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Many-particle final states and the energy dependence of charge exchange
and momentum transfer*
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An inequality restricting the energy dependence of two-body reactions which transfer any combination
of charge and momentum is derived using the assumption that a class of many-particle production
events fulfills the requirement of local compensation of quantum numbers.

In a recent paper by Krzywicki and myself' it
was shown that a bound can be placed on the en-
ergy dependence of near-forward charge-exchange
scattering using, primarily, two assumptions:
First, it was assumed that a certain class of mul-
tiparticle production events obeys a condition de-
scribed as "local compensation of charge"; and
second, it was assumed that all other scattering
processes occur only as the shadow of this class
of multiparticle events. Roughly speaking, a set
of events fulfills local compensation of an addi-
tively conserved quantum number if each particle
carrying the value q is almost always surrounded
by a small number of particles in the neighboring
region of rapidity space carrying a total quantum
number of -q. In the present paper we will give
another derivation of the main result of Ref. 1

using a method which seems technically some-
what more convenient than the original. %'e will
also derive new restrictions on the rate of shrink-
age with energy of the forward peaks observed in
two-body elastic scattering and charge -exchange
scattering. More precisely, we will show that if
T(q„q,) is the scattering amplitude for a two-
body process exchanging char ge q, and transver se
momentum q„ then as the energy in the center-of-
mass system /s is made progressively larger we
have

T(q„q, )
T(0 0}

-(blal +h2a2 -clal -c2a24-dal a2 +''')
S

where the energy-independent quantities a(q„q, },
b;, c;,d, . . . are determined by multiparticle pro-
duction data. Throughout the following discussion
we will assume for convenience that all particles
have the same mass, all spins are zero, and all

forward scattering amplitudes (exchanging neither
charge nor transverse momentum) are equal.

Let us begin by introducing a slight generaliza-
tion of the function Z(y) called a zone graph in
Ref. 1. Consider a scattering event involving a
collection of hadrons (h, ),

A, +h-h+ ~ ~ ~ . (2)

Assume y, is the center-of-mass system ra-
pidity of A';, p„ is the electrical charge of &&,
and P„ is the c.m. component of transverse mo-
mentum of h, in some arbitrary direction P. Then
a two-component zone graph Z, (y) can be defined
by

Zg(y) = —Q 8(y —J;)P,;+Q 8(J —y&)P, ;, (3)
i=1, 2 )=3

~, , ", (y„,y )=(Z&,(y,). Z, (y )&,

and from these we can define a set of functions
called zone correlations by taking a cluster de-
composition'.

where 8(y) is the usual step function given by 0 for
negative arguments and 1 elsewhere.

Now we will repeat the procedure of Ref. 1 and
divide the class of all final configurations of had-
rons which could appear in (2) into two subsets,
one called dense and the other called diffuse.
Dense configurations will be those with all rapidity
gaps between successive particles in rapidity
space less than or equal to d, (s), where a(s) is a
certain monotonically increasing function of s
bounded by pin(s} for a constant p«1. Diffuse
configurations will be all those which are not
dense. Let & & represent the operation of averag-
ing over the ensemble of dense final configura-
tions produced in (2). A set of quantities called
zone moments can be constructed through the re-
lation
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M, (y) = C, (y),

M, „,(y„y,) =C, , (y„y,)+C, ,(y, )C, ,(y, ),
M) ~j2J~(yl, 3 2, y3) = Cl ~~@~(y~, 32, y3) + Cj~(yl)CJ2j~(y2 y3) + Cjp(y2)Cj~j3{y~ 33)

+Cy, (y, )C, ~, ,(y„y,)+ C, ,(y, )C, (y, )C,,(y, ),
etc.

It is useful to recognize that these functions are simply related to density correlations' and inclusive
correlations. If D(y, p„p, ) is the random variable giving the density of particles with rapidity y, charge
P „and transverse momentum component P~ in direction e, then

dy'p, 'D(y', p'„pl) —g s(y y;) p-„
k=1, 2

The preceding equation implies

c;,. . .;.tv', . . . , s.') = 2 f &Pl
& &'m

+ oc
t 9I

dp
I/

( d), tl ~ ~

-(ln s)(2
I

X dympj I pim (mylipll p21~ ' ' ' ' 3 &mpl mph )m
-(ln S)/2

—&,.g s(y', —y, )p„, ,

where G(y", ,p,"„p2'„.. . , y",p,"„,p2' ) is the mth

order density correlation, which can be expressed
as a combination of inclusive correlations of order
m and lower. "

The assumption of local compensation of charge
by dense final configurations given in Ref. 1 can
be reformulated and extended to include trans-
verse momentum as follows:

(i} We a.ssume that as s- ~ the functions
C& . .., (y„.. . , y ) approach s-independent limits.

