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We argue that the t dependence of Regge residues for small t can be understood within the
context of multiperipheral cluster models if the clusters are identified with the reso»~ce
spectrum and the correct spin structure is included for the resonances. The difference be-
tween the slopes of the pp and &p differential cross sections is ascribed to the average shift
of resonance spin by 1/2 between the baryon and meson resonances. An illustrative calcula-
tion is performed which leads to qualitative agreement with experiment, including the energy
dependence of diffractive slopes, multiplicities, and transverse momentum distributions for
energies below 30 GeV. Longitudinal components of momentum transfer are correctly treated.

I. INTRODUCTION

The determination of the t dependence of Regge
residues has been one of the outstanding problems
in hadron physics. Two-body data indicate that
differential cross sections do jdt behave at fixed
s and small t roughly like 4e ', where C is typi-
cally a large number. At s =60 GeV', C=8 GeV '
for mP elastic scattering, while C =10 GeV ' for
PP elastic scattering. Now since multiperipheral
models generate Regge poles and since Regge
poles are widely believed to have some relevance
to the discussion of two-body data near 1 =0, it
is tempting to imagine that some specific multi-
peripheral model might exist which could de-
scribe the t-dependence of Regge residues. ' At-
tempts along this line have encountered difficul-
ties at several points. The first is the require-
ment of generating a sensible trajectory function. '
Not every ladder model will do this. This is re-
lated to the energy dependence of the slope pa-
rameters and to associated momentum transfer
and transverse momentum distributions of pro-
duced particles, as we shall discuss. The second
point concerns the reasonably straightforward
(and related) problem of generating a reasonable
multiplicity of produced particles by the multi-
peripheral chain. ' It is known that if the multi-
peripheral model is multiperipheral in clusters
with exchanged masses small compared to the
masses of the clusters, these two problems can
be overcome. However, the nature of the clusters
is crucial. Some discussions assume that the
clusters have no spin and decay isotropically in

their own rest frame. However, we mill see that
this assumption leads to the prediction that the
slopes of the mP and PP cross sections should be

equal, and in any case these slopes will turn out

much too small. '
Our assumption is different. Following several

authors" we shall assume that the sPins of the
clusters are directly related to the nature of the

Regge residues. In particular we suggest that
the clusters forming the multiperipheral compo-
nents are predominantly the first few meson and
baryon resonances. To agree mith the data, all
baryons must be confined to the ends of the multi-
peripheral chain, as illustrated in Fig. 1(a) for
vP scattering and Fig. 1(b) for PP scattering.
Effects related to baryon exchange are secondary.
Once this is assumed, the existence of elastic
diffractive slopes, and the fact that there should
be some difference between the mP and PP slopes,
are qualitatively easy to understand. Since the
multiperipheral chain sums to a Regge pole (call
it P), the PPI' vertex is controlled by the first
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FIG. 1. (a) Model for the imaginary part of the ~P
scattering amplitude at intermediate energies. (b) Model
for pp scattering at intermediate energies.
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few baryon resonances (N, 4(1236), . . . ), whose
average spin is called J~. The model for the ver-
tex is shown in Fig. 2. For simplicity we assume
that the connecting propagators with momentum
transfers l, and t, are pions, which are assumed
to have spins cl.ose to zero. Such an assumption
is not necessary and could be relaxed, but it is
certainly reasonable if the average momentum
transfers (t, ) are small, which will be true if t
is small. Let us assume that the helicities of the
protons in Fig. 1 are + &. The off-shell scattering
process v(t,)+P-¹-v(t, )+P' inside the loop
integral produces a rotation matrix function
d,» „,(8s), where 8s is the off-shell scattering
angle for this (virtual) process. At t=0, 8s=0.
This d function provides a peripheral cutoff in
8& which helps cut off the t, integrations and ulti-
mately results in a cutoff in t. This cutoff is in

addition to any peripherality due to the propaga-
tors in t, and t„and is primarily responsible for
the peripheral nature of the baryon vertex func-
tion. Now the mwP vertex is controlled by the mm

resonance spectrum in our model, as illustrated
in Fig. 3. Vfe have again assumed m exchange.
Denoting the average meson spin by J„, the in-
ternal v(t, )+v- M- v(t, ) +w' scattering amplitude
with over-all scattering angle e„produces a ro-
tation function d~(8„}. For J„&0, this function
will enhance the peripherality of the mmP vertex
function.

