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Asymptotic decay width of excited hadronic clusters*

Serge Rudaz
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853
(Received 18 November 1974)

The principle of detailed balance is used to investigate the asymptotic behavior of the average decay
width of hadronic clusters in the framework of models, such as the dual resonance and statistical
bootstrap models, in which quasi-two-body decays are dominant, resulting in linear cluster decay chains.
An expression for the width is derived in the high-mass limit, and its implications are discussed.

Cluster emission models have become popular
in recent years in the interpretation of multipar-
ticle production phenomena."? Such models gen-
erally consist of a two-step picture whereby one
or many clusters (excited hadronic states; the
more flamboyant term “fireball” is also common-
ly used) are produced through some dynamical
mechanism (multiperipheral-like exchange, inde-
pendent emission, single- and double-diffraction
dissociation, etc.) and subsequently decay iso-
tropically in their rest frame. Models of this
type have been found to successfully reproduce
the main features of both inclusive®? and exclu-
sive® data.

In this note we will not be concerned with the
nature of the cluster production mechanisms;
rather, taking the point of view that clusters have
a real dynamical significance, we will investigate
their asymptotic average decay width, assuming
dominance of quasi-two-body decay modes, re-
sulting in treelike decay chains for the clusters.
Examples of models exhibiting such a behavior
are the dual resonance® and statistical bootstrap®®
models (respectively, DRM and SBM). Both the
DRM and the SBM give rise to an asymptotic den-
sity of states of the form>~’

p(m)~ Cm™ exp(Bm). (1

A behavior of this type was first obtained by Hage -
dorn in the framework of his thermodynamic mod-
el.® The value of the exponent « is crucial: The
“strong version” of the statistical bootstrap® and
a ghost-free version of the DRM in four dimen-
sions® give a=-3; for such a value of q, itis
found® that quasi-two-body decays dominate over
many -body decays for large cluster masses.*®
This is not so for a= -3, for example, corre-
sponding to the thermodynamic® (weak statistical
bootstrap) model, where many-body decays are
important asymptotically. The value of § is deter-
mined from phenomenology; a currently popular
number is 7'~ 160 MeV.

Because of the similarity of their spectrum of
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states, many studies have been made of a possible
relation between SBM and DRM.> "' Qur calcu-
lation will incorporate general properties common
to both models. Later in the paper, we will com-
pare our results with those obtained in previous
calculations, both in the framework of SBM2+14,15
and in that of explicit dual models.!3+16-18

The calculation of the partial decay width I' (M)
for the process H(M)— h(m)+c(u.) proceeds along
the lines first suggested by Weisskopf'® in his
study of neutron evaporation from nuclei using
statistical methods. That is, we will use the
principle of detailed balance® to relate I' (M) to
the cross section o.(M;m) for the inverse process
h(m)+c(u,)~H(M), and assuming dominance of
quasi-two-body decay modes, we will write the
total width I'(M) as follows:

(M= T (M). @)

Here, the sum runs over the light parlicle species
c, of mass u,, suchasc=m, n, p, w, etc.,
while H and h designate clusfers of invariant
masses M and m, respectively. The density of
states describing the clusters H and i will be
taken to have the form given in Eq. (1), with
a= -3, while for particle ¢ we will use the form
£.6(p - ), where the weight factor g, is given by
g.=(2S,+1)(21,+1)2*c, with S, and I, the spin and
isospin of ¢, respectively, and A, is 0 or 1 accord-
ing to whether c is self -conjugate or not. This
weight factor is already included in the density of
states, Eq. (1), for the clusters H and k. Further-
more, we will neglect angular momentum and spin
effects: This does not affect our general conclu-
sions, which will hold for quantities averaged
over initial, and summed over final, spins. The
inclusion of angular momentum has been treated
in detail by Wolfenstein®! in the nuclear case, and
was also studied by Hamer in a more recent pub-
lication.?