(ii} If the variables &„.. . , y are divided into
two nonempty sets S, and S, such that

~ y, —y, ~
&d

for all y;&SI gj Sp and d is made Progressive-
ly larger, then C, ,. .., (y„. . . , y ) rapidly ap-
proaches 0 once d is larger than a certain energy-
independent correlation length P.

(iii) The functions C, ..., (y„. . . , y ) are trans-
lationally invariant in the region in which y». . . ,
y are many correlation lengths from the bounda-
ries of rapidity space: C, ,..., (y„. . . , y )
= C;,.. ., (y, + n, . . . , y + a).

(iv) If y„.. . , y are many correlation lengths
from the boundaries of rapidity space,
C, ,...; (y„. . . , y } is the same for all possible
choices of h, and h, .

Assumption (iv} combined with charge-conjuga-
tion invariance implies that if y». . . , y are many
correlation lengths from the boundaries of rapidity
space, C, ,...j (y». . . , y }= 0 if an odd number of

j, are equal to 1. Also rotational invariance
around the axis formed by the momenta of h, and

h, implies C, ..., (y„. . . , y ) = 0 if an odd number
of j; are equal to 2. By using these two results

and considering simple models for the set of zone
graphs which can appear in (2) it is possible to
convince oneself that the formulation of local com-
pensation given in Ref. 1 has nearly the same con-
tent as assumptions (i')-(iv) with one exception-
the present assumptions seem to permit a more
realistic probability distribution of the number of
zones of each type which might occur in any event.
[A charge zone is an interval on which Z, (y)w0
bounded by two successive points at which Z, (y) =0,
and a transverse momentum zone is defined simi-
larly using Z, (y). ]

Now suppose h', , z = 1, 2, are a pair of hadrons
with charges P'„., and transverse momenta P,'; in
direction e, given by P,'I P, I+/ j P j2 P jp Q j,
j = 1, 2, where q, is an integer and q, is an arbi-
trary real number. %e assume the transverse
momenta of h; and h,'perpendicular to e are 0. If
s is sufficiently large, we can assume without
contradiction that the energy and longitudinal mo-
mentum of h& are nearly the same as those of h;,
i =1,2. Let Z, (y) be the zone graph for a certain
set of hadrons h, + ~ ~ produced by h, + h, as be-
fore, and let Z;(y) be the zone graph obtained if
h + ~ ~ ~ were produced by h;+h;. Consider the re-
lation between Z;(J} and Z2(y}. The P component of
transverse momentum P,'; of h;, i ~ 3, in the cen-
ter-of-mass system of h', +h, is obtained from
P2& by a rotation through an angle of nearly 2q2/v s,
which leaves the longitudinal momentum of h, al-
most unchanged. Therefore we have

p2, = p2, +x) q~,
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where x, is the usual Feynman variable, 2p~„/v s,
formed from the longitudinal momentum P jj& of h;.
Equation (5) combined with the information that
longitudinal momenta are unchanged implies that
for particles in the central region —far from the
boundaries of rapidity space —values of rapidity
are also nearly unchanged in going from the frame
of h, +h2 to the frame of h;+h, . Then using the
asymptotic form of ene~r and longitudinal mo-
mentum conservation, 2i, ,x;8(sx;) =s 1, com-
bined with definition (3), we find that for values
of y in the central region of rapidity space

z2(y) =zm(y) -q2 ~ (6)

Strictly speaking, (6) depends on the assumption
that as s becomes large the probability approaches
0 for events yielding a total energy in the central
region which is a finite fraction of Ws. Multipar-
ticle production data suggest that this additional
assumption is very likely fulfilled. If this assump-
tion is correct, then by letting s-~, (6) can be
made arbitrarily close to exact for an arbitrarily
large fraction of rapidity space. In the following
discussion we will assume that (6) holds exactly
throughout rapidity space. The small errors in-
troduced by this procedure will not affect the s
dependence of the bounds we finally obtain.

