
PHYSICAL REVIEW D VOLUME 11, NUMBER 7 1 A PRI L 1975

Testing the low-energy theorems of broken chiral anti conformal symmetries

D. T. Gornwell, ~ H. Genz, and H. Steiner*
Institut fiir Theoretische Kernphystk der Universtitat Karlsruhe, D75 Xarlsruhe, Germany

S. Eliezer
Imperial College, University of London, London SW 7. England

(Received 12 August 1974)

We test the low-energy theorems of broken chiral and conformal invariance by use of the experimental

7rm phases up to m = 1 GeV. Our method differs considerably from a previous treatment by Renner

and Staunton. Nevertheless, in the (3, 3) 9(3, 3) model considered by these authors we recover their

result that no consistent solution exists. The same result is obtained for the (8, 8). In a mixed model a

consistent solution is found. This model has been introduced previously by the authors in order to be

able to cope with a large mm scattering length a()'. Our assumptions include that 5 is a c number

and that u has dimension two, in agreement with the low-energy theorems we use.

I. INTRODUCTION

The low-energy theorems (LET' s) following
from broken chiral and conformal symmetries' '
require for a test knowledge of the Green's func-
tions of the form

r e„(q') = d'x e" "(T(B(x')A(0)))

at q'=0. Here 6 denotes the trace of a certain
energy-momentum tensor and & stands for any
one of the local scalar operators of the model of
chiral-symmetry breaking. One furthermore re-
quires 6'e, (0} to be known for a test with o the pion
o-commutator term defined in Eq. (f).

The explicit form of the LET's to be tested de-
pends on the model of chiral-symmetry breaking.
Thus knowledge of the 4 e, (0) and he, (0) will imply
a test of the model of chiral-symmetry breaking.

The idea that there is a Goldstone boson of dila-
tion-symmetry breaking (the e) which may be used
to compute the required vacuum expectation values
(VEV's) has frequently been considered in the
literature. ' ' Despite its being theoretically very
attractive, the experimental situation does not
justify this picture. ' In any case, the uncertainties
are very large since the LET's if saturated by the
& require knowledge of m, and I, „„.Both are
experimentally not well defined and at any rate
poorly known.

In this situation, attempts have been made"
to make direct use of the ~~ phases in order to
saturate the VEV's required for a test of the

(3, 3)+ (3, 3) model of chiral-symmetry breaking. '
We modify and extend these attempts in the
present paper. Even though our modification of
the original Renner-Staunton (RS) method (Ref. 6)
is considerable (see the following section for de-
tails), we still find the result of RS that no con-

sistent solution of the LET's of broken chiral and

conformal symmetry exists in the (3, F}~ (3, 3)
model with a c number 6. As proposed by RS, we
are using the experimental n~ phases below m„„
= 1 GeV (see the Appendix for our treatment of the

phases). The above result is also obtained for the

(8, 8) (Ref. 9) with a c number 5. This should not

come as a surprise since consideration of the
meson-nucleon a terms already implies presence
of a q number & in these irreducible models. '

We mention at this point that we assume that the
dimension l„of the chiral-symmetry-breaking
Hamiltonian density is two, in agreement with the
assumed validity of the low-energy theorems.

As a further main point of our paper we show
that in the mixed model of Ref. 11 a consistent
solution does exist. We have introduced this model
in order to be able to cope with a possibly large
scattering length f2,". The result mentioned above
was anticipated in Ref. 11. There we also per-
formed the conventional test of the LET's by

saturation with an c intermediate state. The re-
sult was favorable just as'' the results of such
a test in the (3, K)& (E, 3) [due to large errors,
nothing convincing can now be said on" the pure
(8, 8)]. Thus, the results of e saturation and mm-

phase saturation disagree in the case of the (3, 3)
4 (S, 3), whereas they do agree in the mixed model.

Summarizing, we find that there is no consistent
solution of the LET's of broken chiral and confor-
mal symmetries in the case of the (3, 3) (3, 3) and

the (8, 8), whereas such a solution exists in the
case of the mixed model of Ref. 11.

