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The KL ~2y decay is examined in the context of gauge models of weak and electromagnetic

interactions. It is shown that the decay is possible because of the existence of an anomaly in the

divergence of the axial-vector current that transforms like X, under SU(3). The existence of such an

anomaly is first shown in an SU(2) X U(1) gauge model containing only the familiar quarks, and then

generalized and calculated for the realistic case of the SU{4) model of Glashow, Iliopoulos, and Maiani.

The KL ~2y rate is obtained as a function of the amount of SU(4) breaking, which is determined to
be of the order of 1.5 GeV. In addition, the KI ~ Pp, decay is examined within the context of the

above models and is shown to be sufficiently suppressed. Moreover, the examination of Ks ~7r+n.
decay and the KL —Ks mass difference leads to an interesting relation independent of mass

parameters. Also, in the case of the SU(4) model, the calculation of those processes leads to the

determination of the quark mass parameters.

I. INTRODUCTION

Several attempts in the past to calculate the

KI -2y decay rate using a variety of phenomeno-

logical models of weak interactions were met with

varying degrees of success. Kith the advent of

gauge theories, however, the possibility of ex-
amining the decay within a renormalizable model

of weak interactions was made possible. In par-
ticular, within the context of such a model and

partially conserved axial-vector current (PCAC),
the KI —2y decay rate should vanish in the low-

energy limit, unless there exists an anomaly to

the divergence of the axial-vector equation

a"J,'„=2 mi Z,'.
Superscripts refer to the SU(3) transformation
properties of the currents.

The purpose here is to examine such a possibility
in models of weak interactions, and then explicitly
show the existence of the anomaly and its magni-

tude. Such a calculation would show whether the

model has any realistic use whatsoever, if the

applied assumptions prevail, and the process
would also serve to illustrate several illuminating

features of renormalizability of broken gauge

field models.
In the following section, two different types of

models will be examined: an unrealistic but sim-
ple model that contains strangeness-changing neu-

tral currents, and an extension of the Glashow-

Iliopoulos-Maiani (GIM) model that contains a
charmed quark, i.e. , SU(4). ' It will be shown that

in both models an anomaly exists to Eq. (1), and

therefore, in the low-energy limit, the K~-2y
rate is determined. Such determination allows
one to obtain information about the masses of the

quarks. jn pa.rticular, in the SU(4) model, one

determines the mass difference between the
charmed and uncharmed quarks. If one also
looks at K~ —Pp, , then the absolute magnitude of
the mass is determined.

Another model of weak interactions is the one
based on SU(2)~x U(1)~ symmetry and extended to
include color quarks. ' In this model, one finds
that the anomaly is zero, if one assumes that
color SU(3) is not broken by mass terms, and

here, therefore, the K~ —2y decay vanishes in the
low-energy limit. Naturally, if color SU(3) is
broken, a determination of the amount of breaking
can be made this way.

It will be shown in perturbation theory that an
anomaly to Eq. (1) exists, whose nature is unique
to gauge field models. It arises, essentially, be-
cause of the nonminimal type of coupling of the
photon to the charged vector-boson current. In
particular, if one retains only the convection part
of the coupling, no anomaly exists. The part that
is responsible for the anomaly then is the left-
over magnetic -moment coupling. Such a division
of the charged current will be made later in the
calculation, and the separate effects will be ex-
amined. Since this type of coupling is determined
by the non-Abelian nature of the group of weak and
electromagnetic interactions, this type of anomaly
will exist in most such theories, where the photon
couples nonminimally.

In addition, some other interesting processes
are examined within the context of those models.
The question of the suppression of the KL - p. g
rate is taken, and a calculation shows that a quark
mass of a few GeV suffices to give rather good
agreement with the available experimental rates.
Additional information can be obtained by looking
at the Ks -n'm rate and also the K~-K~ mass
difference. One obtains results that seem to be
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quite encouraging and self-consistent within the
approximations that were made. Finally, a rather
interesting relation among the above-mentioned
processes is obtained in which no quark mass
terms appear at all, and which applies equally
well for the Gell-Mann-Zweig, Han-Nambu, or
colored-quark model, within the context of the
SU(2)„& U(1}L model of weak interactions.