The preceding argument and the results of Ref.
1 also imply that if y is in the central region,

z, '(y) = z,(y) —q, .

We will assume that (7) holds throughout rapidity
space, and this also will not introduce errors
which would affect the s dependence of our final
results.

A bound on the scattering a.mplitude T(q } for the
two-body process h, +h2-h, '+52' can be derived
from the assumptions we have given. Let A be
the component of the scattering operator S, taking
diffuse initial states to diffuse final states, and
let 8 be the component of S taking diffuse initial
states to dense final states. Unitarity of S implies
there exists a unitary operator C such that

A = e(1-a'S)'&'

We argued in Ref. 1 that if we assume the pro-
duction of diffuse final states by diffuse initial
states occurs only as the shadow of dense produc-
tion, then if 8 were 1, A would also equal 1, which
suggests we should choose C = 1. We then as-
sumed it was reasonable to expand (8) in a power
series and use only the two leading terms:

If U; is the random variable defined by

{lns )/2

U, = Z (y)dy, j=12
-(lns)/2

it follows from (9) combined with the Cauchy-
Schwarz inequality that

du, du2(P(u)P[u -q lns]) '",T(q)

where P(u) is the joint differential probability for
U, =u, , j=1,2.

Standard results of probability theory yield the
expansion

1
P(u)= —, dn, dn, exp —i Q n, u~+ Q (in, } '(in, ) '

where C are the cumulants of the joint probability distribution of U, and U, given bym1m2

(lns)/2 (i s)/2
841 ~ ~ ~

gm2 dQ j dy + ei "i2" 2(yi ~y + ).
1 2-(ln s)/2 -(Ins)/2

(12)

The index 1 occurs m, times and 2 occurs m times in the subscript of the argument of the integral in (12).
A proof of (11) and (12) follows, for example, from arguments given in Refs. 2 and 3. Assumptions (i)-
(iii) imply that as s- ~

For simplicity in the remaining discussion we will
ignore the terms O(1) in the asymptotic form of
e . This will also not affect the s dependencemym2'

of the bounds to be derived. If we now define
v&=u, /lns, j=1,2, as s becomes large (11) takes

the form

1
oo

P(u)= 2, dn, dn, s '
(2v)2

where
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~m m

g(n, v)=i Q n, v, — Q (tn, )"&(in,) 2

J =1,2 mI, m2 m, tm~t
' T(q) a'(q)

T(0} ins (16)

Consider the properties of the function g(n, v). It
is not difficult to show that if c is sufficiently
well behaved as m, and m2 are made large, and if
in addition all c with m, + rn2 ~ 4 are sufficient-

1 2
ly small, there are contours in the complex e,
and n2 planes, extending from -~ to ~, a.long
which g(n, v) is positive real, approaches ~ at
both ends and has a single minimum near
n, = —iv, /(2c„), n, = —iv, /(2c, 2). The point at
which this minimum occurs is the only point in
the complex n, and n, planes at which 9g(n, v}/
9 e; = 0, i = 1,2. The size of higher order c,
however, is one measure of the randomness of
the random function Z, (y}. We will assume that

Z, (y) is sufficiently random that higher-order
correlations are well behaved and contours with

the properties we described also exist for c
1 2

in the real world.
If this assumption is fulfilled, then as s- ~ the

integral in (13) can be performed on the contours
we have chosen and is dominated by contributions
near the minimum of g(n, v}. Then P(u) assumes
the asymptotic form

p(„) f(v), n(, )

lns

where f(v) is an energy-independent function of
v;, i= 1, 2, h(v) =g(n, v), and n is defined by
sg(n, v)/sn, I

a=0, i=1, 2. Placing (14) in

(10}and changing the integration variables to
v,'=v. ——,Q'„ i=1 2 we have

-h (v +q/2)/2-h (v'-q/2)/2

(15}

If Z, (y} is sufficiently random, —,'h(v'+-,'q}
+ —,'h(v' ——,'q) will have a single minimum and

f (v'+ 2q)f (v' —~q) will not be singular at this
point. It follows from the symmetry properties
of h(v) that the minimum of —,'h(v'+ 2q}+-,'h(v' ——,q}
will occur at v,'=0, i =1,2, and will therefore be
e(lual to h(2q). As s-~ the right-hand side of
(15) will be given by contributions near v;'=0,
i = 1, 2, and we obtain

