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The hydrodynamic model of Landau is formulated in very general terms and applied to the
determination of average energy of secondaries, and single-particle inclusive distributions of secondaries.
Attention is focused on the relationship between various dynamical assumptions and the equation of
state assumed for the fluid motion. In the regimes of scaling and approximate scaling, we solve
analytically the hydrodynamic motion of the fluid for both pp l vr + X and e+ + e ~ m' + X. For
the annihilation process we solve the hydrodynamic equations numerically and discuss the validity of
the scaling approximations. Explicit comparison is made between two dynamical models, the
ultrarelativistic model (ideal-gas model) and the hadronic spectrum model.

I. INTRODUCTION

The hydrodynamic model of Landau" has had
considerable success in explaining the features of
single-particle production in hadron-hadron col-
lisions. ' ' The model is semiclassical, and can
predict particle multiplicities and multiplicity
distributions (dN/d'P) with only very general as-
sumptions, consistent with a wide variety of more
fundamental theories. It is clearly desirable to
explore new reactions where the hydrodynamic
treatment of hadronic matter might be valid. Lep-
tonic annihilation is just such a process. Since we
feel it is also necessary to update previous reviews
of the Landau model" we will try to be as precise
and complete as possible in explaining the assump-
tions, flexibility, and application of Landau's ap-
proach. The basic conclusions of the detailed anal-
ysis to be presented here, relevant to present
SPEAR accelerator energies, have been published
earlier. ' A special effort is made here to show
the connection between scaling approximations,
and more exact numeral solutions. We will find
that the inclusive single-particle distribution
(E/N) dN/d'p for e'+e —~+X is essentially de-
termined by (E,) and is almost independent of the
choice of the equation of state assumed for the
prehadronic matter.

The paper is divided into ten sections. In Sec.
II we discuss the assumptions of the model. Sec-
tion III discusses the initial state of the hadronic
fluid and the equations governing the expansion.
Section IV concerns itself with dynamical reasons
for assuming different equations of state for the
hadronic fluid. In Sec. V we discuss the hydrody-
namic equations governing the fluid motion, and

show how to obtain the distribution of energy and
number of particles in terms of the fluid variables
at breakup. Section VI deals with the question of
how one obtains the single-particle inclusive dis-
tribution by assuming ideal -Bose -gas dynamics
for the pions at fluid breakup. Section VII shows
how to use the thermodynamic relations to obtain
the multiplicity and average energy of secondaries.
Section VIII discusses how to obtain analytic solu-
tions when energies are high enough so that scaling
laws hold. Connection with the usual Feynman
scaling is discussed here. Section IX deals with
partial scale breaking; i.e. , how one obtains solu-
tions when one has only approximate scaling laws.
This section discusses how the scaling result of a
flat rapidity distribution becomes modified to one
of "Gaussian" shape. Section X concerns itself
with numerical calculations that allow "exact"
results for given initial data. These numerical
calculations show tremendous deviation from the
scaling results for e'-e annihilation at present
accelerator energies.

We relegate to appendices relevant formulas
from thermodynamics, statistical mechanics, and
transport theory.

II. THE MODEL

The hydrodynamical model is based on the fol-
lowing assumptions.

(a) In a high-energy collision (or annihilation
process) a large amount of energy is pumped into
a localized region of space. The volume of this
region is assumed initially to be much smaller
than that needed by N free hadrons, which is of
the order N~3(l/m, )' = NV, .
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(b) Because of the strong interactions, relevant
relaxation times are very short and the created
prehadronic matter can be thought of as being in
local statistical equilibrium. Phrased another
way, mean free paths of the quanta involved are
assumed much smaller than the characteristic
lengths. Thus the system can be treated as a
relativistic fluid whose collective motions are
governed by the laws of relativistic hydrodynam-
ics.

(c) The relevant va, riables for describing the
collective behavior are the averaged thermody-
namic field quantities such as energy density,
pressure, entropy, and temperature density. The
underlying dynamics then specifies, in this lan-
guage, the form of the equation of state p =p(e),
where P, e are the macroscopic pressure and en-
ergy density, respectively. Several choices of
hadronic equations of state will be discussed be-
low. The motion of the fluid will be described by
the relativistic collective velocity field u"(x).

(d) The rest of the dynamics (apart from the
equation of state) is embodied in the initial and
final boundary conditions on the hydrodynamic
equations. The initial condition on the equations
is to specify the initial temperature distribution
of the fluid. Thus we must make certain assump-
tions about the initial size of the system, and
determine the initial temperature distribution
from the center -of -mass energy via some knowl-
edge of the relevant dynamics.

(e) Because of the pressure the system expands
and cools. When the energy density reduces to
that of one pion/hadronic volume, then the number
of particles becomes a well-defined quantity. We
then say that the fluid "breaks up" into quasifree
final particles. VVe will try to make this criterion
more specific for different equations of state.

(f) The breakup criterion defines a, space-time
surface which is an isotherm kT(x, t)=m„c'. Along
this surface N is well defined, and we can deter-
mine the distribution of energy and number of par-
ticles as a function of the collective velocities.

If we further assume that the residual pion dy-
namics at break up is governed by an ideal-Bose-
gas distribution function in the local rest frame,
then we can directly determine the momentum-
space distribution from transport theory. '

III. INITIAL CONDITIONS

8 T""=0, (2)

where T"'(x) is the energy-momentum tensor, or

(2')

passage of shock waves before the system starts
to expand (see Refs. I, 2, and 9). In a proton-
proton collision, a natural volume is present, the
Lorentz -contracted disk of matter comprising the
proton in the c.m. frame. Thus it is expected
that V, is not very different from nm„'y, where
y = 2M/E, is the Lorentz contraction in the
center -of -mass frame. For e' -e annihilation,
knowledge of V, is equivalent to knowing the size
of the produced electromagnetic field as far as its
hadronic content, or knowing what is the size of
the system when enough virtual quanta have been
produced to consider it in local statistical equilib-
rium. This question is of course related to the
question of what the cross section is for e'-e
annihilation into hadrons. For PP collisions the
contracted proton assumption was equivalent to
saying the cross section is approximately geomet-
rical. Not having any deep wisdom on the subject
of the e'-e cross section we mill. assume only
that the system is spherically symmetrical and the
expansion is isotropic in the center-of-mass frame
(preliminary data on the distribution of pions are
consistent with this)" and 1st V, = ', mr, ', —with r,
a free parameter. By fitting the multiplicity data
with different models we will find that x, is always
of hadronic size (- fermi).

If the system undergoes a large expansion, then
it is irrelevant how the initial energy is distributed
over Vo and it is sufficient to assume that the ini-
tial energy density is just constant over V„ i.e. ,

e, =E, /V, .

For hadronic collisions one probably wants to re-
place E, by that fraction of the energy going into
particle production (i.e. , subtract the energy of the
leading particles in pp collisions). We will find
that a.s far as (&/&)(dN/d'p) is concerned, it does
not depend on ~, as a result of scaling laws satis-
fied by the hydrodynamic equations (i.e. , r, deter-
mines K but not the shape of the distribution).

Once the initial state of local equilibrium is ob-
tained we assume that the prematter expands ac-
cording to the laws of hydrodynamics.