II. MODELS

A. The model and Feynman rules

The following model of weak and electromagnetic
interactions was adopted for the calculation of the

anomaly. The group is SU(2)z &&U(1)R under which
the following assignments are made:

d A.
'

are left-handed doublet and singlet, respectively,
6'~, X~, ~R are singlets, A„and B„are a triplet
and a singlet, respectively, of gauge bosons, and

Q is a scalar complex doublet. The prime denotes
Cabibbo-rotated fields. Then in the familiar way,
the following Lagrangian results:

(2)

and g(g, q) contains the quark-scalar interactions.
Although this model suffers a severe drawback,

namely, that it contains neutral strangeness-
changing currents, it is very useful for two rea-
sons: It has the advantage of being very simple,
containing only the minimum number of fields
needed, and it can also be generalized and extend-
ed to other models very easily, its results need-
ing only minor modification. Its results on Ki - 2y
can accommodate any model with additional quarks
based on SU(2)~ &&U(1)s, such as color or SU(4),
and also models based on SO(3} symmetry, such
as the Georgi-Glashow model. ' Of course, it
has the disadvantage that one must deal. here with

strangeness-changing neutral currents in addition
to the charged current, but this is a small incon-
venience.

Then, one proceeds in the usual way to break
the symmetry by giving the neutral scalar mem-
ber of the doublet a va.cuum expectation value.
One obtains the familiar fields ~„', H'„, W'„(weak
bosons) and A„(the electromagnetic field). To
zeroth order, one obtains the same relations
among the constants as in the steinberg model. '
A summary of the propagators and vertices is
shown ln Fig.

The 't Hooft' gauge is used with the following
choices:

2 I
Z = —( 8 + — Q ——Q W" —~p

where x, is the combination (ijW2)(p,*—p, }.

addition, one chooses ( = q = 1 so that the vector
propagator is in the Feynman gauge. This, then,
simplifies the calculations considerably, at the
expense of having to consider a larger number of
diagrams. This scheme can be understood in
terms of a G, &&G over-all scheme, where 6, is
the group of strong interactions, as suggested by
steinberg. ' However, for our purposes here, the
nature of C, can be left unspecified, as long as it
does not affect the choice of 6 .

B. Nature of the anomaly

Since K~ transforms like A., under SU(3), one is
led to the consideration of J», where the super-
scripts refer to their SU(3) properties In ex-.
amining the equation 8"J,'„=J,' in perturbation
theory, it is immediately clear that no anom-
aly can result from the simple triangle to order
e' since it vanishes. Therefore, one must look
at weak radiative corrections to the simple tri-
angle in the next e'g' order. To this order, the
formal argument used in the ~'-2y case can be
applied to see whether the surface terms pro-
duced by taking the divergence of the matrix ele-
ment (0~23» ~2y) cancel by pairs. ' It must be
pointed out that the argument depends on the as-
sumption that the fermion-loop integration can be
performed first, followed by the integration of the
radiative -correction loops. One then finds that,
by a shift of integration variable, the surface
terms cancel. In the case of m'-2y the linear
divergence of the surface terms of the basic tri-
angle do not permit this cancellation and give rise
to the anomalous term. However, even if one has
used this formal argument to imply that higher
orders do not contribute to the anomaly, one still
has to perform an actual calculation to show that
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this is, in fact, what happens. This was done in
the w'- 2y case to order e', and was recently
shown by Zee to all orders of e by use of the
Callan -Symanzik' equation.

If one now uses this formal argument for the
matrix element of 8"J,'„=2mi J'„one can show
immediately that it fails because the cancelling
surface terms have different weights, essentially
because of the fact that the group structure here

is of the SU(3) type, and the X matrices that enter
the calculation do not commute. In other words,
the propagator that the photons attach to could
be a 6'-quark propagator, in which case the weight
is —', , or an X-quark propagator, in which case the
weight is —,'. For example, for the subset of the
contributing diagrams in which neither of the pho-
tons attaches to the charged vector-boson propa-
gator, the resulting sum of surface terms is
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FIG. 1. A small sample of Feynman rules for the model.
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with

i, j,k, m = {1+i2}', {1—i 2}',q, q;

the notation implying that

-t) 7e i) 70~(„;2)~ = e A.„,,e

r&„,„.= r„,,&, =y„(i+y,),
1 ],

~, + ~ &., charge matrix

16

FIG. 2. Neutral-vector-boson contributions to the
anomaly.

I, =)'v

Here then, it is obvious that Tr([&6, &;]A.„X„X~)is
not equal to zero for all possible permutations,
and therefore the surface terms remain.

It is seen here that although no anomaly arises
to lowest order, it is, nevertheless, possible for
an anomaly to exist in higher orders.

A calculation of the anomaly to order e'g' will
now be performed in the following way: Define

(0 ~s ~ZB, „i 2y) = (2~,~,}""„,.sk, k,"",",

X g(k»k2}

and

(0
~
2mi J5 ~ 2y) = (2a, u2}" E»8k", .

kate.