The crucial point is now simply that

That is, the average spin of the baryon spectrum
(N, 4(1236), . . . ) is displaced in spin by ~ unit
from the meson resonance spectrum (c,p, . . .).
Since as J increases d~&, (s) becomes more periph-
eral in z, we expect that the d rotation function

Jgwill provide a faster cutoff in t than will d ". This
is the essence of our assumption. It now remains
to be seen whether the mechanism we have pro-
posed can reasonably be expected to provide the

large slopes of the mP and PP differential cross
sections as well as the differences between them,
consistent with their energy dependence.

To approach this question, we have assumed a
simple, though reasonable model. %'e assume that
the mm resonance spectrum is dominated by the p,
while the wp spectrum is controlled by the n (1236).
A multiperipheral chain of p mesons with pion
exchange and baryon resonances at the ends is an
idealized model, but it nevertheless is actual. ly
not phenomenologically wrong in any gross sense
at intermediate energies, say 5 GeV/c&P»&30
GeV/c. ' 'o In this range, inelastic diffraction, KK,
and baryon-antibaryon (BZ) production cross sec-

:g «(ta)

FIG. 2. Model for the ppP vertex.

tions are small, and the main corrections to the
model come from other clustering effects involving
other resonances (o,f;A„g, etc.}. We see no rea-
son why a more complicated spectral assumption
would invalidate our results which depend only on
the general statement that J&=J„+&.

We close the Introduction with a few technical
comments which are necessary to interpret our
results. Those wishing to plunge into the cal-
culation may proceed to Sec. II directly. Our
simple illustrative model is a multiperipheral
approximation 0",

& to what has become known as
the single fireball cross section o,f Cau-
tion should be exercised in utilizing the word fire-
ball; we mean that the single fireball cross sec-
tion has no diffraction nor KK, BBproduction any-
where in subenergies in the production amplitude.
Any such diffractive effect is termed "inelastic
diffraction. " It leads to a positive cross section
c';„",I (Ref. 11}and negative absorptive corrections
to o„, called o",, '.' The KK and BBproduction
cross section is called o, and we write o H =0,„',",

+(x f + a~ . The total cross section o „,=—0 f'+ 0
+OH. The assumption made is that o~ has an ef-
fective kinematic threshold at around 30 GeV/c,
and that below this momentum a„,=o'"„+a„. In the

j plane we have two functions that have relevance.
These we call &;(0), the partial-wave transform
ofo„„and A&(0}, which is the partial-wave trans-
form of o",&. The leading Regge pole we a.re talking
about is an I, = 0 pole at j = a(0) in the function

FIG. 3. Model for the ~~P vertex.
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&, (0). It is termed the bare Pomeron, P T. he
leading energy dependence of the cross section
v"„has the simple form P(0)(sjs,)

'" ' and it de-
scribes the leading behavior of a,„,below the thresh-

A

old of vH. Corrections involve P & P cuts" which arise
from simple "nonenhance9" absorptive corrections
to 0™;not included in 0,'f". The alternative descrip-
tion of 0,„, below 30 GeV/c in terms of "renor-
malized" singularities of the usual amplitude A&

is extremely complicated. Above the intermediate-
energy region, however, 0 8 becomes important,
and the energy dependence due to the "renormal-
ized" singularities in A, provides the appropriate
description. " Enough phenomenology has been
performed in the context of this approach to pro-
vide at least some motivation for regarding our
idealized model as being phenomenologically sen-
sible. This has involved exclusive' and inclusive' '
inelastic phenomenology as well as intermediate-
energy two-body phenomenology utilizing the bare
Pomeron. " The residue functions we shall be
concerned with in this work are therefore the
residues of the bare Pomeron pole (P) at j =a(t)
in the unrenormalized partial-wave amplitude
&~(t), which at t = 0 is the partial-wave projection
of a„(s). The continuation to t&0 is made by re-
garding the model as a model for the P component
of the imaginary part of the elastic amplitude
T(s, I) below 30 GeV jc. Any discussion of cross
sections at ISR energies would have to be supple-
mented by a discussion of inelastic diffraction and
KK, BBproduction processes. We shall not do this
here, but it should be recognized that it is a con-
sistent procedure first to examine the properties
of the bare Pomeron P and then to examine renor-
malization effects.