The relativistic equations of fluid motion are the
generalizations of the Euler equation and are

The initial data for the hydrodynamic equations
requires knowledge of V„ the volume of the had-
ronic matter at the time when local statistical
equilibrium is set up. For proton-proton colli-
sions one might imagine a period of turbulence and

(where the semicolon means covariant deriva-
tives). (In what follows spherical coordina. tes will
be denoted by latin letters. ) For an ideal fluid (no
viscosity) the form of the energy-momentum ten-
sor T"' in a local rest frame is''
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The spectrum of particles for M &3 GeV is well
fitted by

where e is the energy density in the local rest
frame and P is the pressure (see Appendix D).
Boosting to an arbitrary frame gives

T)'"(x) = (e+P) u"u' -Pg"',
where u"(x) =y(x)(1, v(x)) is the 4-velocity de-
scribing the collective motion.

IV. HAORONIC EQUATIONS OF STATE

(4)

(c) Bag model of )Eadrons. " An NIT collabora-
tion has put forth the interesting idea that the had-
ron itself is a free field (or weakly interacting
field) in a bag. This leads to the following thermo-
dynamic equations (see Appendix A):

(10)

To solve the hydrodynamic equations (2) we need
to know P =P(c) (equation of state); thus in this
section we will discuss several equations of state
found in the literature. (The reader can add his
own choice. ) Further discussion is found in ap-
pendixes, and in the references.

(a) Classical ultrarelativistic fluid (see Ref. 8).
For a classical relativistic fluid containing parti-
cles of mass m described by a single-particle dis-
tribution function g(x, P) we have from Appendix D
that (barred variables denote the comoving frame)

)x)=xf (xx'/E) g)xP)dV =x —3)'. ,

We see that as (I/E) -0 the equation of state be-
comes P = —,'e and in general P ~ sr.

If g(x, P) is the distribution function of an ideal
Bose or Fermi gas, then for T ~ m„

3g op) 0 29

(6) Resonance models of interactions. At pres-
ent energies we might assume that important dy-
namics can be approximated by knowing the spec-
tra of resonances. This is the Beth-Uhlenbeck"
approximation to the partition function espoused by
Hagedorn' and Shuryak. ' ' Then

]nZ= pmm„ ln 1+exp E T 2, dmm, .

For p(m) =bm' the statistical mechanics can be
worked out (see Appendix C) and we find

P=co E,2

with

c,' = (a+4) ' .

At equilibrium p, -=0, thus 8 = —,
'

X(T, /m„)' and
e, = m, /V„so that (T, /m, ) = (3/4)))'". X is de-
termined by the statistical mechanics of the free-
field theory. In this model the hydrodynamic ex-
pansion continues until P —= 0, at which point real
pions appear.

Notice that in the bag model, at breakup P =0
and e =m, /V„. Thus T(x) is only a measure of the
microscopic-field energy density; i.e. , at breakup
T(x) is describing the internal distribution of "par-
tons, "not a thermal distribution of real particles.
Thus for this model P, =- m, sinhq, where g is the
fluid rapidity. That is, the distribution of particles
will be completely given by the hydrodynamics.
Thus the bag model allows a connection with the
microscoPic physics describing the actual struc-
ture of the hadron; i.e. , T"'(x) describes the mi-
croscopic parton physics. For a related discussion
concerning the "parton" model see Hwa. "

In all these models Bi)/Be —= c,' [(the speed of
sound)'] is a constant. Thus if we solve the hy-
drodynamic equations for arbitrary constant c,' in
terms of the temperature T(x, t), we will have in-
cluded models (a)-(c). To include Hagedorn's
model one would 1st p(m) =bm'e' and work out the
relevant (complicated) equation of state. For
m ~3 GeV a power law describes the spectra ade-
quately.

V. HYDRODYNAMICAL EQUATIONS

For a spherically symmetric expansion appro-
priate to annihilation, Eq. (2') leads to the two
equations

BTp BTO 2
Bt Br

BT„BTO,2
( ~

)Br Bt

For a one-dimensional expansion in the longitu-
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dinal direction, appropriate to the early phases of
the expansion following a purely hadronic colli-
sion, one has instead

BT() BT f) BT» 9T P

8t Bx ' Bx Bt

In what follows we will consider only the radial
case. The one-dimensional case is obtained by
deleting the 2/t' terms.

It is convenient to use the thermodynamic rela-
tions to rewrite these equations in a more useful
form. From Appendix A we have

e = Ts -P, d& =Tds, dP=sdT.

Projecting Eq. (4) along the 4-velocity

potential equation in the case of one-dimensional
longitudinal motion. This leads to Khalatnikov's
exact solution of the one-dimensional problem. "
Equation (18) led Milekhin" to speculate on an
ana, logous (1+1)-dimensional field theory of self-
interacting scalar mesons.

In the spherical-expansion case, the introduction
of the potential does not simplify the problem (due
to 1/r terms in the D'Alembertian).

Introducing liquid rapidity as a variable allows
us to write Eqs. (12) and (16) in suggestive forms.
Using Eq. (16') and letting u'=cosh@, u'= sinhq, so
that v=tanhg, we can write the entropy equation
(12}as

tanhg 9„1nT+8, lnT

we find

(su")
&

=0, or (su'). , =0, (12)

+c,'(tanhq 8, q+s„q)+ ' tanhri = 0. (19)y'

The potential equation becomes

which expresses local entropy conservation. Thus
we have the global conservation law of entropy,

tanhq8, lnT+8„ lnT+tanhq B„g+b,q = 0. (20)

S= su" da„,

as well as energy and momentum conservation,

~c.m. = T d 0'p ~ (14)

or

Another differential equation is obtained by pro-
jecting Eq. (4) along a direction perpendicular to
the 4-velocity:

It is the inhomogeneous 2/r term in the entropy
equation, which was not present in the one-dimen-
sional case, that prevents simple analytic solu-
tion. For c, = —', cooling is very rapid and most
particles are at radii of the order of r„so that
this term cannot be neglected.

Considerable insight into these equations can be
gained by determining the characteristic surfaces
of the motion" (the sound cone takes the place of
the light cone in determining domains of influence
for a fluid). Denoting the characteristic directions
by C, and C and parameterizing the character-
istics by n and P, we find along C,

u" [(Tu;)» —(Tu„);] = 0.

Thus in the case of (1+1)-dimensional flow (r, f

or x, t) we have

tanhq + co
t 1+c,tanhq '

and along C

(2 la)

s,(Tu, ) =s,(Tu„) .

This equation tells us that the flow is potential
flow

and using entropy conservation we obtain

(16')

TQ; =8;g.