A simple application of the principle of detailed
balance, namely
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p P(1~2)=p,P(2~1) 3)

(where p and P are, respectively, density of
states and transition probability, and 1 and 2 are
state labels), then yields the result

_ 8
Fc(m = 8,"2M2p(M)

M-pc
x[ ’ dmp(m)o (M;m)ANM?,m?, u.2),
mo
(4)

with A(x,y,2)=x%+3?+2% -=2xy —2xz —2yz. Equa-
tion (4) was first written down, in a slightly differ -
ent form, by Matthiae,'* who worked within the
Hagedorn thermodynamic model® and who used

the same density of states for all three objects

H, h, and ¢, namely Eq. (1) with = -3. Our ap-
proach and results, however, are different from
his. Matthiae’s calculation was redone by Nahm,'®
who used the strong SBM solution, a=-3.

We will be interested in the large-M behavior of
T'.(M); but we must first discuss the behavior of
the single -cluster formation cross section,
o.(M;m). There is no clear theoretical determin-
ation of the dependence of o,(M;m) on the external
mass m. However, on the strength of experimen-
tal results® on the scattering of hadronic systems
(mp, 3w, 57, etc.) off nucleons, as obtained through
optical-model analyses® of coherent production
processes in particle-nucleus collisions, one can
infer that o.(M;m) is, to a good approximation,
independent of m. Thus we write

-Bu
r,(M)= 8.9, (M)Me

8n?

X f”—pcdmeﬂm A(1‘42:”1:1 p‘cz) . (5)
mg m
Here, m, is a finite, fixed mass, which character-
izes the onset of the continuum for the cluster
h(m); it may be taken to be m,~ 1.3 GeV, although
its exact value will not be important for our pur-
poses. Notice that the constant C, appearing in
Eq. (1), has been canceled out of Eq. (5), which is
just as well, since its value is quite uncertain.
Multiple integration by parts now leads to the re-
sult

1"C(M)=&'ﬁz(""Lf)B':‘e"‘c[xc 242x,+2+0(1/M)] ,
(6)

where we have defined x_, =Bu, to simplify the
notation.
As M gets large, therefore, we obtain

r(m~% 2 8o (Meo(x,* +2x,+2). (1)

Equation (7) is the central result of this paper:

It was obtained under the assumption that the dom -
inant decay mode of a heavy cluster is decay to a
light particle plus another cluster of comparable
mass. We have used a density of states abstracted
from DRM and SBM, where the above assumption
holds (we have accordingly neglected n-body de-
cays, with n>2). We may also remark that, at
least in the framework of the statistical boot-
strap, this assumption leads to some quite dis-
tinctive implications for cosmology, in particular
about the duration of the hadron era in the “big
bang,” and about galaxy formation.'>? We shall
now proceed to discuss some of the implications
of Eqs. (6) and (7).

To obtain an estimate of I'(M), we have still to
specify the M dependence of g.. We first note that
we expect g, to be actually independent of ¢ [e.g.,
g(mN)=~a(pN), etc.], again on the basis of experi-
ment, and shall henceforth drop the subscript c.

A natural estimate of the single-cluster cross
section follows from the application of the Freund-
Harari conjecture,?® namely that the average effect
of the direct-channel resonances can be described,
through duality, by the exchange in the crossed
channel of the leading non-Pomeranchuk trajec-
tories with intercept ay(0)= 3. We are thus led to

o

G(M) = (M/Mo) ’

(8)
where g, is a constant to be specified below, and
M, =1 GeV sets the scale. Putting this back into
Eq. (7) gives a total width in M falling as M}, or
alternately

I'(M?)=MT(M)~- constant . 9)

Such a result was obtained by Green and Venezi-
ano,'® and also by Chan and Tsou,'” and by Chad-
ha,'® who used various methods of calculation, all
within the DRM. In particular, Green and Vene -
ziano arrive at the estimate I'(M2)<1/7 GeV?2.
Restricting the light particles to the set
c={n, n, p, w}, we arrive, using Eqgs. (7) and
(8), at the asymptotic result

C(M?)-0.12 GeV?, (10)

where we have used 0,=24 mb=1.2m,"? corre-

sponding to a good parametrization of meson-
baryon cross sections,?” at least up to Serpukhov
energies. This agrees very nicely with the Green-
Veneziano result, but one should refrain from
drawing premature conclusions, since the picture
of cluster decay implied in our calculation leads
to a multiplicity n(M)~M, while the dual model of
Green and Veneziano gives rise to a form (M)
~1nM.