In the discussion which follows, it is important
to recognize that the apparently "asymptotic" P
pole expression for the single fireball cross sec-
tion cr„=P(0)s ' ' is actually a good finite-energy
approximation, even at energies only somewhat
above that required for producing two resonances,
which is lns& 2." The basic finite-energy mod-
ification involves damped oscillations about the P
energy dependence (see Fig. 6 of Ref. 9). Our
definition of intermediate energies (5-30 GeV(c)
is consistent with the statement that the P energy
dependence is a reasonably accurate representa-
tion of cr„at intermediate s given the fact that the
resonance clusters in 0„.probably consist most-
ly of two or four pions. The latter statement is
motivated by phenomenology' and we shall calcu-
late average multiplicities. The idea that 0,„„
=o,&=/(0)s ' ' is also consistent with all 0—
-0 2' data at intermediate energies. " We shall
utilize the fit of Ref. 10 in order to extract sec-
ondary pole (e.g. , p, A„. . . ) and cut terms from

II. DETAILS OF THE MODEL

We shall begin with a short description of the
separable-kernel method of solving the linear
integral equation for the imaginary part of the
mm- mm amplitude in strong coupling. ' This is
equivalent to doing the multiperipheral sum, and
it is necessary for our discussion. The main re-
sults are presented in Eqs. (2.8), (2.17), (2.18),
(2.23)-(2.32). The reader who is already familiar
with this material or who does not wish to become
involved in it can jump directly to these equations
after reading this paragraph. The crucial point to

Jgnotice is that rotation matrix functions d" and d
appear explicitly in the solutions and that these
depend explicitly on the spin of the resonances in-
volved. (One should notice that the index J„is an
s-channel spin, while j is a t-channel variable. )

The solutions for the mP and PP integral equations
are given in the form

A)(t) =A)(t) +X.(t}/D. (t) . (2.1}

These have the same partial-wave denominator
D~(t} function —that is, the leading I, =0 Regge
pole in mm, mp, and pp has the same trajectory
determined by the equation D-~, &(t) =0. The only
difference is in the partial-wave numerator N, (t)
functions, and these mainly lie in the replacement
of one rotation function d by another.

We now proceed to the solution of the integral
equation itself. We write, for ~m elastic scatter-
ing,

u', .', (s) = —ImT„(s, 0},
S (2.2)

lmT„(s, t) =
"'"dj

. (2j+ 1)P,(z)A~(t), (2.3).

Aj(t) = d~ q, (~) Imr(s, r) . (2.4)

Here, z =z, =cos6)„where 0, is the t-channel
scattering angle. We have omitted the caret no-

the elastic amplitudes. We shall not attempt to
calculate any of these secondary effects, and must
therefore be content to compare the residue and
trajectory parameters of the P pole evaluated in
the model with those extracted from the fit. We
shall see that, in fact, the simple model we shall
construct works quite well in this regard.

The next section is devoted to a mathematical
description of the model. The numerical results
are contained in Sec. III.
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4y =t —2t, —2t, ,

4y, = t —2m, ' —2m, ',
4y~ = t —2mb —2m'

cos&= (&, —&,)/2(-fy)'"
~

cos8, = (m, ' —m, ')/2(-ty())'~,

cos8f (mb m„')/2(-tyf)

(2.5)

Here, y, and yz are to be considered positive and

tation A&, but it should be understood in all that
follows, as emphasized in the Introduction.

Proceeding to partial waves through transfor-
mation Eq. (2.3) and using the diagonalization pro-
cedure of elastic t-channel unitarity equations, we
arrive at the multiperipheral integral equation il-
lustrated in Fig. 4. We introduce variables

C d Q

FIG. 4. Diagrammatic representation of the rnultiperi-
pheral integral equation for ~~ scattering.

analytically continued to their physical spacelike
values at the end of the calculation. The equation
is then, for the case of zero isospin in the t chan-
nel,

A,.(y«8; yy&y, f) =M, (y 8;yg&~', t)

IXI 'r

Qm' 0 0 ( y+ m, ' —4tj'+ ty cos'8 (2.6)

Here, the meson resonance Born term M~(yo&o; y&; f) is the partial-wave projection of the meson pole term
crossed to I, =0. We shall suppress the I, =0 notation. All quantities are assumed to be crossed to I, =0,
and appropriate crossing matrix elements should be inserted when cross sections are calculated. We have