II. THE LOW-ENERGY THEOREMS OF BROKEN
CONFORMAL INVARIANCE, THE OMNES FUNCTION

METHOD, AND TREATMENT OF POLYNOMIALS

We shall begin this section by enumerating the
low-energy theorems of broken scale invariance. ' '

1856



TESTING THE LOW-ENERGY THEOREMS OF BROKEN CHIRAL. . . 1857

e=a„D~,

D = J d'xD'(x}, (2)

Gee(q') =-i d xe"" T 6 x}6(0)) p.

We shall also use for the local scalar operator
A(x) the definition

ne„{q')= -l d'xe""(T(e(s)A(0))&, .

If A has the dimension d&, it follows that

(3)

a e„(0)= d„(A&, . (4)

Thirdly, we have the theorem4

f.' —+(0, o, l)

where

d

—.=dt "= —& ea(t}
1=0

F(m, , m, t) = (ml el v&.

Equation (5) is actually valid for zero-mass
pions. In a pole model, bringing (5) on-shell
customarily introduces' extra terms of order
(m„'/m, '), where m, is the mass of the "dilation. "
We shall follow RS' in assuming that (5) is valid
as it stands with the pions on-shell. This means
that we shall have to show that our solutions are
stable against small var iations. The operator v

is defined by the equal-time commutator

3Z Ap(x, Q)d'x, 8"A„(0) = v(0 )

in any model.
The saturation of these equations with an e pole

has been widely discussed. '' RS' examined the
use instead of the measured m7t phase shifts. In

detail, all spectral functions occurring in objects
of the general form of Eq. (3) are assumed to be
well approximated by the ~m contributions, and

We shall assume that the chiral-invariant, scale-
noninvariant part 6 of the Hamiltonian density is a
c number. Furthermore, the chiral-noninvariant
Hamiltonian density u is assumed to have dimen-
sion l„. This then implies for the trace 6 of the
energy-momentum tensor the result

6(x) = (4 —l„)I~(x) —VEP .

Furthermore, we have the Kleinert-Weisz result4:

t( [D, 6J&, =-6 (0) = l.(4 —l„)(u), ,

which connects the object Gee(0), with which we
shall most immediately be concerned, with (u) o.
Here D„ is the dilation current and we have de-
fined

one uses an Omnes function of the measured phases
to determine this contribution, up to the inclusion
of polynomials.

Thus, for any scalar and isoscalar operator A

with (algal v& (0) 00 one writes

(vl&lv& {t)=(vl&l ~& {0)P (t)fl(t), (8}

Hence,

&e, , (flu, lw&{0)
(w lu, l w&(0)

'

But according to (4) the left-hand side of (11) is
also equal to (u,),/(uo) o, which implies

(wl u, l v& (0) (u, ),
( v

l u, l v& (0) ( u,), '

if Eqs. (10) are to be correct. Now SU(3} tells us
that the right-hand side of (12) is small, while the
left-hand side is not. Indeed, Ademollo and Gatto
and the virial theorem give

(vl eu. lv& =m. ' —(m'& „
( ~

l u, l w& = [(l„-2}m,'+ (4 —l„)(m') „„J/(4—l„) .
(13)

Thus, we see that (12) is incorrect, and there-
fore, that assumptions (10) are, in general,

where P„(t) is a polynomial normalized to unity
at t =0, and Q(t) is the Omnes function

Q(t) = exp — ds
t " 6(s)
v, 2 s(s —t) (9)

with 6(s) the I=0, s-wave mm phase shifts. It
should be noticed that A(t) is universal, i.e. , in-
dependent of the operator A. RS suggested that
one should use linear expressions for the poly-
nomials P„(t). Higher-order polynomials lead to
bad high-energy behavior in various integrals,
making the results sensitive to cutoff; linear forms
can, however, be tolerated and, as we shall show

presently, are indeed necessary. With all this
we are in agreement. We disagree, on the other
hand, with the suggestion of their second paper'
that (flu, l v& (t) [where ue(x) is the I =0, 1"=0
scalar in the (3, K)+ (K, 3) representation] might
not need a polynomial. Indeed, we will argue the
exact opposite: that the form factors of SU(3) non-
singlet operators must have a polynomial, and of
3 well-defined kind.

