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A complete set of equations is found which relate the spin J of a fermion resonance, certain bilinear

forms in the statistical tensors tL~ (with L even), and the degree of target polarization for the reaction

0+ 2
-+ 0 + J on a polarized target. For the case of production on an unpolarized target, the

helicity amplitudes, to within a four-parameter ambiguity, are explicitly constructed from the even-L tL

and a complete set of trilinear constraints among the latter is obtained.

I. INTRODUCTION

The problem of determining the reaction ampli-
tudes in two-body and quasi-two-body processes
has recently received much theoretical and ex-
perimental attention. ' I et the N independent
amplitudes for a given reaction be denoted by

P;; the observable quantities are then certain
linear combinations of P;P,*. . The task is to ex-
press the amplitudes in terms of the observables,
i.e. , to solve a set of simultaneous bilinear equa-
tions. Although solutions to this problem are
known for many special. cases, a general algo-
rithm for obtaining the solution is not available.

A related problem is that of determining the
spin of one of the particles produced in the reac-
tion. By this we mean a determination using only
the quantities directly observable in the reaction,
with no additional theoretical or phenomenological
input. Here there also exists a large body of
knowledge on dynamics-independent spin tests,
but further progress remains possible. '

In this article we concentrate on the reaction

&r,"&=J'do~ed) r",le, g, (2)

for L even, those with L odd being zero (in the
absence of interfering background}. The prob-
lems solved in this paper are the following:

(i) For the case where J is not known and a
polarized target is available, we find a complete

0+ (P)2- 0+B*,
where B* is a baryon resonance of spin J which,
we assume, decays via a parity-conserving in-
teraction into P+ n, and where P denotes the spin-
1
~ target polarization vector. We suppose the re-
action is studied at fixed quasi-two-body kinema-
tics (s, t, and C, the azimuthal angle, fixed). By
measuring the decay angular distribution of the
resonance in its rest frame, W(8, Q), the experi-
mental moments (Y~) can be obtained via'

set of constraints relating the experimental mo-
ments and the degree of target polarization,
These constraints depend on the spin assignment
of the resonance, and should provide a strong re-
jection for incorrect hypotheses.

(ii} For the case of an unpolarized target where
J is known, we prescribe an algorithm for ex-
tracting the reaction amplitudes from the (Y~)
to within a four-parameter ambiguity. In addi-
tion, a complete set of homogeneous trilinear
constraints among the (Y~) are found which must
be satisfied if an amplitude analysis is to be fea-
sible.

In Sec. II, we obtain the tests of the spin assign-
ment by studying the simple case of a pure-state
resonance. The amplitude anal. ysis for an unpo-
larized target is discussed in Sec. III, while our
conclusions and possible extensions of our results
to other reactions are presented in Sec. IV.

II. SPIN ASSIGNMENT TESTS

t,"=f(J, L)(Y,"), (3}

where f(Z, L) is a known function of its arguments.
In all that follows we shall work only with the
even-L t~, but it should be kept in mind that
these are obtained from the experimental (Y~)
simply by making a hypothesis for J. For each
hypothesis, one gets a different set of t ~; the
task is to find tests which confirm or reject the

hypotheses. These dynamics-independent tests
are provided by the constraints among the t~.
That constraints should exist is indicated by the
fact that there a.re only (2J + l) complex ampli-

The problem is to obtain tests of the spin assign-
ment using only the measurable quantities (Y~)
for L even. These quantities are functions of the

dynamical variables s, t as well as the target po-
larization vector P. The standard theory of de-
cay angular distributions and spin density ma-
trices says that the statistical tensors t~ are ob-
tained from the (Y~) via'

1935
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JLJtL=~ C ~m u u
m m'

(4)

tudes or 4J+2 real quantities, whereas there
are (J+ ~)' real even-L t~ for an unpolarized tar-
get and 2Z(J+ &) real numbers among the even-L
t L with a polarized target. Thus, even for small
J, there are more observables than amplitudes.
In order to find the constraints, we take advan-
tage of the possibility of varying the amplitudes
while holding the even-L tL fixed. For reaction
(1) the ambiguity in the amplitudes corresponds
to a four-parameter transformation, as was
pointed out by Gizbert-Studnicki, Golemo, and
Zalewski4 for J =-,', and by Doncel, Michel, and
Minnaert' for arbitrary spin. This ambiguity will
be used to facilitate the expression of the ampli-
tudes in terms of the even-L tL.