(My, y&8; )=(V.„(),)V.„())f d*Q, ( )law'm„'('d„"(eose„)()(s — „')
0

(2.7)

16« m„G d~ (cos 8„)Q,(z„') .
yoyj 'sin80sin8 (2.8)

We have allowed for the possibility of an off-shell dependence of the ««M vertex in V„T(yo)V,«(y), which
is assumed factorizable for simplicity. The coupling G is the isospin-0 component of the @AM Born term
coupling; experimentally the f, =0 coupling G'=0.8 in a model with the ««resonance spectrum («, p, f)f."
The angle &„ is the off-shell scattering angle for the virtual s-channel process «(f, )+«,- «(t, )+«„and is
given by

, X"'(m, ', t„m„')X'"(m,', f„m„')cos&„= t+ zm„' —z(m, '+m, '+ t, +f,)+ (2.9)

The variable ~„' is not cos8„, but is rather a t-
channel variable, and is given by

cosh/ —cos8, cos 8
Zg sin 8, sin8

where

coshP = (m„'+ y, + y)/2( y,y)
'" .

(2.10)

(2.11)

The denominator of Eq. (2.6) is the pion propaga-
tors expressed in terms of y and 8. Finally, in

our simple model where M = p,

J„=1.
The solution of Eq. (2.6) is facilitated by the

observation that y, and y are related to external
masses and internal momentum transfers t;. If
P is large, as will be the case if y,y &m „', we get

coshI3= —,'e' (2.12}

and, moreover, the fundamental separable approx-
imation is valid, viz. ,

(m„'+ y,)(m„'+ y)
2 m„'(yy, )'" (2.13}

Then, as s„' is large in this case, we use the
large z'„ limit of Q, (z„'). With our approximation
for coshP, this becomes

)f « I'( j + 1) m„'( yyo)'" sin &o sin 8

1(j+r') (m„'+y, )(m„'+y)

(2.14)

Actually, a more complete treatment of the prob-
lem involves an infinite sum for Q&(z„'), as per-
formed in Ref. 2. We shall not enter into the
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J~ K

d„"(cos8„)= P V,(y, e„t)V, ( y 8, t) . (2.15)

The solution given below is derived assuming d„
does approximately factorize with K = 1, though
we used the explicit form of d, ", in our calcula-
tions. The errors introduced by this procedure
are probably not substantial, and should not affect
the qualitative results we shall obtain.

The solution of Eq. (2.6) is then given as

complexities caused by this, which introduce in-
finite determinants into the solution of the equa-
tions. We can in consequence only trust our ap-
proximation at small t.

Our approximation is called the lower-bound
separable-kernel approximation to the solution. '
This is because for fixed Q', the resulting trajec-
tory function n is 1ower than the exact trajectory
of the model. However, the approximation is
known to be quite good at t=0, and it has the vir-
tue that it is valid for 6 arbitrarily large, i.e.,
it is not a weak-coupling approximation. It treats
correctly the longitudinal components of momen-
tum transfer which were incorrectly ignored in
some of the papers of Ref. 4.

The separability of the equation in the variables
J,8, and y6) is now complete, save for the rotation
function d„"(cos8„). This depends explicitly on all
variables y„y, 8„8 in a highly complicated way.
To proceed, we must, imagine a separable approxi-
mation being performed as

before in exclusive phenomenology, '' and is
simply"

V„,(y) = 1+ y/m „' . (2.20)

With this simple form, it is easy to show that to
0(m, '/m„')

D, (0) = I -G3T'(j)/[( j+ 1}I'(2j)J . (2.21)

The N, fun. ction is then evaluated at j =o((t), and
we obtain the final result for ImT(s, t) using the
inverse projection Eq. (2.3}. We also use the ap-
proximation

(2. I)~ ( )
(j 3)

~v I'(j + 1) ( y((yz)'" sin83 sine&

(2.22)

N (t)(t)
(eD /sj) (2.23)

where

2I'(n + g) mQ

~p I'((y + 1) ( /pe )'" sin 8, sin8f

at j = n(t). One should notice at this point that the

X& function has t-channel threshold factors because
the variable My~ sine, is just the t-channel c.m.
momentum. These are canceled out by the P&(z)
function. Finally, moving the Sommerfeld-Watson
integral contour to the left of the pole at j = o(t)
yields the dimensionless ss residue function P„(t)
as