(q), -a(.~2&

T(0)

for a certain s-independent function a(q}. Return-
ing to (14) and defining P'(v) to be the joint differ-
ential probability for the random variables U, /Ins
to assume the values v, , j=1,2, we have

for another s-independent function a'(q). Alterna-
tively, if we define a new pair of random variables

~ )tp/2

A~ p'p ' Z~(&)dp J:1 2

where yp is a constant, then the derivation lead-
ing to (16) can be reformulated to show that if y,
is sufficiently large, we have the approximation

h(lq) =y. 'I»[P" (2q)] I+0(y. '),
where P "(r) is the joint differential probability
that A& = r, , j = 1, 2. %hen yp is large the first
term on the right-hand side of (17) is O(1).

The function h(sq) can be calculated as a power
series in c. .. m, + m2 ~ 4. If we assume higher
correlations are sufficiently small that we need
only the terms determined solely by c„, cp„and
the linear terms in c. .. m, +m2=4, then

- (q)T(o)
~

where
2 2 4 4 2 2q, c„q c„q,q c

8c2p 8cp2 384c2p 384c» 64c2p ~p2

(18)

This result can be described in Regge-pole lan-
guage by the following:

(1) The difference between the Pomeron inter-
cept and the intercept of the leading charged tra-
jectory is greater than I/(8c») —c„/(384c»').

(2} The leading t dependence of the Pomeron
trajectory is bounded by —i/(8c„) —t c~/(384c, ~ ).

(3) The leading t dependence of the highest-
lying charged trajectory is bounded by
—t [1/(8c„) —c„/(64c„'c~')] —t 'c„/(384c„').

Thus the difference between the bound for the
slope of the Pomeron and the bound for the slope
of charged trajectories is determined by correla-
tions between the zone graph for charge and the
zone graph for transverse momentum. If the
bounds we have derived are fairly close to ob-
served values of these slopes and the higher cor-
relations neglected in (18}actually are small,
then c» must be negative since charged trajec-
tories have greater slope than the Pomeron. This
in turn would imply, roughly speaking, that in
those events in which charge is compensated
somewhat less locally than average, transverse
momentum tends to be compensated more locally,
and vice versa.

Order-of-magnitude estimates can be made for
C2p and c» if we assume that parameters obtained
from dense final states are at least approximately
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equal to those obtained from experiments includ-
ing all inelastic final states produced in P-P colli-
sions. We will arbitrarily assume the formulas
C,(y„y2) =& exp(-I y —y. l/&1) and

C„(y„y, ) =A,exp(- ~y, —
y2 ~ /A2). Approximate values

of A, and X& can then be gotten using (4) and the
relation' between second-order density correla-
tions and inclusive correlations:

I
(ylppllpp21p y21 P12pP22) C (yli PlltP21L y2tP12i P22) ~(yl y2) (P21 P22)~pl)p)2 (yl&P11. P21)

It follows from the definition of Z, (y) that C„(0,0) is just the mean-squared charge transfer across y=0;
thus p-p scattering data at 102 GeV/c (Ref. 4) yields A, =0 9 And from data, on charge correlations in

P-P scattering at 102 GeV/c we obtain'

,-"P fd=P. , J dP„[2C(0(,P , 0, —„1,,P„)—C(D, ),PD, (, P)
—C'(D, —),P„,D, —(,P„}(=DP.