For equations of state where dp/dc=c, ' = constant
we have

r~ tanhq —c,
ts 1 —cotanhq ' (2 lb)

where the subscripts e and P denote differentiation
along the corresponding characteristics. Equa-
tions (21}express the well-known fact that the
slope of the characteristic is obtained from the
relativistic addition law of adding the local fluid
velocity of sound. Using Eqs. (19) and (20) we ob-
tain the characteristic equations

(T,/T + c q, )(saint + c, cosh')+ 2c,'(x,/w) sinhq = 0,
(22)

which is derivable from the Lagrangian

g =g(s„qs"y)", n=-,'(1+c, ').
We can make a Legendre transformation of the

(18)

where g = n on C, and P on C, with the corre-
sponding signs applying. In the one -dimensional
problem there is no 2/r term and the characteris-
tic equation can be integrated to give
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lnT= —c,q+f (P) on C, ,

InT=+coq+g(o) on C
(23)

moving frame, and

g(E, T) =g, (2w) '[exp(E/T) —I]

with P (o.) constant along a particular C, (C ). For
x & 0 and t very small sinhg = 0 and the three -di-
mensional solution goes over to the progressive
wave part of the one-dimensional solution. ' %e
will use this fact later in our numerical calcula-
tions. We also note that the Eqs. (21) and (22) are
invariant under

From this we get directly

where

n, = g E, T, dP.

(28)

r- Ax, t- A.t, T- A.'T. (24)

This invariance will be exploited later.
The program is to solve the hydrodynamic equa-

iions for e(x, t) and v(x, t) using the initial data

so=E, /Vo, v=0 at t=0.
%hen the energy density reaches a critical value
e,(x, t)-m, /V„or equivalently T,(x, t)-m„real
pions evaporate from the fluid. e(x, t) =e, (a con-
«ant) defines a surface o which can be para-
meterized by the fluid velocity v =tanhg; i.e. ,
r =r(rt), t= t(q) along o. Thus at breakup one can
use the conservation laws to get the energy and
entropy distribution as a function of fluid rapidity.
For a spherical expansion we get

+OU V

=4~" ('9) ()(e.+P.)(a') -pj-
d'g

p r dt—(E +p )uu
dg

(25)

O~J r d
=4vr2(ri)s, u' —-u"—

dge

d'g
(26)

dS s, 1 dE 1 dE 1 d&

dg e, +P, uo dg 7., uo dg m, cosh'g dg

If we assume that at breakup the residual dy-
namics are that of an ideal-Bose-gas distribution
in a comoving frame of reference, then (see Sec.
VI)

E, = g(E(x), T(x)) p" do„,dN

a
(27)

where p"= (E,p) is the particle momentum in the
c.m. frame, E(x) =p„u" (x) is its energy in the co-

Via the thermodynamic relations (A6)-(A8)
(see Appendix A) s„e„and P, are all constant
along the surface of condensation T(x, t) = T, . Thus
for u =y» 1 the entropy distribution and energy
distribution are proportional at breakup, i.e. ,

In the case that the thermal motion is unimpor-
tant compared to the fluid motion, then one has
the approximate relation

P ~ pl~ slnh'g,

which is equivalent to y(particle rapidity)= q.
Then one can calculate the approximate rapidity
distribution from Eq. (28). However, if at break-
up P =—0, as in the bag model, there are no resid-
ual dynamics and the pions at breakup are free.
Then as an identity, e, = m, /V„P, = 0, and q = y
= particle rapidity. In that case

dN 1 gE
dg m, cosh' dg

4vr'(q) dr . dt
V~ dq dq

cosh' ——sinhq—

dÃ

dp
(28')

In the case of PP scattering the fluid rapidity
distribution is quite broad" and at high energies
one can neglect the thermal motions (correspond-
ing to 4T= m„) to first approximation (although
they are necessary to explain the transverse dis-
tribution). For the annihilation process, at c.m.
energies of 3-10 GeV, fluid rapidities are less
than 1, thus m„sinhg is smaller than typical ther-
mal fluctuations (-300 MeV) (see Fig. 2) and it is
necessary to include a model for the fluctuation.
In Sec. VI we will show how to determine directly
the momentum distribution of secondaries, as-
suming that the relevant dynamics at breakup is
that of an ideal Bose gas of pions in a comoving
frame.

VI. SINGLE-PARTICLE DISTRIBUTIONs

The hydrodynamic description is in terms of the
macroscopic variables e(x), p(x), where x is an
average position of a cell containing enough quanta
for local statistical equilibrium to be meaningful. In
the early stages these quanta might be the virtual
quanta (quarks, partons, what have you) relevant to
high-temperature dynamics. At breakup we will
assume that the relevant quanta are the real pions
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that are produced. Given a distribution function
g(x, P) for the quanta one determines the energy-
momentum tensor via the relation (see Appendixes
D and E for details in classical and quantum phys-
ics)

vdPp""(xi = f p(x, p)p"p" (29)

dN= g x, P P"do„8 P, 5 P'-m' d'P. (3o)

This shows g(x, P) is a, I.orentz-invariant distribu-
tion function. One also determiries the number of
real quanta of mass m crossing a surface do„by

surface as in Eq. (25). In the above, we have
utilized the isotropy assumption and chosen P as
the z axis of the fluid.

For PP —7(+X it is usually assumed that the fluid
velocity is mostly longitudinal because of the lar-
ger pressure gradient in that direction. Ignoring
transverse fluid motion gives"

P)'d&x, = va, '(fp' dx P„d&)-,

P t]
= p. ~sinhy,

Po = jJ z coshy ~

u r = (P.'+m. ')"',

This expression counts the number of world lines
contained in the surface do ".

The collective velocity u"(x, t) is defined by

or

1 dN
7T d$ dpi'

&(&)&"(&)=f p(&, p)p" d'p/&

Thus going into a comoving frame (denoted by
barred variables)

~(p)= J p (pp)&'p, ',

(31)

(32)

dx
p. ~ coshy ——p, ~ sinhy-

(2v)' ', exp[I/, r cosh(y —q)/T, ]—1

VII. MULTIPLICITY AND AVERAGE ENERGY

OF SECONDARIES

(34)

i.e. , n(x) is the local density of matter and is a
Lorentz scalar. In the comoving frame one has
[if g (x, P ) is isotropic in P ]

T"'(x) = diag(e, P, P, p),
where

~fp)= f p(~, p)p. &p,

p(pl = ~ J p'p (p, p ) d'p/p .

Knowledge of the equation of state and the initial
and final conditions of the fluid, coupled with en-
tropy conservation [Eq. (12)] allows a determina-
tion of the multiplicity as a function of A, , r„and
E, . A discussion of the relevant thermodynamic
equations is found in Appendix A.

The initial condition on the fluid is

e, =E, /I/,

(35)

", (exp[p"u„(x)/T, ] —Ij '. (32')

From Eq. (30) we have

g (x,P)P" do„,dN
d'P

which for e'-e annihilation (spherical symmetry)
gives

Z, = ", [exp(E/T, ) —1] 'dq dcos8x'(q)

d~ dtx E —P coso—
de de)

(33)

where E=E cosh' —P sinhq cos6 and o is the same

If we assume that at breakup the distribution func-
tion describing pions in the local rest frame is
that of an ideal Bose gas with T(x, f) = T, , then

g(x, P ) = g(x, P)

where we have used dP/de = c,' = constant; A, is
proportional to the degeneracy of states in the
underlying dynamics (see Appendix B), and B is
a constant of integration that we will use to adjust
the initial condition to the final state, described
by the ideal-Bose-gas equation of state.