A~(t) =M)(t) +N, (t)/Di(t), (2.16) (2.24)
where

OO fr ~8
Di(t) = 1 ——

4 dy de8z' 0 o (m, '+y ——,'t)'+tycos'8

The factor C, is the appropriate isospin crossing
factor (Cg 3 for sv scattering). Our normaliza-
tion is

xM,.(ye;ye;t}. (2.17)
ImT, „(s, t) =P„(t)(s/m„3)""'. (2.25)

The expression for N&(t) is simple. It is actually
just the first iteration of Eq. (2.6) and is

8z', o (m, '+ y —,'t)'+ ty c—os'8

D~(, ) (t) = 0 . (2.19)

The off-shell prescription is similar to that used

xM, (y, e„ye; t)M, (ye; y, e„ t),

(2.18)

where M, is the meson resonance Born term given
by Eq. (2.8).

This completes the solution of the equation for
mm scattering. Given a definite prescription for
V ff we can now look for the leading zero of the

D;(t) function by solving the equation

Introducing the signature factor, the full ampli-
tude corresponding to Eq. (2.25) is

n(t)
( t) "( ) -;.i3 (2 26)

sin(-3'z(z) m„'

To find the amplitude for mP scattering is now

simple. One keeps the same D, (t) function but
merely substitutes a baryon resonance for a me-
son resonance at one end of the chain. The ob-
servant reader may worry at this point about the

j-partial-wave projection in the presence of
spinning external particles, since one is essential-
ly doing a t-channel partial-wave projection of the
equation, whereas the helicities of the external
particles are in the s channel. This is true, but
nevertheless all such problems are taken care of
by the fact that as z, z'- ~ the product d'~„(z)e~„(z')
is actually independent of A. and p, , where e'~„ is
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(t)
x~(, )(t)fry(t)
(sD&/si 4= ( )

where the nonf lip nP elastic amplitude is

ImT, ~(s, t) =P,~(t)(s/m„') '".

(2 27)

(2.28)

Here,
OO 2

8((' 0 0 (m„'+y ——,'t)'+ty cos'8

xM (y, &;y&; t)B (y&;y&&z t)

the second kind d function. Since z =O(s/(y, yq) )
a,nd z' =g(m s'/(y~y)'~'}, where ms is the baryon
resonance mass, this is true to the extent that
our separable-kernel approximation is valid in
the first place. Hence one may freely cross heli-
cities back and forth, and the results are simply
that one need not have woried about the problem
in the first place. One exception to this is the
case m~' = rn„' for an intermediate nucleon state.
Our calculation will not be performed for this
case; we shall take B= t) (1236). Hence we obtain
the nonf lip residue function (we suppress the heli-
city indices)

The double nonf lip amplitude for pP elastic scat-
tering is then

ImT„(s, t) = P~, (t)( s/m„') "' . (2.33)

We should mention that we have not calculated
the spin-flip residues in this model. However, it
has been shown that the ABFST model' is in fact
consistent with approximate s-channel helicity
conservation for the leading I, =0 pole when a
spectrum of nX resonances is included. " The
mechanism for the suppression of the flip/non-
flip amplitude ratio is that cancellations among the
mN resonance contributions occur in the flip ampli-
tude but not in the nonflip amplitude. Since a more
complete treatment of residues in our model would
of course include the vN resonance spectrum we

simply invoke the results of Ref. 15 to ignore the
P spin-flip residues. This is consistent with two-
body data. "

This ends our discussion of the model. We
emphasize once more that the essence of our mod-
el is that the resonance spins are responsible for
the difference between the mP and PP differential
cross section slopes. This is due to the fact that
J~ )J„. Here J„=1 and J~ = &, so that

(2.29)

where B is the nonf lip baryon resonance Born
term

8. 8 . t) ~off(y)~'. ff(yf)
2(yy~)'" sin&sin&~

d~ (cos&s) = cos &s,
J~ 1 1d„, „,(cos&s) = —,cosz&s (3 cos&s —I) .

