to P= lMR, ( —zl—=P, while 8, = 0 implies P-0(lql). Performing, then,
the x integrations and passing to the Bjorken limit,

MN R 2
1]mW, (q & $) =

2
' p&p Too (z& p)+ T„'(z p&}

— (e -—MR, ))Too(z& p)T„(z, p)

&& Q(T If?(~)~'~'f.(~) l T&

-(z- -z; c —j), (B3)

where

1

T „= zzdzj (zz)j„(Pz);
0

specifically

T = (&' —P') '[~y, (z)j,(P) —P2,(z)$,(P)]

and

T„= (
' —P') '[Pj, ( )j,(P) —zj,( )j,(P)].

I have also used

(B4)

(B5}

(B6)

lim P ~ k = (1/P)(z -MR, g) + P/2R, q'. (B7)

The second term in Eq. (B7) was dropped from W, since it is of order 1/&f' compared to the other terms in
Eq. (B3).

Bjorken scaling is now displayed explicitly: All of the terms in Eq. (B3}[and the term dropped from
Eq. (B7)] remain convergent as the upper limit of the P integral is taken to infinity. The resulting conver-
gent integral is a function only of $. To simplify W, further note that as a consequence of Eq. (6)

jo(e) = A(z) =
1 3'0(z) (B8)

and substitute for R, and M from Eqs. (4) and (7}

Ae' oo

limW, "(&f
&

$)—= F,'(f) = pdp too (c& p)+ t„'(e& p) ——(1 —A))too(e, p)t„(&:, p)

&& P (T lb t(m) x'x'b, (m) l T)
m, a

—(z- -z; i —j) . (B9)

This result was quoted in the text [Eq. (42)] where A and t „(c,P) were defined.

2. Tensor structure of W„„

Any component of S"„, may be analyzed as the coefficient of g„„was treated above. First consider the
coefficient of z„~„which violates parity conservation. Explicit calculation yields (using the fact that the
target spin is averaged)

pv vp 4& p pvr rs 4m ' 4m
I pi, o, ,»0

xg (T lh?(m)~'~'h. (m) l T&

+ (v- -~; i —j) (B10)

Both coordinate integrals are proportional to p, and the resulting expression vanishes identically. Of
course the coefficient of e„p„will not be zero either for chiral currents or in scattering from polarized
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targets.
Now, if W„, is to be gauge invariant it must possess the conventional decomposition

(B11)

In the rest frame q = (q', 0, 0, q'), P= (P', 0, 0, 0), one expects

W„= (1+ v'/M'q')Wt,

W» = (v'/M'q')Wt,

W„= W„= (v/Mq')(q'+ v'/M')'" W~,

W;, = 5;;W„ i, j=1,2

where

(B12a)

(B12b)

(B12c)

(B12d)

W, -=(1+ v'/M'q')W, —W, . (BI3)

In part 1 of this appendix W;, was calculated (only the g„„ term in W„, have components in the f, j = 1, 2
subspace). Explicit calculation along the same lines yields

Ae' IX)

limWcc = -P~&(t')+
( )

pdp[t, o'(e, p) + t» (e, p)] p (T~b, (nc)A'A''b, (m)~T) —(e e; t-j) .
8 m, a

(B14)

Wpp scales in the Bjorken limit.
Similar calculations yield

limW33 —limW» = limWpp .
i&j g) 3

This is consistent with Eqs. (B12) to leading order
in the Bjorken limit. Thus W„, in the rest frame
possesses the tensor structure of Eq. (Bll) and
is therefore gauge invariant.

Furthermore, the scaling behavior of W~ has
been exhibited. Since W«scales, W~ must vanish
in the Bjorken limit ~ This is the familiar Callan-

Gross relation. In fact vW~(q', v) scales, as seen
from comparison of Eqs. (B12a) and (B14):

lim, W~(q', v) = lim (q'/v)W»
M

= -2(limWpp .

Furthermore, Wl is calculable from Eq. (B14).
This means R =—a„/or vanishes like 1/q' in the
Bjorken limit and is calculable.
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