The initial entropy, which by Eq. (12) is equal
to the final entropy, is related to T, and V, by

S=s,V,

1/c 2

(1+c,')( "
) ), . (3 6)

We will assume that all the produced hadrons
are pions, and when c,'W3 we will choose T, so
that the underlying dynamics goes smoothly into
the ideal-Bose-gas dynamics. If one is interested
jn ratios of partjcles at T= m„c before they decay
into pions, one can use the statistical mechanical
formula in Appendix C to find them, following the
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approach of Hagedorn. " Here when we use the
hadron spectrum as dynamics, we will let the
temperature cool slightly below T= m„so that we
have only pions.

With that assumption, we get for N„

n(T, )
s(T, )

{1+c 2)-~
0( c)

( l 2) c.Ill. Il o

s(T) ' m„V„
cp2{j.+cp )

x
V,

(36')

For all cases studied the 8 term can be neglected,
and for all practical purposes

N, = —'(1+ ')
S Bl

which for cp' = 3, T, = m, gives

(38)

a result previously obtained by Shuryak, "and
Car ruther s and Minh. " For PP - m +X, where
V, = ra'M/E, , Eq. (37) leads to the result

1-cp'+, CC ~c.m. , 1+cp

For e' + e - n +X the energy dependence of Vp is
not known a Priori For (E.,) we obtain

=m, —'()+c,*) '( ' ' —')
(39)

We observe that (E,) is energy-dependent unless
c,' =0 (pure thermodynamic model without hydro-
dynamic expansion) or V, ~E, (which seems un-
likely).

This makes it quite easy to distinguish this
model from the statistical models of Pomeran-
chuk and Satz. In those models one gets fixed
(E,) = 420-500 depending on the critical temper-
ature.

We note that for c,'= —,', A. =3.57 (ideal Bose gas),
Tp 1 75Qp one gets the relation

xp for E, =3 and 5 GeV, since the cross section
also appears constant (see Ref. 7).

If instead we use the mass-spectrum dynamics
of Eq. (7), p(m/m, ) = a(m/m, )' leads to A. =16.5,
and E/N=470 a.t 3 GeV yields r, = 1.76, whereas
E/N=540 at 5 GeV yields r, =1.57. Thus one can
get agreement with the (E,) measurement at
SPEAR with resonance dynamics if we allow for
a slight decrease in xp with energy. Notice, how-
ever, both models give an rp of the order of one
pion Compton wave length (i.e. , typical hadronic
size unLorentz contracte, d) If. the annihilation
cross section remains constant and cp 3 then
we expect rp to remain constant and would expect
that the average energy of secondaries would con-
tinue to grow as a power.

We see the absolute normalization of X depends
on A. (which counts the number of different parti-
cles in the dynamics) and r, (which is a Priori
unknown in this approach). However, the shape of
the single-particle distribution depends only on

T, and thus on E/N via Eq. (39).
For c,'=-,', s(T, ) =4.2, T, = m„and Eq. (39) be-

comes

(E„)=3m, (T/m. ).
We see that unless (E,) ~ 420 MeV, there is no

hydrodynamic motion, since we assumed T, o- ~,
for the fluid to exist (i.e. , unless To~ m, the mean
free paths are too great to allow the pions to inter-
act as a fluid).

For the imperfect-gas model one has a spectrum
of particles at T= m„and the critical temperature
is determined by the temperature at which e and P
smoothly go over to the ideal-gas formula. For
the observed mass spectra, p(m/m„) =-,'(m/m„)',
and one has from Eq. (C4) A = 16.5, c,' = —,', and a
value of B of —0.049 is needed for a smooth tran-
sition. One then finds T, =0.58m„and n, /s,
=0.208. This gives for (E„)

(4o)

Thus for t.-p'=~6 the model makes sense for Tp» T,
or E» 350 MeV.

If Eq. (39') continues to hold at all energies, we
can fulfill this equation in both models, with val-
ues of rp given in Table I for various E,

(39')

which agrees with the preliminary SPEAR" results
for e' —e -hadrons that show (E,)=470, 540 MeV
at E, =3, 5 GeV, respectively. It is interesting
that this equation of state (c,'= —', ) leads to the same

VIII. SCALING SOLUTIONS OF THE HYDRODYNAMIC

EQUATIONS: CONNECTION WITH

"FEYNMAN SCALING"

If the initial size of the system is much smaller
than the breakup size, one might hope we can ig-
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nore the natural scale (which in PP collisions
-I/E, since V, - V,M/E, ), and try solutions of
the form

v=r/t (x/t) for r, t » r, . (41)

If v -=r/t, we can find exact solutions to the equa-
tions of motion [Eqs. (19) and (20)].

Introducing
(E )

(MeV) 0/m „
Ec.m.

(GeV) ro/m,

TABLE I. Comparison of parameters of the two mod-
els, evaluated for equal (E,) . These parameters corre-
spond to values of E, and xo found in the last two col-
umns if (E~) =3m~(2&c.m)' . The upper entry corre-
sponds to co ——3, X=3.57, B =0.11, T, /m„=l, s, /n
=4.2. The lower entry corresponds to eo

——6, A, =16.5,
B = —0.026, T /m =0.58, s /n, =4.8.

so that

r = v sinhe = r0 e sinhn,

t= T cosh+ =r, e cosh+,8

(42)

(42 ')

466

530

627

805

1.028
0.8145

1,181
0.921

1.41
1.089

1.82
1.397

1.001
1.22

1.025
1.37

1.12
1.61

1.38
2.06

10

1 ~ 73
1.76

1.72
1.56

1.71
1.33

1.66
1.01

where v is the proper time if v= x/t, and—r, is an
arbitrary parameter, we get the exact equations

938 2.12
1.628

1.59
2.4

50 1.70
0.89

B„(lnT)sinh(t) —n) + as(ln T) cosh(t) —n) +co'[q„cosh(ri —n) +ps sinh(q —n)] + 2co' . = 0,sinhe (42)

where g =B q, and

sinh(ti —n)+ qs cosh(q —u) + (lnT)„cosh(q —u) + (ln T)s sinh(ti —n) = 0, (44)

where in the x, f problem there is no sinhq/sinhn
term.

The choice of variables n, P are obvious for
scaling solutions. If v=—r/t, then q =ta.nh 'v= n
and Eqs. (19) and (20) become

break up if v= r/t-
The pions evaporate out of the fluid along the

surface T(x, f) = T„which is also a surface of
e, P, and s being constant. In a one-dimensional
expansion (PP @+X) Eq. (28) becomes

BalnT+ A,c,' = 0, (45a) dN dx . dt—= ~a2n, cosh' ——sinhq-
dn

'
dn dn

(28")

B„lnT=0,
where

1, one -dimensional PP case
A. =

~

~3, spherical expansion

These equations integrate immediately to

(45b) Parameterizing v by q and using Eqs. (42) a,nd
(42') we get

Bn Bj—= ma'n, —v cosh(q —n) +—sinh(q —n)
Bg

(28 /II
)

T/T =e '" ', or s/e =e """0"'
0

Also v= t(1 —v')"' and

(46)
thus when g —:= n we get

dN

d71

—= va'n, v(q). (48)

T/T, = ( /r, 7) '0',

~/s (~/~ )-x(1+cP )

-X(1+C0 )/2

r2
r ~ ~ 2

~

0

(47)

Thus at the critical surface where e = constant we
find that the proper time is constant, i.e. , all the
pieces of the fluid take the same proper time to

At breakup s = s„ thus via Eq. (47)

v=7, =r0 (49)

1/(1+C02) g (1-C0 )/(1+C0 )

d7l mm
(50)

For PP w+K, V, = sa M/E, t,=aM/E, e, =m„/a',
a = m, ', and in the approximation v =x/t-
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q = (1/c, ) In(T, /T, ), (51)

that is, the usual logarithmic growth of the length
of the rapidity plot. Second, for the solution that
corresponds to the correct boundary condition on
e„2) is not identically x/t and the isotherms devi-
ate from v =constant. The solution at very high
energies for small q resembles a Gaussian in
rapidity and is not "flat. " Thus correction to
x—= vt (partons are "free") changes a flat rapidity
distribution to a "Gaussian. " How the height
varies with energy depends on the equation of state
of the hadronic matter at formation. In Sec. IX
we discuss how to improve upon @ =2'/t by assum-
ing v =K2'/t, with K slowly varying.