We shall demonstrate these two points using the
(3, K)6 (3, 3) model, though this is an unimportant
restriction. First, to show that there have to be
some polynomials, assume that there are none;
we shall then see that this is not possible for both
A=@, and A='Rp Thus,

(w
l u, l v& (t}=(flu, l w& (0)Q(t),

( v
l u, l v& (t) = {v

l u, l w& (0)Q(t) .
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untenable.
Secondly, having shown that some form factors

at least must have polynomials, we shall argue
that form factors of the kind (vI III v& (t), with fI an
SU(3) nonsinglet operator, must be of the form

chiral estimate for (u)„and then seeing whether
the LET's of broken scale invariance can also be
satisfied with this value.

We will write for an operator A with (vI AI v) (0)
&0 in Eq. (8)

&~l III v& (t) = (vI III v) (0)(1 —I/m, ')II(t), (14) I'g(t) = (I +r~t) (18)

where m, approximates the position of the ~-S*
bump. The point is the following. The e meson of
broken scale invariance (for which we take the
&-S* bump in our saturation scheme) is assumed
to be an SU(3)-singlet object and, although it is
not well-established experimentally, one can see
its bump if one calculates and plots the Omnhs
function Q(t}. See Fig. 1 for this. The representa-
tion (8) of form factors then directly implies that
one always sees this bump, unless the polynomial
conspires to eliminate it, and, since the e-S* is
assumed to be an SU(3) singlet, this the polynomial
must do whenever the operator & is not a singlet
operator. It is according to this requirement,
then, that the polynomial in (14) has been chosen.

This result is immediately connected to the fact
that the vacuum is approximately an SU(3) scalar.
Using e dominance for simplicity, one easily sees"
that (if A has a dimension) (A), =0 is equivalent
to (OIAI e&=0. Thus, to have (u, ),= 0, (S,),=0,
and (S») =0 in our vv-phase saturation scheme,
we have to choose the polynomial in such a way
that the SU(3)-nonscalar operators decouple from
the otherwise dominant e-S* bump (and do not
generate a dominant contribution from s large
around 2 GeV2).

Form factors of the form (14) will be used for
(vI u, I v& of the (3, E) (3, 3), for example, as well
as for the form factors (wI S, I v& and (v IS»I v&

of the (8, 8).
We shall now make some general comments

about the calculations of the next section. The
LET's of broken chiral summetry provide us with
an estimate of (u) o in the (3, 3)4 (3, 3), the (8, 8),
or the mixed model of Ref. 11. Equation (1) con-
nects this with See(0), which is given in turn
through the constant P in

For A =8 we have P =ye. We also know (vIAIv&(0)
in this case from general arguments:

&vl el v& {O) =2m, '.
For operators having (a I

A
I v& {0)= 0 we will write

(v I
A

I v& (I) = y„tn(t), (20)

where now y„= (v
I AI v& '(0).

The expressions we have introduced suffice for
us to write an expression for b, ~(t) in the approx-
imation by intermediate states containing two
pions:

s „(I}- s 3 s 4m
2t —s 32m s

x (1+tts}(I+~ s)2m. '&vIAI s) (O)I f1(s)I '.

6 &A 1+ 2 2~ 1 BAy 2 (22)

Using (21), ti ~(0) and d'e, (0) may be computed in
terms of yA, p, y„and the integrals

s —4m, 2 '" Q(s) '
ds,s s

I
4'

3 " s —4m, ' '" Ift(s)I'
327J' 4m 2 S s

(21)
In writing (21), we have restricted ourselves to
the case (vIAI v&(0}&0. For an operator A violat-
ing this condition, an obvious replacement must
be made in the integrand.