", e2

&& f(k„k,).
In the limit P'=(k, +k,)'-0, one can show by use
of the Sutherland-Veltman' theorem that g(0, 0) = 0.
Therefore, if an anomaly exists, the matrix ele-
ment (0~ 2mi j,'j 2y) does not vanish in this limit
and

which the neutral vector boson enters. Figure 3
includes all types of diagrams in which charged
vector bosons contribute. Finally, Fig. 4 shows
diagrams in which both neutral and charged vector
bosons enter, and their inclusion in either group
is not clear.

III. CALCULATION OF THE ANOMALY

A. Calculation of the anomaly and discussion

%e begin by examining the graphs appearing in
Fig. 2. These graphs involve exchanges of neutral
vector bosons only. The current to which 8"„cou-

A = —lim (012mi J',
~
2y)

P~- o

= —(2(u, (u, )"'~„,„sk",k, ~", e2f (0, 0) .

In the calculation, one can separate out i»e con-
tributions to f (0, 0) in terms of sets of diagrams,
in which the particles exchanged are vector bo-
sons. scalar ghosts, or scalar particles. Looking
at the coupling, one sees that the scalar ghost
contribution, when it attaches to fermions, is
down by a factor of (m/M, )', a. number that one
can assume to be much smaller than unity. As
far as the scalar particle is concerned, the usual
procedure is to assume it to be very massive,
and so eliminate its effects. Therefore, in the
approximation where (mlM, )'« 1 one need look
only at diagrams in which both neutral and charged
vector bosons contribute.

The possible types of diagrams that enter in the
calculation are shown in Figs. 2, 3, and 4. The
grouping is according to whether the particle in-
volved in the insertion is neutral or charged.
Figure 2 includes all the types of diagrams in

~ ~

4

FIG. 3. Charged-vector-boson contributions to the
anomaly.
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ples is

( 2 + g2}l/2

q@2 (1+) 2 }—q —e tan nq) „~q. and

f(a)+f(a)+f(2) P

Therefore, one expects two types of contributions:
type (a) through the square of the first term of the

current proportional to 4e'/sin'2(2, and type (b)
through the cross product of the two terms pro-
portional to e'/cos' (2, where tanl2=g'/g, u being
the Weinberg angle. Denoting the contribution of
each graph by f;, i corresponding to the way the

graphs are numbered, one can show after some
lengthy evaluation of the integrals involved that

for each type mentioned

f(b)+f(b)+f(b) p

One notes that this is the same type of calculation
involved as in the case of the fourth-order correc-
tions to the anomaly in the m'-2y case, with the
only difference being that the vector particle is
massive. Nevertheless, their sum is still equal
to zero. Continuing now with contributions from
the diagrams in Fig. 3, one can obtain, after some
lengthy calculation, the following expression for
the contributions of diagrams 1-3 of Fig. 3:

48h' (-1)' " 1(5 —n) ',„„,„„,„,2[(5 —n)/(4- n)](6 —4«+ ,'n«)—

2- g2
( )l- g2 2- y2 I (4 n)/( 2n)) (1+«)

[y+)"«(I -«)(I —y)]' " (5)

where

and

h'=e'g' sin() cosei22(" (/2 )2("2.

Note that the calculations are done in the dimen-
sional regularization scheme. " As expected, the
contribution of this type of graph is not equal to
zero, and gives the contribution of the surface
terms in Eq. (4). In dia. grams 4 and 5 of Fig. 3,
one starts to encounter some problems. Their

contribution is to be separated into two parts ac-
cording to the type of vector-boson current they
involve. The part which involves the (P'+P)„g„e
term is the usual convection current, and its con-
tribution will be denoted by f; and f; The res. t of
the current involves the magnetic-moment and
anomalous -magnetic -moment current of the vec-
tor boson, and their contributions will be denoted

by f,"and f,", respectively. The piece that we are
interested in now is the convection-current con-
tribution, denoted by f', which sums up to

72h' (-1)' " I'(5-n) 2 —x
9 (-m')' " I'(4) [ + '«(I -«)(1 — )]' "

Therefore, so far, the sum of diagrams 1-5 of Fig. 3, including only convection currents, is
48h' (-1}' " I'(5-n) 4 —n

S (-m')'-" I (4) 4--'n

x d«dy«(1 —x) y [y+ y2«(I «)(1 y)]2-& [y+ y2«(i «)(1 y)]
2

=0. (7)

The reason that the sum vanishes, of course, is
that the integrand is finite at n =4 and the whole
expression is proportional to (n —4). One can
dispense easily with diagram 8 of Fig. 3 since it
is easy to show that its contribution is zero.