For the spherically symmetric expansion (as-
sumed valid for e'+ e -hadrons) one has

Thus in that approximation one gets a flat rapid-
ity distribution with the height going as

(x-(..o )/(s+co2)
i JI1

Thus for c,'= —,
' one gets E, '" (=E„b'")growth in

the height of the plateau. To get a nonincreasing
height one needs co'- 1. co'- 1 can be obtained if
the hadronic process is one-dimensional in mo-
mentum space as well as in x space. That is, if
the distribution g(x, P) is of the form g'(x, P)5(p~ ),
then in the ultrarelativistic limit p =e (see Ap-
pendix D). However, c,'- 1 is also true for free
pions produced by a classical source.

The scaling solution does not take into account
global energy conservation (i.e. , J T"do„=~ if
2/=—2'/f} and the fact that E, is finite does taboo

things. First, it gives a maximum rapidity given
by

region. Later we will see that for c,'= —,
' such a

region does exist. Thus v=x/t, 2/t lead to pla-
teaus in invariant phase space in one and three
dimensions, respectively.

Although these distributions violate global energy
conservation, some of the qualitative properties
of these solutions as described above are to be
preserved when global energy conservation ob-
tains. In the one-dimensional case, this is due to
the fact that, at least for part of the expansion,
the scaling formula. (41) is approximately valid.
In the following section we shall describe a better
solution to the one-dimensional problem based on
that approximation.

For the three-dimensional case, for cp 3 Eq.
(41) is never valid, at least for E, ~ 100 GeV,
as the numerical solution shows. However, the
determining factor in the distribution is the spher-
ical nature of the expansion: Most of the entropy
is concentrated at large radii, and therefore in
regions of large rapidity. The numerical solution
bears this out. For c,'= —,

' and large T„part of
the critical isotherm is similar to a hyperboloid,
and one gets a behavior similar to Eq. (54) for
small g. For small c,' cooling is slow and x»x,
holds on the critical isotherms. This is not true
for c,'= 3, E, & 100 GeV, where cooling is very
rapid.

IX, QUASISCALING SOLUTIONS

In order to improve on the scaling formula (41),
Landau assumed' that for part of the expansion at
least, one could write"

g'N dt—= n, 4m'' cosh@ ——sinhq-
dn

'
d7l dn .

=22, 4vv sinh )I —v cosh()l —a)
Bg

97
+—sinh(7) —o.)

Bn - G

(52)

V=g— (55)

where g is a slowly varying function of r and t,
such that Bg/82, Sg/Bt can be neglected

In terms of light-cone variables (41) we write
the equivalent relation"'

and the scaling solution q= a lea.ds to [using (47)]

—=n, 4m v sinh q
dN
d'g

and

&f &f—=0
Bo. '

BP

=n 4m' ' —' ' "'0 sinh'g.c 0
C

(53} Using (56) in our equations of motion (43) and (44)
we can elimina. te f. We find

Thus

~ (E )I/(1+cO2)
( )3CC /(1+CO2)

47TPE~ slnh g

(54)

If we can neglect thermal motion, then we expect
this will resemble E dN/O'P if there is a scaling

ay/8p + A.(1+c,2)
tanh

Sy/So. + (Z —l)(1+c,') coth(2 '

y = In(e/e, ) (57)

KBp/9 o/

I+Key/sp '
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where K=c,'/(1+ co ) and X is defined as in Eq.
(45}. This leads to the following equation for the
energy density:

K + (X —1)c,' —coth n
Bcp

BQ 8Q

=K — +—(1+A.c,') + X(1+c,') . (58)
ap sp

This equation has the general solution

1+c 2 2 2

i-c, ' i-co 60

To determine the particle distribution, it is suffi-
cient to use the scaling value for q = n and Eq. (62)
for P; we find from Eq. (48)

—= ma n, v( n)=ma r, e n, ,
dN

with

y=AP+y, (n, A)+C,

where

i+ c,' 1 /2

1t1,(n, A)=ni A'+ ' (A+1)K

(59a)

(59b)

i 2m
n,=, r,= a.

'lr CM.

The original result of Landau' and Milekhin" is
recovered when we expand the exponent in powers
of L, for L&& u:

in the one-dimensional case, ' and a complicated
function of sinho, which we shall not write down,
in the spherical case [see, however, Eq. (58') be-
low]. The two-parameter system (59}is the gen-
eral solution of (58). The particular solution that
matches a given boundary condition is obtained by
letting C = C(A) and finding the envelope of the re-
sulting one-parameter family:

Bp 8+1 dC

In the one-dimensional case, the initial condi-
tions are defined at constant time: T(x, t, ) = T,
for small t,. Assuming that the expansion is slow
(which turns out to be correct, as shown by the
numerical solution) we can sa,y that T= To for
small n, p. Then T To, ay/aA--1, and dC/dA-1.
For large n, P, i.e. , at breakup, C can therefore
be neglected a.ltogether. Equation (60) allows us
to find A as a function of n and P and finally to
determine y. We find

1 (1-co') P 1 (1+co')'
2 c ' (P' —n')1" 2 c '

dN & +'o & 2
2

= ma2n, ~ e-~ /2l&l
d'g E~

(63)

We notice that this improved result has the same
normalization at n =0 as the exact scaling result.
However, the plateau is replaced by a "Gaussian"
in rapidity when L» n, and we also notice from
Eq. (62) that this solution is valid only for

n ~ —ln(T, /T, )
i

Co

since one can rewrite Eq. (62) as

P = (2co') '[-X(i+c,') -(1-c,')(y' -c,'n')'"],

dN
d'g
—=manr e

where y =ln(T, /T, ).
In the one-dimensional case, one can use the

potential equation and make a Legendre transform-
ation and solve the problem exactly. This has been
done by Khalatnikov. The stated result for cQ 3

isI6, 25

so (61)
((x2 1@2)1/2) I ((x2 1q2)1/2)

y = ln(e/e, ) where

x = ln(T, /T, )

(64)

Notice that for @=0, this agrees with the scaling
solution Eq. (4'7). The critical surface T= T, or,
equivalently,

c(x, t}=e,
has the equation

Io is a Bessel function. Using I,(a) = e'( 2)va'"

for large x, one gets Eq. (63). For the exact solu-
tion we notice

ln
K'I [I ' —(K"-—1)n—']'"

K' —i
=1 (~n/r, ), (62)

which shows that the length of the rapidity axis
grows logarithmically with E,

For the spherical case, if we further make the
assumption tanho. = i, then we get the following
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equation for large n:

K +2co =K + 1+3ca

with

, (3+c,'), 1+3c,' c,'

+ 3 (1+c,'),
for which the general solution is

p=AP+y, (u, A)+C,

(58') or

p = ln(e/ep)

= —(1+cp') o' ——,'X'P

(p, (n, A) = —(1+c,')

(1+3c,') 3 (1+c,') c,'
K

(65)

Since this only valid for large n we cannot extra-
polate back safely to the original (n, p small).