In order to count the number of independent rela-
tions present in various models, it is important
to realize the linearity of the expression in (21):

F(t) =—&v I 8I v& (t) = (I +Pt)2m „'Q(t),

since

(15)
4-

see(t} = p(s)ds
2 t —S

with

3 s 4m»»
p(s) - p' "(s)=, '

I F(s)I'.

We will be using the approximation p(s) =p ' (s).
Our method will consist of finding P from the

0 ~ I ~ ~ I ~ ~

0 0.5 1.0 m«[GeV ]

FIG. 1. The absolute value ~Q~ of the Omnbs function
as computed from Fig. 2.
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327' 4fft 2

4m ' 'f'
[Q['ds,

S

2
3 ' s-4m„2 '"

I,=, '
si Q(s)i'ds.

4tft ff2 S
(23)

The values of these integrals are given and dis-
cussed in the Appendix.

We will calculate to lowest order in chiral-sym-
metry breaking. That is, we will assume

(,),=(S,),=(S„),=0 (24)

in all three models. As a consistency check, if
computed from (21), these numbers must come out
small.

We are now in a position to make explicit the
LET's to be tested in terms of the integrals I in

Eqs. (23). Firstly, one has for the VEV
(f„'=0.44m, ') and for any A with (w~A~s)(0)&0
(assuming P and y„ to be given in units of GeV ')

(siAi s) (0) [0.217+ 01 32(p +„y) +0 108P. ~yl =
4m, 'f, ' 2m, '

2, ', if A has dimension 2
(A) 0

4m,

~

4,', if A=8.
mii ir

(25)

In the models considered, the VEV of u is known as

(u),
m, 'f, '

-13 (3, 3') 0 (3, 3)

-6 (8, 8)

-21 (3, 3}& (S, 3)4 {8,8) for m, a',"=1
-17.3 (3, 3)+ {3,3}4 (8, 8) for m „,a,"' = 0.6 .

(26)

The above results can be found in the literature. "'""
Thus, by use of {25), the values in (26) may be translated into values of P for the respective models:

9.73 or -12.17 (3, 3) + (3, 3)

6.20 or —8.65 (8, 8)
P GeV 'j=

12.78 or —15.22 (3, F}i9 (3, 3)iS (8, 8) for m, a0i0~ =1

11.49 or -13.94 (3, 3)& (3, 3)& (8, 8) for m„ao 0

(27)

F'{0)=2m, '[t3+Q'(0)] (28)

The reader should notice that for y„=P Eq. (25)
reduces to a quadratic equation for P. Hence there
are two possible values of p for any (u) 0 in Eq.
(27). We shall henceforth consider P as known in

the respective models.
Before turning explicitly to particular models

of chiral-symmetry breaking, it is worthwhile
to make Eq. (5) more explicit. We have

In the above, P and y, are in GeV '.
The remaining steps are most conveniently car-

ried out in the explicit models of chiral-symmetry
breaking. This is done in the next sections.

III. THE (3,3)9(3,3)

We will check Eq. (30) by making use of the faci
that all parameters in this relation are fixed by
our assumptions. Firstly, we have in the present
model

from Eq. (15). Thus we need Q'(0). This follows
numerically as (s

~
a

~
s) (0) = m, ' . (31)

Q'(0) = 2.54 Ge V ' . (29)

By use of (21) for & =a an expression for the slope
4'e, (0) follows in terms of }3, y» (s

~
v~ m) (0), and

the integrals in (23). Putting everything together,
we arrive at

22.97 —P=, [0.57+0.217(P+y, )+0.132Py, j.(s io is) (0)
m. '

(3O)
W2+ c~ 1

a —VEV = —9+ (1 —c v 2 )us3
(33)

This relation can be derived for l„=2 by a variety
of methods. We refer to the literature for this.