Forgetting for a moment f~ and f~, one can
look at the contribution of f„which is finite.
Here, the piece that consists of the convection-
convection part of the vector-boson current van-

ishes and f,=f6".
Therefore, so far, we obtained a remarkable

result in that, if one includes only the convection
parts of the vector-boson current, the contribu-
tion to the anomaly is zero, even though the vec-
tor boson is massive. This cancellation, although
it was shown for the Gell-Mann-Zweig model,
still persists for the colored-quark model. A

very similar analysis can be made also for the
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have to eliminate neutral strangeness-changing
currents and see what we can then obtain. For
this purpose, in Sec. IIIB, we would enlarge the
number of basic fields by using one additional
quark and moving on to broken SU(4) symmetry of
strong interactions.

B. Calculation of the anomaly in the GIN model

The most obvious way to adjust the model so
that the neutral strangeness-changing current is
absent is to increase the number of quarks by
adding a charmed quark, and arranging them in
two doublets

14

FIG. 4. Feynman diagrams in which both neutral and

charged vector bosons contribute to the anomaly.

Han-Nambu model, which shows that the same
cancellation exists. All that remains now is to
consider f,", f,", f"„a.nd f, . Here, one clearly en-
counters a different problem in that f," is logarith-
mically divergent, but f„f,", and f, are finite.
For the theory to be renormalizable, therefore,
the divergence of f", must be cancelled against di-
vergences from types of graphs not considered so
far. Those could only come from graphs in Fig. 4.
Therefore, graphs in Figs. 2 and 4 must be con-
sidered together if we are to obtain a finite result
for the calculation.

As shown in the Appendix, diagrams 11-14 of
Fig. 4 have a logarithmic divergence that cancels
that of f,". The grand sum in the limit M, '/m'»1
then contributes to the anomaly

a = 96h(lny'+3),

where (P ' has the same quantum numbers as 6',
except charm. In this way, one arrives at the
GIM model which contains only strangeness-con-
serving neutral currents, since cross terms in the
neutral combination X'I A'+ X'I X' cancel.

An interesting modification of this scheme is the
model based on color SU(3) where the charmed
quark is replaced by 6'2, i.e. , the structure under
SU(2)~ && U(l)s is

and the rest singlets, as recently proposed by
Zee. ' Another model close to this is the three-
quartet model based on the SU(4) && SU(3) group of
strong interactions. Here, the structure under
SU(2), & U(1), is

where (8)
2

lz =g'e' sin6) cos6)
96~2

a result much too large, actually by a factor of
10' in the amplitude of K~-2y, to be even serious-
ly considered for a moment. The difficulty can be
traced back to the contribution of the diagrams in
Fig. 4. It is, in fact, solely the terms coming
from neutral currents that are proportional to the
constant and lny', whereas the diagrams with
charged currents contribute leading terms pro-
portional to 1/y' and (lny')/y'. This is, of course,
nothing new since one gets into trouble with
strangeness-changing neutral currents by look-
ing at the second-order graph in KL, —

)L(, p decay.
However, it is essential to note here that the mass
of W'„does not appear explicitly. Clearly, we

with i =1, 2, 3 running over color. Both above-
mentioned extensions are rather straightforward
and will be discussed at the end of this section.

For the GIM model, the calculation of the anom-
aly now becomes considerably easier. Disregard-
ing all diagrams that contained neutral strange-
ness-changing currents that were considered pre-
viously, one arrives at the set of diagrams shown
in Fig. 3, with one important modification.

Owing to the charmed

-(P 'y„(l + y, )3f +(P 'y„(1+y, )X+H.c.

piece contained in the charged current, for each
diagram shown in Fig. 3 that contains a 6'-quark
propagator, there exists an identical diagram in
which the 6'-quark propagator is replaced by a
6"-quark propagator, and a relative negative
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over-all sign. Therefore, if one calculates the
anomaly in the limit of exact SU(4}, one finds that
there exists no anomaly and Kl. does not decay to
2y. However, since we know that the group of
strong interactions is SU(3), one might consider
a broken SU(4) group, the breaking being propor-
tional to the mass difference of charmed and un-
charmed quarks. This then implies that the
KL -2y matrix element is proportional to this
mass difference,

Proceeding with the examination of the diagrams
in Fig. 3, one finds

f, +f, +f, + f; +f; = 0,t (9)

where now f, , the amplitude for the ith type dia-
gram, contains contributions from both the dia-
gram with 6' quark and the identical diagram with
6" quark. As before, the superscript c indicates
that only contributions from the convection part of
the charged current are included.