If we blithely find the envelope by assuming that
we can again ignore dC/dA, then the envelope
satisfies

p '+~'=0
BA

yielding

+
2

[(1-5c.')(1 -c.')]'" (P' - n')"" . (67)
1

Thus we find that for p & o. this solution only makes
sense for c,'&5. This is probably due to the fact
that the smaller c,' is, the slower the cooling
process and the more likely one can find a region
where cp is relatively near its initial value and
v=gr/t is reasonably valid. One has for q= a,
using this result,

—= n, 4m 7 sinh g
dN

=n, 4m', 'e' sinh'q,
p ~"-4~

p2 ~2 7 (66) where

1 3
1 —5cp 1 —cp

$=2cp (1+cp ) (1 —5cp ) '~ (1 —cp )
' [1n(e, /ep)+(1+cp )nj .

(68)

Since this result is only valid for c,' 5, if at all,
we turn in Sec. X to numerical solutions.

X. NUMERICAL SOLUTIONS

and

T(r, t=o) = Tp, 0&r ~rp

T(r, 0) = 0, r & r,
(69a)

With these boundary conditions, the surface t = 0
is nowhere tangent to a characteristic, and the
problem is fully determined. From the values of
q at time t„one determines the slopes of the
characteristics along that surface from Eq. (21)
and uses Eqs. (22) to determine q and T at time
I;0+ At.

In order to solve numerically the equations of
motion, it is best to use the method of character-
istics, "and make use of Eqs. (21) and (22). The
initial conditions are specified at t = 0:

The motion of the edge of the fluid has to be
treated with certain care. In the one-dimensional
case, an exact solution is known for the expansion
of the fluid, initially at rest, into vacuum. The
motion of the leading edge is a progressive wave,
in which q and T are related by

ln(T/T, ) = —cpq.

In the three-dimensional case no such analytic
solution is known. However, it is easy to show
that for a very short time after the beginning of
the spherical expansion the inhomogeneous term
in the equation of motion can be neglected, and
Eq. (23) holds.

Our boundary conditions can then be chosen so
that no discontinuity appears in the temperature
distribution at some time after the beginning of
the expansion. We chose this as t=0, and set

T(r, o)= T, , q=o,

for
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and

0&X- Xp —e,

T(x, 0) = T,(r, —x)/q,

q = —(1/c, ) ln(T/T, ),

'V
p p&

(69b)

dN/dq dS/dry

N S

3sc d~ . dt
Sp

coshrt ——sinhq —f'(ri)
d'g

1/C p d&™ . dt=3 ~ cosh' ——sinhri —f'(ri)
Tp d7l dn

(71)

where e «xp. Our results were insensitive to the
choice of ~ as long as e &0.2rp. The choice of a
linear drop of T [Eq. (69b)] is to some extent arbi-
trary. T could be any smooth monotonically de-
creasing function of x. Again, the results are in-
sensitive to the specific form chosen. The three-
dimensional expansion has qualitative features
similar to those of the one-dimensional problem:

(a) During an initial period from t = 0 to t = roc„
the initial disturbance at the edge propagates in-
wards and sets the fluid in motion. At the same
time the edge of the fluid moves outward at a
speed v=1. In the region of the leading edge the
isotherms, including the critical isotherm, are
timelike and begin as straight lines. This is sim-
ilar to the progressive wave region of the one-
dimensional pr oblem. "

(b) For t&r,/c, the whole fluid is in motion,
and because of the three-dimensional nature of the
expansion, it cools very rapidly. By the time the
initial sphere has expanded to a few times its orig-
inal size, the fluid is completely cool, and the
final particles have "evaporated" from it. The
critical isotherm becomes spacelike after some
time t& r,/;„and f,'or very high initial tempera. -
tures starts looking like a hyperbola. This is
similar to the behavior of the fluid in the "non-
trivial" region of the one-dimensional problem.
However, in the one-dimensional problem the ex-
pansion takes much longer, and the isotherm in
the nontrivial region is closer to a hyperbola
whose asymptote is the light cone.

We notice that the boundary conditions at t = 0
[Eq. (69b)] are invariant under r Xr, e- X-e, and

rp- XXp.

Since the characteristic equations (21) and (22)
are also invariant under ~- Ax, t- Ax, it is suffi-
cient to use xp = 1 and measure x and t in units of
Jpo

Thus
we have

cosh'„~ = ( y)

a = 1+c~, (72)

depends only on T,/T, and c,' via the scaling prop-
erties of the differential equations (21) and (22).

Using finite difference methods we calculate the
expression Eq. (71) along the critical isotherm
T(x, t) = T, . We display the critical isotherm
T, = I„for c,' = —', for various T, in Fig. 1(a). We
have, at present SPEAR energies of E, =3 and 5,
via Eqs. (39) that T, = 1.03 and 1.18, respectively.
Notice that for Tp& 2m, there is no hint of the iso-
therm looking like 7. = constant. For Tp =4', . we

see the beginnings of such behavior. Ho+ever,
even at Tp = 4m, the outer edge of the isotherm is
far from a hyperboloid, and that is where most of
the entropy lies.

For co' =~6, cooling is slower [see Fig. 1(b)] and
for T/T, =3.8 for r & 3rD the isotherm is almost a,

hyperbola with v= ,'(r/t) -Thus f.or small c,', cool-
ing is slow enough so that scaling will eventually
set in and control the pions not coming from the
outer shell.

Since Eq. (71) depends only on T,/T, and c,', the
experimental value of (E,) determines (dN/dry)/N
via Eq. (39). To obtain dN//dq one uses Eq. (37) to
determine N from E,

In the curves that follow, we will consider the
ultrarelativistic model, with cp 3 and the hadron
spectrum model, where cp = —,'. Values of Tp are
determined from (E~) using the values of A. , B,
and s, /n, found in Table I.