Secondly, in the present model one has

e = 2(u, + cu, ) —VEV . (32)
Since also a can be written as a linear combination
of u, and u„one may derive a linear relation be-
tween e, u„and a:
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For c we have the expression of Ref. 8:

3 W2m, '
C+ =

2 2
2m+ +m,

We are interested in

(»l ol »& (t}-=(»lo vEvl »& (t}.
This may be obtained from (33) since we know

(34)

The soft-pion limit (which is in agreement with
1„=2)yields the values of

(» I ol »& (o),

S, ~ (0),
l 2' 'i

and

m 2

(» lu, l ») (t) = ' (1 t/m, -')n(t)
c+ 2

(35)
j„~ (0)

2~5 "
together with Eq. (15) for (»l8l»&(t). Equation
(35} follows from (19), (31}, and (33) together with
the assumed decoupling of u, from the r-S* bump.
Thus, with P in units of GeV ', we arrive at

in the customary fashion:

(.lol»&(0}= '—,'m„',
B

S, » (0) = — (m»' —m, '),
3~3

(40)

(»lol»&(t)=m„' 1+ '
t Q(t).P —13.56

(36) and

Thus, we have

~.= —y —13.56)
1

13

S F {0)= —,—,(m ' —»„2).

We further know that

(41}

IY. t8,8)

The method to be employed here is basically the
same as in the previous section. We have first
of all

6 = 2u —VEV

2 ~ ho+ ~3 Ss —VEV
B . B

2~5 ' (37)

In the present model, a is a linear combination
of So~ ~a~ and S27.

B 6@3 s B
V = 2(Z+ 2} S,+ {2+@)

2~5 '

B
+ 10 ( 2 ) 27

2~5
(38)

and Eq. (31) to be used in (30).
In order to check the low-energy theorem we

will use the two possible values of P in (27). With

P = 9.73 GeV ' we find 13.14 and 2.24 for the left-
hand side and right-hand side of (30), respectively.
With P = -12.17 GeV ' the numbers are 35.67 and
0.68, respectively. This disagreement is strong.
It should be noted that the smallness of the right-
hand side is not the result of a cancellation. Thus
we conclude that in the (3, S)~ (3, 3) the sum rules
connecting chiral- and dilational-symmetry break-
ings are not fulfilled by the experimental mm phase
up to 1 GeV for L„=2. This assumes the ~-S~
bump to be an SU(3) singlet decoupled from u, .
Our result is stable against small variations of
the mass of this bump.

We should like to add that because of the incon-
sistency already obtained, it is irrelevant if

(u, &„ is actually "small, " as has to be expected.

(42)

1 16»~2 —13m „' B
40 m~' —m „-' (43}

Taking the pion matrix element of (43) we may
express y, by }3 using (39)-(43) and the fact that

y», -—y»„=-1/m, '. We arrive at

y~ = -0.027P —1.160, (44)

if y, and P are expressed in GeV '. For P =6.21
this leads approximately to 17 and -4 for the left-
hand side and right-hand side of Eq. (30), re-
spectively. The other possible value, P = -8.64,
yields 31.62 and 9.06 for these numbers, respec-
tively.

The discrepancy is large and thus our conclu-
sions are analogous to the ones at the end of the
last section.

V. THE (3,3 i&(3,3)t8, 8)

In the present model, some modifications of the
method employed in the previous two sections are
necessary. We will see that there is one more
parameter and, at the same time, one more re-
l.ation to be checked.

In order to get a relation between P and y to be
used to test (30) we may eliminate BS„'2v 5 from
Eq. (38) in terms of 8 [Eq. (37)J. Except for
VEV's, which are irrelevant here, we get

9»„'
4 2m~2+»„2

3&38m, ' 25»„'m, '+8»„' B
10 (m»' —m, ') (2m»' + m, ')
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We start by recalling that in Ref. 11 we had

assumed that u was given by

e = 2u-VEV

B B
=2 z ~ S + v3 S + u — 2 u, -VEV.