Let us consider a pure state of spin J described
completely by (28+1) complex numbers u
—J &m& J. The statistical tensors tL are de-
fined by

it is clear that the right-hand side of Eq. (5) is
some element of the matrix product

for nc, m'~0. If we make the substitution

U~-U„V for all k~0,

where V is any matrix in SU(2), then under this
implicit transformation of the u, all even-L t L

are preserved. One important consequence of
this is that for any matrix U in the form of Eq.
(6), one can always find a V such that

( i (- detU)'/'

i (- detU)'/')

This means that the three-parameter ambiguity
inherent in V can be used to set u =Reu =0
for one value of m, say r.' The amplitude anal-
ysis using the even-L t L then follows quite simply.
First choose m=m' =r in Eq. (5) to obtain

If one knows only the even-L tL, one may partial-
ly invert this relation,

(2j+I} ' Q (2L+ 1)Cgg~~ t~
L even

=2lu u~ +(-1)" u, u* j, (5)

with C JLJ
~ being a Clebsch-Gordan coefficient.

If with the spinor

Z/2

, g (2L+1)CP„'t;2J+1
L even

Next choosing m'=r, m e(r, r), w-e find from
Eq. (5)

u =
2 1 Q (2L+1) Q C~~„~ t~~

2

L even

(6)

we associate the 2& 2 matrix

U = m

1)m-1/2
(6)

We now have expressed the "oriented" amplitudes
completely in terms of the even-L t L, but only a
subset of these have in fact been used. It is now

possible to express the remaining even-L t L in

terms of the oriented amplitudes by choosing
m, m 'x (r, —r} in Eq. (5) to find

(2L, +1)(2L, +1) t" t" (C~ C/~', —C~'~ C ~'~, —C ~ C ~
) =0.

L2 rkryr mN2m' mg r rM2m' m/ r rg m/I ~L2 N~N2
j, 1 2

(10)

Note that in this equation there is no sum over r,
and the sums over M, a,nd M2 contain only One

term. If one lets m take on all positive values
from 2 to J, except r, andm' take on all values
from -J tom, except r, -m, and -r, one ob-
tains a set of (J —2)(28 —2) bilinear constraints
among the even-L tL. By replacing the even-L
t~ in Eq. (10) by their expressions in terms of
u u*, one sees that the constraints are identical-
ly satisfied by any set of amplitudes u, and hence
are independent of the dynamics.

If in the constraints, Eq. (10), one replaces the

index r by another value, s, one obtains another
complete set of constraints which are equivalent
to the first set, even though they are not obtain-
able by linear manipulations of the former. One

way of eliminating the dependence on r is to multi-
ply Eq. (10) by C~, with K even, and sum over
m, m', and r. The result is'

Q G(L„L~,K) Q t "&t "2C x 2 =0,
LiL2 Af~, N2

1 2 1 2

where the quantity G(L„L„K)is given by
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G(L„L„K)= (2L, + 1)(2L, + l)((24+ 1)5i 2 5i 2 —2 [(2J + 1)(2K+ 1)]'t2 W(JL, JL„JK)I, (12)

right-hand side =B + C(l -P') +P g I;"(P, a) D

+P' P I;"(P, u)E„,
Tl= 2

(13)

where I' =iP i, and P, z are the spherical polar
angles of the vector P. In order for this form to
va.nish when! P!=1 for all directions of P, one
must have B, D, and E„all zero, while C may
be nonzero. Thus for each constraint equation
(10) or (11), if the spin hypothesis is correct, the
left-hand side must behave as C'„(1-P'}for
Eq. (10) and C„(1-P') for Eq. (11). If the spin
hypothesis is incorrect, one will in general ob-
serve nonzero B, D , and E„; hence each con-
straint equation permits, in principle, a strong
rejection of the false spin assignments. The un-
known quantities C"

~ or C„are real numbers
which depend upon the dynamical variables s, t
but not upon the polarization P. Let us note also
that if there exists a phase coherence among the
helicity amplitudes for reaction (1) the quantities
C are all zero, since the even-L t~ would all be
independent of P.'

III. UNPOLARIZED TARGET AMPLITUDE ANALYSIS
AND TRILINEAR CONSTRAINTS

with W being a Racah coefficient. This relation
is again an identity for all even K from 0 to
(2J —1), -K ~ tV (K, but the price paid in elim-
inating r, n~, n~ ' is that these equations are not
functionally independent.