1 Oo dpn

Therefore we have X, =—1 and c» = 2. This implies
that charge-exchange scattering amplitudes must
fall faster than elastic amplitudes by at least
S 0 ' 07

For A, and A., we find

~A.=- Z f dP. , J dP..P.,P..
2 ~11~12 (2()

& C'(0, p „,p„,0,p„,p„)
~I ~ ~

I y I ~~ ~2
~~

t
d (T= —2 (k~, .k ~2)
y dy2 y, =y =0

dp, P,' C'(o, P„p.)A 1

2 P1

where o is the total inelastic cross section,
d'o/dy, dy, is the inclusive cross section for a
pair of particles at y, and y„(k» ~ k») is the
mean inner product of two-component transverse
momenta for a pair of particles at y, and y„
do/dy is the inclusive cross section for a single
particle at y, and (k~') is the mean squared two-
component transverse momentum for a single
particle at y. If we assume inclusive cross sec-
tions for all particles and for charged particles
are related by

d 0' 3 d 0' l(T 3 d(X

dy1dy2 2 dy1dy2
'

dy 2 dy

and (k» ~ k») and (k,') are the same for charged
particles and for all particles, then 102-GeV/c

P -P scattering data give' '

(
d cr

dy dy

(k~, k~2) ~, „2—= —0.01 (GeV/c),

&k,') ( „,=0.2 (GeV/c)',

which implies A2=0. 2, ~2—= 2, and &02=0.8. The
upper bound we deduce for the rate of shrinkage
of elastic scattering amplitudes is approxima. tely

-0.2 j~ I

Before arriving at any final judgement of the
strength of the bounds we have derived it would of
course be useful to have accurate experimental
values for c20 and c02 obtained from the collection
of all inelastic events produced by P-P scattering.
We would hope that observed c» might be some-
what smaller than our estimate of 2, yielding a
better bound on the 8 dependence of charge ex-
change. If this does not turn out to be the case, a
number of possibilities remain. It might happen,
for example, that higher-order correlations con-
tribute significantly and more terms than appear
in (18) should be included. If this were true, then
instead of trying to measure many-body correla-
tions directly it would probably be easier to ob-
serve P'(v) or P"(r) and consider the bound given
by (16) or (1 t). Another alternative, which ap-
pears to me less likely, is that U, is strongly
correlated with other parameters of Z&(y) in such
a way that these contribute to suppressing the
value of charge-exchange scattering. In this case
a better bound on the energy dependence of charge
exchange might be gotten by replacing (10) by an
overlap integral depending on more than just the 2

parameters we used. We should probably men-
tion that an apparently stronger restriction on the
s dependence of charge exchange was derived in
Ref. 1, but it does not seem that this result should
be taken too seriously since its numerical value
depended appreciably on rather unrealistic as-
sumptions concerning the probability distribution
of the number of charge zones per event. In any
case, the bound we have gotten for the rate of
shrinkage of elastic scattering seems likely to be
fairly good.

An important question which remains is to pre-
cisely what extent data taken from all events actu-
ally can be used as a, measure of the properties
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of dense configurations. Now if local com-
pensation of quantum numbers does hold in
the sense me have assumed, then it can be
shown that values of Cq...(y„ya) gotten by aver-
aging over all events including diffuse will
still be free of long-range correlations. Thus
if the cross section for dense configurations
is somewhat larger than for diffuse, C, , (y„y,)
obtained from a.ll configurations in P-P colli-
sions should be a satisfactory approximation to
C, „,(y„y, ) for dense configurations. On the other
hand, simple models suggest that higher correla-
tion functions might acquire long-range tails if
obtained from the ensemble of all events. Thus
the interpretation of data for these quantities
could require more detailed calculations of the
effect of averaging over both dense and diffuse
configurations. Even if long-range effects are
present in higher correlations, however, it might
still be possible to obtain a useful bound on two-
body scattering processes by measuring I'"(r) for
all events and using (17), with y, chosen large
enough to include the short-range contribution of
correlation functions and small enough to avoid
including too much of the long-range tails. %e
should also mention that if local compensation of

quantum numbers is fulfilled in the sense we have
assumed here, then we believe it can be shown
that the average rapidity length of zones mill ap-
proach energy-independent constants both in dif-
fuse final configurations and dense configurations
as s-~. In addition, the average number of
charge or transverse momentum zones per event
should grow linearly with ln(s). Thus direct ex-
perimental numbers for these quantities provide
another convenient test of the assumptions we
have made.

Finally, it might be useful to point out that if
me had introduced a fairly obvious generaliza-
tion of assumptions (i)-(iv), bounds similar to
those we derived could also have been obtained
for the exchange of any other combination of addi-
tively conserved quantum numbers {strangeness,
baryon number, etc. ) in addition to charge and
transverse momentum.
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