245

(45)
I 0.113yz -1.002 for m, ato" = 1.0

0.181@~ -0.925 for m, a~~'~= 0.6 (54)

tions it was possible to express y, in terms of P.
As is clearly seen from Eqs. (45) and (46), such

a possibility does not exist in the mixed model.
Instead, y, and ys, are linearly related by Eq. (52)
or

It follows from this Hamiltonian that o is still
given by Eq. (38):

B 6v3,- B
o=z(z+2)

2~~ S.+ (z+z)
2~~ S.0

Upon taking the VEV of (46) we get

{46)

in the present model. Thus, Eq. (30) does not by
itself provide a test of the model. We may rather use
that relation in order to obtain y for the two pos-
sible values of P. This will yield ys, from (54). A

test of the model is thus provided by {25)for A.

=(B/2')S, . Namely, we have explicitly

0.45 =0.132 P+ys ) +0.108~ys .

-f,' m, ' = —,'(1+2z } ~ S,
2 5

(47)

B 2V2. '' 2~i'' "' (48)

B 1 m. '~&8 & (0)=~ (49)

and

B 2 P)2-'
(50)

This results in

(z ~o ~
z)(0) = — m„',1 29+ 38z

Since we know that yz =yf, = —1/m, ', we may
write

(z a~z)(t)
(z a in)(0)

1
27(2z+1)y, —

2(29+ 38z) 0

31+22z
Pl g

{52)

Thus we have derived an expression for y, in
terms of ys and z. For z we will take the two

0
values corresponding to rn„a,' =1.0 and 0.6, re-
spectively. We have found

-0.45 for m, a,"= 1.0

. -0.41 for m, a "=0 6 (53)

In the irreducible models of the previous sec-

to lowest order in chiral-symmetry breaking. In
the soft-pion limit, matrix elements of the form
( z

~

s
~
a) (0) are given in terms of ((B/245)S, )o.

Using (47), one arrives at

In performing the test as explained above, four
possibilities have to be considered. For m„a,' =1
we have to consider z =-0.45 together with P
= 12.78 and —15.22 GeV ', for m„a,' = 0.6 we have
to consider z = -0.41 and P = 11.49 and -13.94
GeV ' [see Eq. (27)] . For P = 12.78, -15.22,
11.49, and -13.94 GeV ' together with the ap-
propriate value of z we get from (30) y, = —1.35,
-3.14, -0.97, and -4.26 GeV '. This yields ys,
= -3.08, -18.92, -2.49, and -18.43 GeV ' by
use of (54). Thus we compute for the right-hand
side of (55) the values -2 ~ 97, -27, -1.9, and

-23.
In comparing the left-hand side of (55)—i.e.,

0.45—to the numbers here obtained, it appears
that no solution is particularly good, though the

positive values for P are preferable. Indeed, the

positive values are not excluded for the following
reasons. First, there is a strong dependence on

small variations of the parameters in the region
of interest. This is particularly clear if one
looks at (54) and remembers that the y, for pos-
itive P are around unity.

Secondly, as one of the consistency conditions,
we may compute (u, )o, (S,)„and (S»), by our sat-
uration method and have to find "small" values.
Even though our subtraction method [decoupling
the SU(3)-nonscalar operation from the c-S*
bump] generally will yield "small" values for
these VEV's, this is not sufficient for them to be
neglected in lowest order of chiral-symmetry
breaking. Namely, in going from (46) to (4'l), we

have neglected the VEV of the SU(3)-nonscalar
part as compared to B(S,)0/2W5. Because of the

small factor (z +-, ) in front of BS,/2W5, we have to
be particularly careful. Indeed, taking the VEV
of (46) and [rather than neglecting the VEV of the
SU(3)-nonscalar part] computing everything by
means of (25) we find
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-1= —(1+2z}, 2 ~ S, —— [6(z+z)+ —(z- +)]&[0.217+0.132(p-rn, ')-0.108/m, 'J-3 1 J3 . 1 1; 1

~'m, 2 5 ', 5 1+2z

0 = 0.217 +0.132(P-m, ')-0.108lim, (56)

Numerically, the contribution of the terms we
are supposed to neglect turn out to be large~ than
the term we should keep. This inconsistency and
analogous ones can easily be avoided within the
errors of the present approach. The key observa-
tion is the following: If P and m, are chosen such
that

Using the "new" values of m, ', Eq. (54) is
changed to

0.113',-1.116 for m, a,' = 1, P 0

0.113y&,-1.051 for m a,' =1, P& 0

0.181y~,-1.034 for m„a,"=.6, P & 0

~ 0.181y~,-0.968 for m„a,' =.6, P& 0

{57)

then [compare (25)] all VEV's of SU(3}-nonscalar
operators will vanish in our saturation scheme.