One point to note also here is that all amplitudes
are finite owing to the above-mentioned mechanism
and, therefore, there is no need for regulariza-
tion. Equation (9) shows again the cancellations
encountered previously. However, what is more
surprising about Eq. (9) is that the sum of the set
of diagrams containing only {P' quarks also van-
ishes in spite of the fact that the propagator of
the 6'' quark has a different mass than the rest.
Again, one is left here with contributions from the
magnetic -moment part of the charged current,
coming from diagrams 4-7 of Fig. 3. One then
finds

&2Gn . am'
sin6} cos0

3+ m+
(10)

in the approximation y'» 1, {m+ '/m~')-1& 1,
where @=M, /'m as before, Am'=m~ '-m~', and
G = 10 '. The exact expression is given in Appen-
dix B.

Using the experimental value of K~ -2y, one
then obtains nm'/m„'= 1.5, a small number, but
within the realm of possibility.

For the three-quartet model, this number repre-
sents the amount of SU(4) breaking. In the case of
the colored-quark model mentioned at the begin-
ning of this subsection, Am'/m„'= 1.5 gives the
breaking in color SU(3).

Additional information can be obtained if one
now looks at K~- p, p. within the models discussed
so far. Results to be discussed later indicate that
m' ~ 5 GeV' gives enough suppression to the dia-
gram with a 2W intermediate state.

It seems that the most promising models of weak
interaction, those based on SU(2)~ && U(1)„colored

or otherwise, are within the realm of possibility
as far as results from this analysis indicate.

IV. CALCULATION OF THE Ki ~iLIP RATE

The Kl - Pp, process is of considerable interest
because, experimentally, the rate is suppressed
to a great degree. In part, this argues against the
existence of neutral strangeness-changing cur-
rents, because the rate seems to be of the order
G'n' rather than G', as would be expected if neu-
tral strangeness -changing currents existed. How-
ever, even their absence does not guarantee that
the KL -Pp, rate calculated to the second order in
perturbation theory would be suppressed enough.
That is, the contribution to the amplitude of the
effective neutral current, arising by the exchange
of two cha. rged vector bosons, could be either of
order G'm' or Gem', where m is the quark mass.
In the former case, agreement might be obtained.
In the latter case, some additional mechanism of
suppression must be evoked. It is therefore ad-
visable that the question be examined in perturba-
tion theory within the context of gauge theories. It
is also of interest to note that the K~ —P}L(, rate is
very close to the unitarity bound, as computed
from the 2y intermediate state. Therefore, even
though the contributions of the diagrams shown in
Fig. 5 happen to be of the order G', it still could
be difficult to obtain agreement.

The calculation is done here for the SU(4) case
of strong interactions, with the d" mass larger
than the mass of the SU(3} triplet. As discussed
previously, calculations in this model can be
easily adjusted to yield results for the other quark
models discussed previously. The calculation of
the fourth-order diagrams in Fig. 5 is straight-
forward, but rather lengthy. A few of the steps
and relevant details are summarized in Appendix
C. Here, we quote only the final result for the
sum of contributions of the diagrams shown in
Fig. 5.

Let this amplitude be A (El - Tip. ), the W indicat-
ing that diagrams with S'exchanges only enter.
This amplitude is then given by

3sC m m„smg4'(ff —gp) =, ", cos6 sin& in@'uy, u.
g mg

This is in the approximation y'» 1 (u' —1)& 1
where y' =-M, '/m' and n' =-m~ '/m~'

A note of caution must be inserted here. Equa-
tion (11) has an explicit dependence on the quark
mass. It is not, therefore, as reliable as expres-
sions obtained from quark-loop calculations that
turn out to be mass-independent.
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FIG. 6. Feynman diagram for the 2y intermediate
state, in KL-Pp. The vertex is taken to be V~&
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(m'!m„') lny' and independently on lny'. However,
before we do that, we need to obtain results for
the above-mentioned process.
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I p

I

(g)

FIG. 5. Feynman diagrams contributing to KL -Pp.