In Figs. 2(a) and 2(b) we plot (dN/d7})/N for dif-
ferent (E„) for the two models. We notice that
this function is sharply peaked. Since

(y) = f u'u'dv„/ f u" da„
a 0

~T, ~T

dS , dh . dt—= 4m O3s, cosh@ ——sinhq —F2(q), (70)
d'g d'g dg

where

or

q ~= cosh '(y) .
(73)

r=~/r, , t=t/r, .
We notice

We also have that since the maximum q is obtained
at t = 0, it is determined by the solution of the one-
dimensional problem. Thus
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(a)

c =1/3
0

(b)

t / "o

c =1/6

2.0

1.0

ea beneath the isotherm for T
&

== T . Serieshe fluid is at rest for the area eneaFIG. 1. (a) The isotherms
of curves are for increasing To/T, . (b) Same as a

(b)

dN
N d)

10-

dN
N d~

.01.

c =1/3

2.01.02.01.0

fol Ced are those of Table I. (b) (dN/dg)/N vs g for co =
z
.r c 2=—' values of To/m„used are those of Ta eFIG. 2. (a) (dN/dg)/N vs q for co =3.
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q,„=—ln ~

whereas for lar earge (y) Eq. (73) aapproaches

Tp
~ peakq — —+ ln

2

)C 1+c '
0

(73')

More 1ntere t'S lng 18, 's the quant't1 y

(, . „, ), dN/di)
N

(74')

p, = m, sinhq

one has

dN/d'P 1—(m, ' sinh' '0
N

(74")

This lastt relation [E . " 's ex
general one ro ynamic dist 'b ' isis ribution is
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8

0



206 FRED CQQPER, GRAHAM FRYE, AND EDMOND SCHQNBERG

3 s, y s,t, )(~t'
)

' '
s( )od cosdsotdds/do dc-ossdtt'do)

2 (2w)' ' n, ' m„exp((E cosh' —P sinhq cosa)/T, ] —1

is independent of rp, and depends only on cp and
T,/T„and thus by Eq. (39) on (E,).

If we assume that Eq. (39') will continue to hold
at high energies, then c.m. energies of 3, 5, 10,
25, 50 will correspond to (E,) = 466, 530, 627,
805, 938 as shown in Table I. In Figs. 5(a)-5(e)
we plot Eq. (75) vs p at these values of (E,). For
(E,) = 938 [Fig. 5(f)] we also plot the purely hydro-
dynamic distribution Eq. (74). We notice that al-
though the two different particle distributions are
quite similar for the same (E,), the purely hydro-
dynamic distributions are quite different; that of
c p 3 i s stil 1 sharply peaked, whereas that for
c,'= —,

' is starting. to approach the real particle
distribution, which includes the thermal fluctua-
tions (i.e. , the thermal fluctuations are becoming
less important in the latter case).

We notice from Figs. 5(a)-5(f) that the distribu-
tion E(dN/d'P)/N gets broader compared to a Bose
distribution whose asymptote is e '. If tfN/dq
was truly a 6 function, then we have for large P,
P=E, y(E-pu)=e "E; thus we expect the falloff
of the distribution of Eq. (75) to go asymptotically
as

exp

where cosh@, =(y). Since for a given (E„),
e "o/T, is independent of c,', the large-p be-
havior of EdN/df p is independent of t."0' and just
depends on (E,) . Since r, is a "free" param-
eter, determined at present by W, we find that for
e e annihilation, the hydrodynamic model pre-
dicts similar results for all equations of state
P =c,'& if the process is a spherical expansion, as
assumed here.
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APPENDIX A: THERMODYNAMIC RELATIONS

Prematter is assumed to consist of several
composite hadronic species i. If the number of
particles of type i is N, , the Gibbs free energy is

XI. CONCLUSIONS

In this paper we have discussed how one uses
the hydrodynamic model to calculate single-par-
tic1,e inclusive distributions for simple initial ge-
ometries pertinent to head-on PP collisions and
e'e annihilation. We discussed how at high ener-
gies if the expansion phase is long, the final par-
ticles do not remember the initial data and scale
parameters, and one enters a scaling regime
which, for PP scattering, is similar to Feynman
scaling. %'hat remains to be shown is that this
"macroscopic" picture can be derived from field
theory when collective emotions are suitably han-
dled.

200
rn„sinhq(M@V)

600

FIG. 4. A comparison of (1/47t. ) (sinhq) m„(dN/dg) /&
for the cases co ——3, co ———for identical values of (E~)
=627, 805, and 938 MeV.
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FIG. 5. (a)-(e) Comparison of (E/N)dN/dsP for the two models of Table I. (f) Comparison of (E/N) dN/d~P anct
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where p, ; = p;(P, T) is the chemical potential of
specie i. If there is no constraint on N„ the equi-
librium value of N; is determined by

9$/BN; = 0, or p. ; = 0 . (A2)

We assume Eq. (A2) holds for each i, i.e. , perfect
nonconservation of particle number. In terms of
the densities e =E/V and s=S/V Eq. (Al) then be-
comes

(A7)

(A8)

where the "bag term" B is another integration
constant.

An ideal Bose gas can be cast in the form of
Eqs. (A7) and (A8), with c, '=3, if we allow A

and B to be functions of the temperature, but then
c, is no longer the speed of sound. We have

6+P = Ts (A3)

dP =sdT, de = Tds.

The speed of sound is defined as

(A4)

and the thermodynamic law dE= —PdV+ TdS yields
p dp( E + p'/3E )

&& (exp [(E—il, )/k T] —I) (A 9)

dP d lnT
de d lns (A5)

E ideal (g /8&)

P dp(M„'E)
We assume c, is constant in order to have rela-
tively simple hydrodynamic equations. Equation
(A5) gives

s= A(1 +c,')(T/T, )'0 V, ',

x (exp [(E—il. )/k T] —I] ' . (A10)

In the high-temperature (or blackbody) limit
m,/T-0 we ha.ve

where A. is a dimensionless integration constant
and V, = —', (m, ) '. Equation (A4) gives

A""'- (,—', 2iT'g„) for bosons

-(~ 27l'g~) for fermions, (A11)
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1+ ') "(c,'e, -P, )(V,/m„), (A16)

(A'7) (AS), (A14), and (d A15) for X andSolving Eqs.
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APPENDIX B: STATISTICAL MECHANICS OF IDEAL BOSE

AND FERMI GASES

The partition function for an ideal Bose or Fermi
gas is given by

article' and are very slowly varying functions of
T for T~M.

Comparing (B4) with the thermodynamic equa-
tion

lnZ= -g, ln I+exp (B1) we have

where p. =the chemical potential, g= the statistical
weight = (2s+ 1)(2I+ 1), and E= (p'+ m')'". The
upper and lower signs correspond to bosons and
fermions, respectively. In Eq. (B1) we have made
the semiclassical approximation Z, =f d'P U/(2v)'
and we have ignored the Base-condensation contri-
bution.

In terms of lnZ, the usual thermodynamic vari-
ables are

A. = —Q(m/T) (see Fig. 6),2g
37r

(B5)

where P(0) = 6.49 (5.68) for bosons (fermions).
Thus if we believe when E, - ~ that an asymp-
totically free field theory of quarks gives the
relevant dynamics, then measuring N„(&, ) for
pp- ~+X, where V0 is known, should determine
A.0 and thus g, the number of quarks in the free-
quark Lagrangian.

E =KT2 lnZ, N=KT
9T Bp.

KT lnZ
V 'K BT

(B2) APPENDIX C: STATISTICAL MECHANICS

OF AN IMPERFECT GAS

In what follows we set K= k = c = 1. Expanding the
logarithm we get

T '
2 I H

lnZ= V, , y' g e""~ K,(ny)
0 7I' n

(B3)

where y = m/T, K,(ny) is the modified Bessel func-
tion of the second kind, and the plus sign (minus
sign) corresponds to bosons (fermions). Intro-
ducing the densities n =N/V, s =S/V, e =E/V we

get via Eqs. (B2)

lnZ= 2, p(m/m, )ln 1+exp
g-E

T

&& d(m/m, ), (C 1)

where the + sign refers to boson or fermion reso-
nances.