III. RESULTS

(2.34)

=2ms't+ms'-m s(2m~' +t, +t,)

+ (m~' —t, )( ~'m— t, ) . (2.31)

We take, in accordance with our previous dis-
cussion,

3J~ —~.
We shall also take V,«= 1. This assumes that the
s-channel threshold factors in B are cut off rapid-
ly as one normally does with, e.g., Benecke-Diirr
or Durr-Pilkuhn form factors. "

Finally, for PP elastic scattering, we simply use
the fact that Regge pole residues must factorize.
Hence, for double nonQip scattering, we write

p)~(t) =p„),'(t)/p, ~(t) . (2.32)

(2.30)

The variables y& and 8& are defined in Eq. (2.5),
with m~=m~ =m~. cos8~ is defined analogously
to cos8„ in Eq. (2.9) in the virtual s-channel scat-
tering (((t,)+P- v(t, )+P. That is,

In this section we present the results of our
calculations. These were performed by computer
evaluation of the two-dimensional integrals for
N (t) and D„(t) described in the last section. We
shall present the results with the correct spin
structure of the resonances and we shall show that
this is indeed the relevant effect by presenting
graphs obtained by setting the d„" and d~~2, /, func-
tions equal to 1. The graph of the trajectory a(t)
obtained by solving the equation D„(t) =0 numer-
ically is shown in Fig. 5. The solid curve is the
result of the model with J~=1, J~ =-,'-. The dashed
curve is the result for spinless clusters.

We have set the intercept of the trajectory equal
to 0.85. This reflects our philosophy that the tra-
jectory function calculated in this model is really
the bare Pomeron trajectory a(t) (see Introduc-
tion). ' The phenomenology of meson-nucleon two-
body reactions performed in Ref. 10 indicates

a(t) =0.65+0.3t .

Our trajectory is somewhat curved, but over the
range —0.3 GeV'&t &0, it is reasonably well rep-
resented by a linear trajectory with slope —,. That
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ls,

n(t) i .d„= 0.85+0.5t . (3.2)

The agreement of the model with the t dependence
of the actual bare Pomeron trajectory determined
from the data is impressive, considering the sim-
plicity of the model. In particular this implies
that the energy dependence of the slope parameter
is given in a very reasonable way in the model.
Here, the spin structure is not as important as the
correct treatment of kinematics, as Jadach and
Turnau have argued. '

The intercept 0.85 is somewhat higher than that
obtained with the physical value of the I, = 0 cou-
pling 62=0.8, but the value of G we need is with-
in a factor of 2 of this. Better agreement would
result if higher-order clusters were included,
and we shall see that higher-order clusters are
also probably necessary to get the multiplicity
distribution correct. We shall not go beyond
t = —0.3 GeV' in what follows, since our approxi-
mations of the last section indicate that our re-
sults can be reliable only to 0(- tjm~'), which
we should require to be less than 1.

Next we consider the residue functions for mm

elastic scattering, nonf lip mP elastic scattering,
and double nonf lip PP elastic scattering. The res-
idue functions, divided by sin(sso. ), are plotted in

Fig. 6. We have used the physical values m&' =mz'
and m~' =mz'. Again, we show curves with and
without spin. We see that, in the range —0.3 & t&0,
the nm residue function is roughly flat, while the
sp residue function decreases in

~
t(. By factor-

ization, the PP residue function decreases faster

P„~(t) sin( —,
' sa(0))

P,~(0) sin(s sa(t )) (3.3)

Thus, our bare Pomeron pole amplitude for non-
flip vP scattering, for P., &30 GeV jc and —0.3
& t & 0, is roughly

~,, t)) P.p(0)
vP( s I model s&n(& &&(0))

0 ~ 85+ 0 ~ 5~

n2 '
P

(3.4)

Notice that m ' sets the scale for s in the model.
In order to compare this with the data, we again

refer to the global meson-nucleon fit in Ref. 10.

yet. This confirms our initial belief that the dif-
ference in the p and b, resonance spins would lead
to higher peripherality when pion external legs
are replaced by nucleons. These results should be
compared with the dashed curve obtained by ne-
glecting the spins of the resonances. When this is
done, there is no peripherality for any of the resi-
due functions, and they are in fact indistinguish-
able. This graphically illustrates the crucial
importance of the spin of the clusters.

To compare our results with experimental data,
we first approximate the wP residue function with
an exponential. A glance at Fig. 6 shows that P,~
is not really exponential —there was no expecta-
tion or constraint that it would be exponential.
Nevertheless, over the range —0.3&1&0,
J3,~jsin(sso. ) is reasonably well represented by

} I } ~
)

~

I
~ I.Q

0.8

l.5
I

'
I

1
I

Ao splA

7l 1F -- l.o

eP 0.8

—0.6 PP 0.6

—0.4

-0.5 -0.4 -03 -0.2 -O. l 0

I i I i I I s

-0.3 -0.2 -0.I

t (6ev')

—0.4

0

{Geu')

FIG. 5. Bare Pomeron trajectory &(t) versus t, as
calculated by the model {solid curve). The dashed curve
shows the trajectory resulting from a model with spinless
clusters.