From previous estimates, it is known that
I'(KL, -gg)„, =7.6X10 "MeV, as obtained from
the 2y intermediate state. However, the total ex-
perimental rate of Kl —Pg is presently uncertain.
Of the two available, the one by the Berkeley
group gives an upper limit of I'(K~- Pp, )
& 2.4 && 10 "MeV. The other, by the BNL-
Columbia, -NYU group, gives an upper limit of
I'(K ~ - P p ) & 13 && 10 "Me V." We shall use the
larger one, since the smaller one is below the
unitarity bound. " Estimates of the real part of
the K~- pg that proceeds through the 2y inter-
mediate state are obtained either by using the
dispersion-theory approa'ch or by calculating the

diagram shown in Fig. 6 with the KL - 2y vertex
obtained in the previous analysis and the quark
mass as the cutoff. Bath results give an estimate
of

Red'" (p p) 2

ImA'~(Pp. ) 3
'

Thus, we obtain an experimental upper limit on

I ~(yes —Pp, ) as follows:

K S

(a) {c)

K

In addition to K& —Pp. examined previously, the
decay Ks -7I'm and also the K~-K~ mass differ-
ence could contain some more information on the
parameters of the model. That is, we should be
able to obtain some insight into the magnitude of
the quark-mass parameter by considering the
above-mentioned processes. Their calculation is
readily available in perturbation theory, within
the context of gauge theories, by imposing PCAC
at the external vertices. We will continue to work
with the SU(4) quark model, as we have done most
of the time until now.

The diagrams, a total of four, contributing to
K~-m'7t are given in Fig. 7. Out of those dia-
grams, (b) and (d) are identically zero, essential-
ly because of the trace on the internal group. The
contribution of (a) is smaller than the rest by a
factor of m„'/M, ', and it will be neglected. There-
fore, the dominant contribution is that of diagram
(c), which turns out to be, in the limit y'» 1,

I' (KL, - y, g) =3.1&&10 'I'(Kz -2y). (12)

Equation (11) will be compared with this limit
later in Eq. (15), along with calculated rates on

Ks -7I'm and m~ '-m„' to place upper limits on
ECg Kg

(d)
FIG. 7. Feynmandiagrams contributing to Kz —m+& .
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(n'- 1)& 1,

G cos6 sin(9 m'Am'pn„'
s v2 48& f f ng

(13)

A calculation of K~ —m'm' can also be performed
along similar lines. Then one obtains the familiar
isospin rule

A+s -m'm ) 1

A. (K, —~'v')

Of course, one cannot obtain the K' -m'7T' rate
in this way because to order G' it vanishes from
purely group considerations. One would have to
include electromagnetic corrections in addition,
i.e. , to order Ge2 in order to obtain a nonvanish-

ing result. However, at the present time, we will
not address ourselves to this problem, although it
is not without significance.

Next, we turn to the K~-K~ mass difference.
The pertinent Feynman diagrams are shown in

Fig. 8. Here, for diagram 8(a), we observe that
the loop integration is being cut off by the mass of
the quark, and since both 6' and 6" contribute in

the intermediate states, the integrations are highly

convergent. The vertex shown in Fig. 9 is then

calculated, its dependence on the loop momentum

in the denominator is dropped, and one obtains for
the vertex insertion

g PPlI, =3M, (2 ), (lny'- l)(1 —y, )p,

P being the external momentum. Then, this ver-
tex is inserted in diagram 8(a) and the resulting
contribution to the mass difference is

b.m~ (a}= «, cos'8 sin'8(lny'- 1},
3G' hm'm„'m'

7f 3m' r
where by hm~' we mean m~ '- m~ '.

Eg Eg
For diagram 8(b), again the self-energy is finite,

F&G. 9. Self-energy and vertex insertions.

its calculation giving

g'hm' i m'

4M' (3 )'

This then inserted in the diagram gives

Diagram 8(c) and also the one with the crossed
boson propagators is more complicated. How-
ever, with y~»1, one can easily obtain the follow-
ing result:

where

27r
' m ff

~m, '(c) -+, , ~m, '(b) .

Therefore, the contribution of diagram 8(c) ean
be neglected. Thus, one obtains for the K~-K~
mass difference

1

L = x'(1 -x)'dx
0

1

&& y'(1 —v)'~y
0

1 1
v(1 —v) dv

vy(1 —y) ~ (1 —v) x(1 -x) '

An upper limit can easily be placed on L, which
results in

K
L

E K 3O' (n. m')'m'm, '
lc (3 )6 3f 2 4

(o} (b}
&& cos'8sin'6[ + (lny'-1)']. (14)

We will now turn to a discussion of the results ob-
tained so far.