As Shuryak noted, "' for the case

Following Hagedorn" and Shuryak, "' one can
assume that at intermediate energies the relevant
dynamics is governed by the resonance spectra
(Beth-Uhlenbeck approximation). " In the narrow-
resonance approximation we replace all the phase
shifts by a sum over resonances. In the continuum
approximation this leads to the following partition
function:

s= Gy,

c=
( ) m, ((y),

KT lnZp—
V

= Ts —E.

For p. =0 we have

Z(y) = y' g (~I)"K,(ny)/n,

G(y) = y' g (+ I)" [4K,(ny) + nyK(ny)]/n',

(B4)
p(m/m, ) =b(m/m, )',

the integral can be evaluated and one obtains

l 4+&+ 1

P =4,——,m„&(a+5)
0 r

I'(a + 4)I'(-,'a + —,')I'(-,')
I (-,'a+ 2)

e = (a+4)P, s =

1 &(a+4)
a+5 g(a+5)

(C2)

(C3)

y(y) = y Q t 3K (ny) + nyK, (ny)] .(+1)"
n

I, G, and P are tabulated in the Landau-Belinkij

&(~) = g (*1)"/n',

where the plus sign is for bosons, a0=m, '. Com-
paring with the thermodynamic relations, we see
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1
C

2

a+4 '

x(a,') = —I;((+,)
I (1/(c,'+ l))I'((1 —3c,')/2c, '}I'(&)

I'(1/2c, ')

(C4)

If we write T"' in terms of local rest-frame vari-
ables, we obtain

r""(x) = f (qua a tap'j(. ru at,'p') ,p"(Xp) p ,p/'Z

gx, p Eu~u'+L,"L,'. P'P' E

APPENDIX D: CONNECTION BETWEEN HYDRODYNAMIC
VARIABLES AND CLASSICAL KINETIC THEORY

In classical kinetic theory the single-particle
distribution function g(x, p) obeys the Boltzmann
equation

+(P'L;"u" +P'L,"u")]. d'P.

(D8)

If g(x, P) is isotropic in P (isotropy in the local
frame), then

p"a„g(x,p) = al" (x,p), (D 1) 7

~ ~
~

~ d
~~
P
~

~~
t ~~~

~

~~
3~

tI t

d 2

g(x, p)p p' ~
= g(x, p)~~ d'p&;, ,

where EI' is the rate of change in g due to colli-
sions. The stress-energy tensor is given by a(x, p )p'

d p

where

P"P'g x, p DP, (D2) 3
and we get (since Z&, L~L;=u"u" -g~")

T""(x)=( e+ P)~"~" PZ",- (D9)

d
Dp = 2e(p, )5(p' —m') d'p =

0

and is conserved by virtue of energy-momentum
conservation in individual collisions:

where

a(x)=a(x)= f Z (-p, p) pa(,

.r"'( )= f p" urnp o. = (D3)
p(xi p(x) fpE &'p p=(x, p)=,

The collective 4-velocity u"(x) =y(x)(1, v(x)) is de-
fined by

and T"'(7)=diagonal (e, p, p, p). On the other hand,
if the fluid is constrained to move in x space only
in one direction (the x direction) and

u(*)u'(x) = fpap(x, p)aap. (D4) g(X, p) =g(x, p„)5 (p, ') (Dlo)

n(x)u"(x) is the number-current density.

iV(a)= f ( )u'(x)a(aa

(that is, the dynamics is strongly damped in trans-
verse-momentum spa, ce), then the fluid is in one
space-one time dimension in both x and P space,
and

DP g x, p P"«„ (D5) a(x)= f &p(x, p)&p,

is the net number of particles on a, but in general

s„(nu")x0.
A comoving frame, denoted by barred variables,
is defined by u~(x) =(1,0). Thus

P"= L,"(v)P ',
with

Lo~(v) = u",

L;"= —5"'u, +(1 —5"')[0,". —(y —1)u"g, /v'y'], .

and we have

p(x)= =g(x p)dp,
p'-

with

T "'(x) = diagonal (e,P, 0, 0) .
In the three -dimensional case

Tt'(x) = c -3P = m=21
and in the one-dimensional fluid

T„"(x)= e —P = m
1

(Dl 1)

(D12a)

(D12b)

u(*)=u( )=fp(uia)a('p, (D7)
As E -~, one has P- —,'e (e) in the ultrarelativistic
three -dimensional (one -dimensional) fluid.
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APPENDIX E: HYDRODYNAMIC DESCRIPTION
IN FIELD THEORY

Consider an ensemble of noninter acti ng pions
described by a time-independent density matrix p.
Define the pion Green's function

G(x, x,) =( T(p(x, )y(x, )})

2(2v)'

(2w)

e""(a'(P+-.'q) a(P —.-'q))

x& ((p' q) —m}
x g'((p ——,'q)' —m ) d'q

=»pT(V(x, )q(x,)}.
Since y(x) obeys ( + m')y(x) =0, one has

(,'+ m')G(x, x,) = —i5'(x, —x,). (E2)

We can introduce the functions G'(x, x,), G (x,x, )
by

x (cp (x ——,'r)cp' (x+ —,'r)) .

(E7)

Since ( '+m')q'(x) =0, f(x, P) obeys the collision-
less Boltzmann equation

p"s„f(x, p) = 0,
G ("lx2) =( P(xl)v'(x2))

G'(x, x, ) =(y(x, )y(x, )) .
whence

(E9)

G(x, x, ) = 0(x„-x20)G'(x,x, )

+ 8(x2o -x„)G'(x,x,).

and

T"'(x) = f(x,P)P"P' d'P (E10)

Introducing relative and center -of -mass coordi-
nates by

are conserved. That is,

1r=x, -x, , x= —,(x, +x,)

we define

G'(x, P) =( ), d're"'G'(x, x,).

(E3)

(E4)

sq[nu" (x)] =0,

BENT"'(x)

=0.

nu~(x) can be written as

'(q" '(x)~, q""'(x)),
showing that nu" is the number current and

(E11)

We shall see that the quantum analog of g(x, p) can
be defined as follows: nu (x) do'=(N(o)). (E12)

f(x, p) =- — —,6(p, ) d'r e'~ "G'(x„'x,) Similarly T"' is the "classical" energy-momentum
tensor

= g(P.)G'(x, P)

Decomposing y(x) into positive- and negative-
frequency Fourier components,

2 )„,[a(k)e ""+at(k)e""]

T"(x)d'x = f(x,P)(P')'d'P d'x

d p( ~,a'(p)a(p))
2&p

= (E). (E13)

where

x 5'(k'-m'),

6'(k' —m ) = 26(k, )5(k' —m'),

rp(x) -=q" (x)+ q '(x),
one has

(E6)
Thus noninteracting pions can be described hydro-
dynamically via the pion Green's function, just as
is found in nonrelativistic quantum statistical me-
chanics such as described in Kadanoff and Baym. "
The interacting case will be discussed at some
future date. f(x,P) defined above is the relativistic
version of the Wigner distribution function dis-
cussed in Ref. 27.
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