The subtraction at m, ' was in fact chosen so as
to satisfy two goals, namely (1) absence of the
e-S* bump in (v JA~ v)(t} for A an SU(3)-non-
scalar and (2) (A), =0 for these A. The first con-
dition is satisfied by any m, ' = 1.0 GeV ', where-
as the required smallness of (A)„requires (56) to
be almost exactly satisfied. With P = 12.78, -15.22,
11.49, and -13.94 QeV ' we find m, '=1.26, 1.19,
1.26, and 1.18 GeV ' from (56). These are certain-
ly values for m, ' which are consistent with our
first requirement on the subtraction.

As may be seen directly from the above coin-
cidence of the values m, ' for two very different
sets of values of P, Eq. (56) cannot be used to
determine P.

200'-

150O—

100'-

zing

The values of y, as computed from (30) remain
unchanged. Thus, we have the following list of

y&, =-2.069, -18.39, +0.367, and -18.17 GeV '.
We see clearly the large uncertainty in y~ for
positive P coming from the fact that y, is for
these P almost equal to the constant term in (57).
Computing the right-hand side of (55) we find now
-1.44, 25.78, 2.02, and 23.11. Clearly the neg-
ative values of P are excluded. We see also that
in Eq. (55) for physical (positive) P and z (i.e.,

y~, ) there is a cancellation implying the strong
change of the value predicted for (BS,/2~5, by
saturation. It is seen that between m, a,"= 1 and

m„a, =0.6 there is a consistent solution of all low-(o)

energy theorems of broken chiral and dilation
symmetry. Going back to Ref. 11 we find this
consistent solution at m, ap 0 81 ~ 0 435
=12.13, y =-1.213, and y~, =-0.986. Taking into
account also ambiguities in the cutoff, we have the
following main conclusions.

There is no consistent solution of the low-energy
theorems of broken chiral and dilation symmetry
in the (3, 3) @ (3, 3) and the (8, 8), whereas such a
solution exists for large values of m, a," in our
mixed model. It would, however, not be mean-
ingful to go any further in the second case and to
take seriously the values written above for which
an exact solution obtains. Since the solution de-
pends on small variations of the parameters, the
final value is influenced by ambiguities such as,
e.g. , taking exactly the same subtraction for S,
and S» or the cutoff. We should go further once
m, a,' really turns out to be large and becomes
known with high accuracy.
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FIG. 2. The 7}~ phase shifts S& of Ref. 14.

In this appendix we wish to discuss our treat-
ment of the nm phases for the calculation of the
Omnes function 0, as well as giving the values of
the various weighted integrals of

~
0

~

' which ap-
pear in the text, Eq. (23).

We cal.culated 0 from (9) using the mm phase
shifts of Basdevant et al. " Our Fig. 2 is a re-
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production of their Fig. 1(a), and we actually chose
to use their curve 2—putting the phase shift equal
to w from m„„=1GeV onwards. Doing the integral
on a computer gave the Omnes function of Fig. 1.

Given 0, we then calculated the integrals I,-I,
of (23), also on the computer. In order to display
the dependence of these numbers on the cutoff we
gjve their values for A = 4 GeV and A = 9 GeV .
A cutoff is necessary since Q(s) -s ' for high s,
and I, is, consequently, divergent. Ne found

I
y

0.249 for A = 4 or 9 GeV
I =0.0954 for A'=4 GeV2

=0.0955 for A' =9 GeV',
I =0.579 for A'=4 GeV',

=0 584 for A2=9 GeV'

I, =0.0474 for A' =4 GeV',
=0.051 for A =9 QeV'.

In our calculations we used the values for A'

=4 GeV'.
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