KS VI. DISCUSSION

(c}
FIG. 8. Feynman diagram for the KI -Kz mass dif-

ference,

In the opening section of this paper, it was seen
that we were able to obtain a limit on the magni-
tude of b m', the squared mass difference between
charmed and uncharmed quarks, from an analysis
of the K~ -2y amplitude. Now, we have available
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This then gives the upper limit

m2
, lny' ~ 11.5.

mg

Similarly, from the experimental ratio
I' (K~ - Pg)/I'(K» - v 'v ), we obtain a limit
on lny' by

I' (Kg-Tip} f,' mq
' ln'y'

I"(K»-&'w ) m»' m», (1-4m„'/m»')'"

4x10

which gives the upper limit

lny' ~ 3.1. (18)

To obtain an idea of the magnitude involved, we

solve Eqs. (18) and (16) for the upper limit and
also use the value hm'= 1.5 that was determined
from the Kl. —2y rate:

2 /2

, =4.1, , =5.6.
mg mg

(19)

Unfortunately, those upper limits give a mass for
M, = 14 GeV, a number too low to be acceptable.

However, another determination of m' can be
made independently by evoking the experimental
ratio of I'(K» -»'» )/I'(K~-2y). For this we ob-
tain

1(K» -m'w ) 1 m„' ' m' ' 4m, '
I'(K~-2y), 16vn f,' m„' m»'

= 7.6x10' (20)

This then gives m'/m„' =3.70, in close agreement

three more expressions, the K~-Pp. rate, the

K~ —m'm rate, and the mass difference KI.-K~.
All involve, as given by Eqs. (12)-(14), m', Am',
a, nd lny' in some way or other. Since the numeri-
cal value of quark masses depends on the particu-
lar quark model that one would choose, be it
SU(4), SU(3)x SU(3}, or color SU(3), we can either
enumerate those values for each model or obtain
expressions that do not involve either m' or hm'.
%e have chosen to do the latter, and also to pre-
sent some of the results for SU(4).

First, we obtain some limits on the functions
(m'/m„') lny' and separately on lny' by the use of
the ca).culated rates. From the experimental
ratio of I' (K», —p, g)/I'(K~-2y), we can obtain a
limit on (m'/m„') Iny'.

Using Eqs. (11) and (12) we obtain

1" (Kl, - pp} 9G m' ' m, '
I'(Kl. - 2y) 16wo. m»

'
~

m»'

& 3.1x 10-'.

with that in Eq. (19).
Now we turn to an interesting equation that we

can obtain that is independent of quark mass.
Among the rates I (K~ - 2y) and I'(K» - v'v ) and

the KL, -K~ mass difference, we can eliminate
all mass dependence except for the function
F=-,'+(lny'-1)' that appears in Am»'. That is,

6m» (2w )' f,'
[r(JC,- 2y}r(K, s'-v ))

'-" n m„' ' (21}
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However, it is easy to see that Eq. (18), which

gives the upper limit on lny', is not model-depen-
dent, Then imposing this on F, one obtains

I
b.m» & (2 )~ j~ 24

([r(K, —2y)r(K, -.'v-)) '~' =

It is interesting to note that no weak-coupling
constant appears on the right-hand side. It is of
further interest, therefore, to speculate whether
it is possible for such a, relation to be obtained by
more general arguments. Also note that the upper
limit of this equation is satisfied within a factor of
six.

In conclusion, we have examined two models of
weak and electromagnetic interactions within the
framework of gauge theories. The first model
considered contained strangeness -changing neutral
currents, and it was used more for theoretical
calculations than for its realization in nature.

In the second model, neutral strangeness-chang-
ing currents were absent, and its results were
taken at face value. %e have shown that an a,nom-
aly exists in the divergence of the axial-vector
current that transforms like X, under SU(3) in

both models. This anomaly was explicitly calcu-
lated and we also obtained from it the Ki. -2y
rate. The question then of the suppression of the
rate KL - gp was discussed, and it was shown that
within those models we obtained quite satisfactory
results, if the quark masses were restricted to
some quite reasonable levels. In the process, we
were able to obtain also quite reasonable results
for the K~ —m'm rates and also the KI -K~ mass
difference. The results quoted in Eq. (19) are
true only for the SU(4} model, and further, only
for the upper limit of Eqs. (18) and (19). For
other models, such as SU(3) &&SU(3) or color SU(3},
the calculated results would have to be adjusted by
the relevant factors. Equation (22), which relates
the I (K~-2y) and I'(K»-w'v ) to the KL, K» mass-
difference, is mode1, -independent, and its upper
limit is satisfied within a factor of six.
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APPENDIX A