In order to use these pure-state conditions we

employ the Eberhard-Good theorem, ' which
asserts that in reaction (1) the final state baryon
will be in a pure state if the initial target polariza-
tion is 100%, i.e., when! P!=1, independent of the
direction of P. Since the constraint equations,
provided one uses (do/dQ}tz, the moments
weighted by the differential cross section, are bi-
linear, the right-hand side is an inhomogeneous
bilinear form in P. This may always be written
as

corresponds to fixed even-L t~ is to associate
with the pair of amplitudes (f~~,f ~~) the 2&2
matrix

F =!
( ])~ 12f

( I)x I/2f g

The right-hand side of Eq. (14) then corresponds
to elements of the matrix product

Re(F~ F „'i) .

It may then be shown that under the substitution

-e '~ i'i'3 E Ve' i"~ for all A. )0

r i(-detF )' '
P

i(- detF, )'t2
f

(16a)

1)r 1t2f- (16b)

That is, the four parameters may be chosen such
that

f ~t =Ref „,~ =Ref, » =0.

Equation (14) may be partially inverted, to give

Re(f, 1f~~, 1+(-I}' f 1,f*). 1)

(2L+I)g t C „,. (17}
L, even hl

the even-L ti are preserved, where V denotes
an arbitrary SU(2) matrix and 41 is an arbitrary
angle. This is just the expression for the helicity
amplitudes of the ambiguity in the transversity
amplitudes found in Ref. 4, except that ours is for
arbitrary J. One may then make use of the four
parameters 4, V in order to solve for the oriented
amplitudes, just as in Sec. II. For two arbitrary
values of helicity p, 7, one can always find 4, V

such that, after the transformation,

If reaction (1}is observed on an unpoIarized
target, the relation between the even-L ti and
the helicity amplitudes fz»s

t"= Re Q[f f*, +(—1} f „ f, JC„,
(14)

If in Eq, (17) we choose ~=a'=p,

2
2J+1

~ x/z

Q (2L+ 1) t 'C~,~

even

Choosing next A.
' = p, A. @ ( p, —p ), we obtain the

imaginary parts of all other amplitudes:

(18)

Note that this differs from Eq. (4) mainly in that
the real part of the bilinear form enters. One

way to find the ambiguity in the amplitudes which

Imf1, = Q (2L+1) Q tiC1„q
L even Af

Imf p1.
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A two-step procedure then gives the real parts,
once the imaginary parts are known. First we set
A = A' = T in Eq. (17):

(Ref, t)' = g (2L+1) t Ric JzJ2- 2

L even

Positivity requires that the right-hand side be non-
negative, and one may always choose the positive
root, since the negative root would correspond
only to increasing the arbitrary angle 4 by m.

Finally one obtains the remaining real parts by
choosing X' = T, X 22 (p, —p, 7, —T) in Eq. (17):

—(Imf, 2)' —(Imf, I}' . (20)

2Ref, =((-1) '/Ref, )) P (2L ~ 1)gt"C „, —1 f )I f, , —(-1) '1 f, ) f,)I.
L even

(21)
In Eqs. (18)-(21) we have a prescription for determining the "oriented" amplitudes for the reaction from
a subset of the even-L tL. The complete set of amplitudes consistent with these measurements is obtained
by letting the matrix V range throughout SU(2), while 212 runs from 0 to 2». In order to fix three of these
four parameters one would have to determine some odd-L I, L or some even-L tL on a polarized target
(one of the four parameters corresponds to an unobservable over-all phase). However, not all the even L-
tL have been used in obtaining these oriented amplitudes. Consistency requires that the remaining even-L
tL be given correctly by the amplitudes, hence constraints follow. If in Eq. (17) we choose a and a' arbi-
trarily, but not equal to any of (p, —p, v, —T) (which is possible only for J)—,'), the left-hand side may be
expressed in terms of even-I. ti. Multiplying by (Ref, e)'(Imf 2)', we obtain a homogeneous trilinear
equation, which may be written as

(2L, +1)(2LR+I)(2L, +1) Q t "2 t "R t "RG(L„LR2 LR, M„M„MR, X, ().', p, v) =0.
Ll L2

L1L2L3 M1N2N

(22)

The numerical coefficient has the explicit form

G(LLLMMMppp7)C2(CJL&JCJLRJCJJ&JCJIRJCJJRJCJJR)1 2 3 1 2 3» ~+1~ p+2 p hf3r rhr2 p T+3 p -TN2 p -T&3 p