Another possibility, albeit slightly extreme, is
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that the single-cluster cross section is a con-
stant, implying a fully dual description of high-
energy collisions, that is, the direct channel reso-
nances somehow build up the crossed channel
Pomeranchuk exchange. In that case, with (M)
=0,, We obtain

I'(M) - constant . (11)

One can again estimate I'(M) using Eq. (7): With
0,224 mb, as before, and with c={7, 1, p, o},
one arrives at

(M)~ 125 MeV (12)

asymptotically. If one also includes kaons among
the light particles, this value is modified to

T'(M)- 166 MeV (13)

asymptotically. The result, Eq. (11), was also ob-
tained by Frautschi'? and by the Kiev group,'® the
former applying the full machinery of the SBM

and the latter making use of a statistical approach
to DRM. Both approaches now yield »(M)~M, and
Frautschi estimates I' - 180 MeV.

The agreement between Frautschi’'s SBM results
and ours is not surprising. Indeed, in the full
statistical approach, one would write our sum
over light particles ¢ as an integral over a spec-
trum given by Eq. (1) (see, e.g., the paper of
Nahm'®); but the convergence of this sum is es-
sentially guaranteed by the SBM sum rule,

ln2=(—2% fdmp(m)fdapexp[—ﬁ(m2+p2)“2].

Thus, our sum over a small number of discrete
states is expected to give results agreeing with
those of the SBM as studied by Frautschi.'?

Besides its simplicity, our approach has the
nice feature of allowing the calculation of the
relative probabilities for decays suchas H~7+h
and H—-p+h, for example, independently of the
postulated behavior of the cross section o (M).

As an example of this, let us consider a simpli-
fied model of the hadronic world where ¢ ={77,p}
(in fact, we need not worry about including w, n
in the set c¢ if we consider only clusters decay-
ing into charged pions), and let us calculate the
average number of p mesons to be found in five-
pion and seven-pion decays of clusters which may
be diffractively produced in reactions like the co-
herent process

7 +nucleus —~ (cluster)® +nucleus .

To this end, let us make the reasonable acsump-
tion that the last three pions of the cluster decay

chain appear as a mp system: This was used in a
previous analysis of the coherent reaction 7'A

- (57)*A and led to a good description of available

data.®
On the basis of Eq. (6), and for large M, one
easily obtains that

p(H-»nh)uGQ% ’
pH = ph)~31%,

where p(V) is the probability of occurrence of the
vertex V. It is now a simple matter to obtain

(np), the average number of p mesons to be found
in a multipion final state from cluster decay. Con-
sider the five-pion decay of a cluster, with the
possible decay chains nn(np) and p(np). Using the
result, Eq. (14), one finds that the probability of
occurrence of nn(np) is 61%, and that of p(mp) is
39%. It follows that

(n,(5m))~1.4. (15)

(14)

The result of a recent experiment?® on
mp—p3nt2r¥, atp,, =16 GeV/c, is

(n,(5m))™P=~1.2,

which agrees quite well with our crude estimate
of Eq. (15).

Using the same method, one can easily calcu-
late the average number of p mesons to be found
in the seven-(charged)-pion decay of a cluster:

(n (7)) ~1.8-1.9. (16)

The large number of possible combinations in the
analysis of a seven-pion event makes it unfor -
tunately difficult, but presumably not impossible,
to test this prediction in the near future.

Another interesting consequence of our analysis
is the following prediction of the ratio of the widths
of baryonic clusters to those of mesonic clusters,

I'(baryon ~baryon +¢) g(baryon+c)
I'(meson~meson+c) o(meson+c)

=3, (17

as determined, for example, from a simple quark
model. Such a trend indeed seems to obtain for
the widths of high-lying states, although the large
experimental uncertainties prevent us from mak-
ing a more definite statement on this matter.

To conclude, we have presented in this paper a
calculation of cluster widths, and given estimates
on their asymptotic behavior which depended on
the form of the single-cluster formation cross
section. However, we were also able to calculate
light-particle emission probabilities and related
quantities, independently of the postulated be-
havior of ¢(M), and thereby to make some quanti-
tative statements about the nature of cluster decay
chains.
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