In graphs 9 and 10 of Fig. 4, it is easy to see that because of gauge invariance in the limit p -0, their
contribution is zero. Diagrams 11-14 of Fig. 4 give

f„+f„+f„+f„=-96hr(2--,'n) —96h
ar(x)

z=1
+ ln(-M, ') + ln(-m') (A1)

which clearly shows the logarithmic divergences. The contribution of diagrams 11, 12, and 13 of Fig. 4
is proportional to cotu. That of diagram 14 of Fig. 4 is proportional to tan@, so, in that sense, diagram
14 of Fig. 4 fixes things up so that in the end the sum is of the right order. Now we must look at f 6 6 This
gives

f,"=96hr (2- —,'n) + 96h 1+2 + 2 ln(-m') —192h lnx dx y(1 —y)—, dy
ar(x) a (1 x)'

g= 1 ax y+ y'x(1 —x)(1 —y)

1 1
—144h x'dx (1 —y)', dy,y+y'x 1-x 1 —y

so that the sum of Eqs. (Al) and (A2) is finite and equal to

(A2)

f„+f„f„ f„~f,"=969 1 ~ —1 1' —1929 1 6» y(1 —y)—, )dy
ar(. ) a (1 -x)'

g s= 1 - O
ax y+ y'x(1 —x)(l —y

1 1
—144h x' dx (1 —y)', dy ~y+y'x(l -x)(l —y)

(A3)

Finally, we are left with finite contributions all together. All that remains is to obtain the contributions
from f,", f„and f, and add those to Eq. (A3). The grand sum of all of them then is

f =96h 1 ~ —1 y' —1926 (hyd* y(1 —y)—,
) dy

ar(x) a

BZ 1 0 ax y+y x(l -x)(l —y)

3x(1 —y)(8 —y)- 12x(1 —y)- 8y
y+ y'x(l —x)(1 —y)

1 1

+48hy' x'(1-x)dx (1 —y)', , 1
„dy. (A4)

For

y' =M. '/m'»1,

the leading term for the anomaly is

A = 96h(lny'+3) . (A5)

APPENDIX B

The complete expression of the anomaly for the case of the GIM model is

I 12x(1 —y) —3(1 —y)xy-8[1 —x/(1 —x)]}(1 —x)y
[y+ y'x(1 —x)(1 —y)) [xy+ n'(I —x)y + y'x (1 -x)(1 —y)]

1 1—48hy' x' 1-x dx 1 —y dy
[y+ y'x(1 -x)(l —y)]' [xy+ oy'(I -x)y+ y'x(1 —x)(l —y)]'

The leading term for M, /m» 1 is given by Eq. (10).

APPENDIX C

Here we list some of the calculations for the diagrams of Fig. 5 that lead to the result quoted in Eq. (11).
The calculation of diagram (a) is straightforward and leads to

A,=, "
4 rdy, v, 1

x'dx (1-y)dy d X[X + ' (1- )(1 — )]'

1=4 C4, uy, v, (C 1)
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with

2I,
y 2 j

2
m(p ~

Q
PBQ

that

iG' m'm„b, m'
4v' f„m„'

A), = —Egy5V4 (C2)

For diagrams (b)-(e), in Fig. 5, the coupling of
W„has been separated into weak coupling [graphs
(b}, (c)], and the leftover vector coupling propor-
tional to e tano [graphs (d), (e)]. One finds with

and

A, = —(,—',e4 + Se4,)uy, v, (C3)

where the parametric integration functions are

and

x+ O2(1-x)

(o.'- 1), (1 -x), , [ xy+ y'x(1 -x)(l —y)]' (C4)

12

(n 1) o (—1 —x), , Ay+@ x(1-x)(1—y)
(C5)

Now, proceeding to diagrams (d}, (e), (f), and (g)
in Fig. 5, we find that the %'einberg angle n enters
in the coupling, but in a very particular way. For
diagrams (d) and (e), one obtains

A, +A, +A', = s~euy, v. (C9)

One then is left with the magnetic-moment (MM)
part of diagram (f) and also diagram (g), which
give respectively

A, =&~ sin'eCuy, v,

Ae 12' sin'n 4'iy, v

(C6)

(C7)
and

Ag = gE cos N 4Qy5v (C 10)

where the function 4 is given in (C4).
Now, in an analogous way to the photon coupling,

if one separates the contribution of diagram (f)
into the convection and magnetic-moment part due
to the coupling of W'," to the charged current as was
done in the Kl. - 2y, one obtains

A& = 4e sin'e 4 uy, v, (C 11}

and again the sum of the contributions of (C4) and

(C5) is independent of the angle.
Fina. lly, the total sum gives

A f = 8 & COS Q 4By5V . (C6) (fC~ —Tip) = ,'2e (74 —44,+ —84 2)uy, v,

Then, the partial sum of (C6} through (CB) is in-
dependent of the angle,

which in the approximation y'» 1 yields the result
quoted in Eq. (11).
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