[CJLLJ [CJLRJ C JLRJ
( 1)x -x' C JLRJ CJLRJ ] i ( p ~)}

PAf1 P X,N2T X 'N3T -X&2T -X 'N3T

+C iLJ ([C R C R —(-1) CJiRJ C R ]+(P.—X')}
rhf1 p XN2T 1 Jhr3 -k'e3P

-(-I)'-'c"2' [[c"RJ c"" -(-I)'-"'c""c"" ]-(~--~')}
-TArl p -XJlf2T ) ™3p yg r X'V3P2

(23)
Note that the sums over M„M„M, in Eq. (22) are formal in that the only values of M„M„and M, which
enter are determined by A, X', p, and 7, via Eq. (23). By letting X acquire all values from R to J, except
p and v, and letting A' take on all values from (- A + 1) to A, except for p, —p, v, —7, one generates (J —-', }'
independent trilinear constraints among the even-L t L. Qnce again, a more elegant form in which the
arbitrariness of p, T, A. , and X' is absent can be obtained by multiplying Eq. (22) by CJ~»»J~, , with & even,
and summing over A. , A. ', p, and 7 ~ After some manipulations, one may write the result as

t» (2J+ I)(t RR)' —2 Q (2L+ I)Q (t i)'
L even

2J+1 lt'2
—4t Q (2LL+1)(2LR+I) W(JLL JL„JIf)Q C LiR t Lt R

L L 1 2 1 2
1 2 1 2

+ LJR Q (2I, + 1)(2LR+ 1)(2LR + 1)(2L+ I}'IRW(JL JLR; JK}W(JLL JLR; JL)2m+ I)2f'
L1L2L3L

C 1 2LC 3 t"lt"2t"3 =0
g NN3N Ll L2 L3

kf1 N2M3Af

(24)
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These equations for -K & N &K and 0 & K & (2J —1),
K even, are not all independent, unlike the set
represented by Eq. (23).

These trilinear constraint equations are essen-
tially the expression, in terms of the even-L t~,
of the fact that the density matrix for rea.ction (1)
is of rank two for fixed quasi-two-body kinema-
tics. The rank-two condition implies that any
3 & 3 minor of the density matrix has zero deter-
minant, thus yielding certain homogeneous tri-
linear forms in the t~ which vanish. In general,
however, this rank method mixes up the odd-L
and even-I. t ~ rather inextricably. The advan-
tage of our result is that only the even-L t~ ap-
pear in the trilinear constraints; hence our rela-
tions involve only observable quantities.

IV. CONCLUSIONS

In this article we have obtained three distinct
results concerning the reaction

0+ 2(P)-0+8*,
where only the even-L part of the B* spin- J den-
sity matrix is observed:

(1) a complete set of homogeneous bilinear rela-
tions in the even-L t~ which are proportional to
(1 —

~
P~'), and which should provide severe tests

of the spin hypothesis when a polarized target is
used;

(2) an algorithm for calculating the reaction
amplitudes from the even-L t~, when P =0, to
within four parameters; and

(3) a complete set of trilinear homogeneous re-
lations among the even-L t ~ for P =0, J~ —,',
which must vanish as a consequence of the rank-
two condition.

Although the results we have derived are exact,
they may be criticized on the grounds that the

idealization employed, such as production of a
single baryon resonance at fixed quasi-two-body
kinematics, is just not realistic. If, in addition,
the requirement of fixed quasi-two-body kinema-
tics is loosened to consider (t f) averaged over
some interval in momentum transfer, the con-
straint equations need not hol. d. Finally there
is the problem of the sensitivity of these results
to experimental errors, given the complexity of
the forms involved. We recognize these difficul-
ties, but we feel that the present work still helps
to fix the limits of amplitude analysis and con-
straint equations in the best of all possible cases,
and that such knowledge may prove useful in the
treatment of more realistic problems, in partic-
ular the superposition of two or more resonances.

Finally we wish to remark that our analysis of
0+ ~ -0+J can be extended to partial-amplitude
analyses and constraints for other reactions.
Consider, for example, s, + s, - s, +s„where at
least two particles have odd-half-integer spin,
and let the amplitudes be ftI);. There then exists
a value of J such that the amplitudes for the two
reactions may be put in one-to-one correspon-
dence. Knowing how to perform the amplitude
analyses for spin- J production, we can find sets
of Re(P; P,*) which suffice to perform amplitude
analysis for the more general reaction. The homo-
geneous trilinear constraints among the even-L
3 ~ then become similar forms among various
combinations of Re(p; Q,*. ).
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