FIG. 6. Residues predicted by the model, divided by
sin(s'wo(t)), normalized to 1 at t =0. The solid curves
show R«, R„&, and R&&, assuming correct spins for
the appropriate resonances. The dashed curve shows the
result for spinless clusters; R ~, R~&, and R&& are in-
distinguishable in this case. See Eqs. (3.4), (3.7).
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In that fit, it was found that

s 0 ~ 85+0 3

T„(s, f) ~„, = —Ces' e "~'—,(3.5)
0

where

&=1.6 GeV '

s0=1 GeV

If our residue function is reasonably accurate,
we would expect that

?
b

&
—= 1.2 + 0.5 ln(s /m 2) =' B . (3.6)

TP(, )
)3, '(o)

P„(0)sin{-,' sa(0))

s 0 ~ 85+ 0 ~ 5&

2. 4t; -i 1r/2
m2

P

(3.7)

In analogy to Eq. (3.6), the constant part of the
diffractive slope in the model is

b» ——2.4 + 0.5 ln(s, /m~ ) = 2.6 GeV ' . (3.8)

Hence, the constant part of the P contribution to
the slope of do/dt)» is 2b» = 5.2 GeV '. The dif-
ference in the P component of the PP and mP dif-
fractive slopes near t=0 is then

The left-hand side of this comparison is 1.4 GeV '.
Again, considering the simplicity of the model,
the agreement is remarkable.

We unfortunately cannot make a reliable com-
parison of our results for the bare Pomeron com-
ponent of PP elastic scattering because no such fits
have yet been performed for nucleon-nucleon scat-
tering. It is wrong, of course, to compare our
results directly with (d/dt) (inde/dt), be'cause at
intermediate energies, absorptive cuts and sec-
ondary trajectories play a significant role. We
shall try to make a rough estimate by comparing
the difference between nP and PP slopes. Our mod-
el predicts that, for the bare Pomeron component
of double nonf lip PP scattering,

da/dt 'for wv scattering should be less peripheral
than for wP scattering. By analogy with our dis-
cussion of PP scattering, we predict

2b„-2b«=2.4 GeV '.

Since the universal number B= 1.6 GeV ' fits the
P component of the KP data as well as the nP data,
we conclude that the model works here as well.

Finally, we check the multiplicity distribution
produced by the model. Since our model is multi-
peripheral in clusters, the average multiplicity
of produced particles is arbitrary until the number
of particles in the clusters is specified. The cal-
culation of the trajectory and residue parameters,
on the other hand, depends only on the over-all
properties of a cluster, e.g. , its spin —but not
on the number of its constituent particles. We
have, ' neglecting secondary cuts and poles,

(n) n,
lns (BD)/sj )~ a(0)

(3.10)

where (n) is the average number of produced par-
ticles, and n, is the average number of particles
per cluster. Experimentally, "for P„,& 30 GeV/c,
where our model is supposed to be applicable,

(n& = 1.5-2.0,lns (3.11)

This number could be compared with experimental
data for do/dt(„Ind. ications from experiment
are that b, „ is indeed less than b,~, and that the
difference is on the order of that given by our
model. "

We close our discussion of slopes with an ac-
count of Kp scattering. This is easy to accommo-
date. We merely insist that the incident K meson
fragments into a K*(890) at the end of the chain.
Since J„=1 for this case also (and since mass
effects have been shown to be negligible), we ob-
tain exactly the same result for the P component
in KP as in wP scattering, i.e.,

b„=1.4 GeV-' .

d
ln

d
—ln — =2bpp —2b ~

=2.4 GeV ' . (3.9)

Experimentally, the difference is of this order. "
The interested reader may consult Ref. 1 for a
separate experimental comparison of PP slopes.

As for the nw residue, naturally little is known
about it experimentally. Our calculation predicts
that the peripherality of the P component of ss
scattering is due almost entirely to the factor

(s /m), ')

where the exact value is ambiguous owing to the
presence of secondary terms down by fractional
powers of s. It is important to realize that since
we are taking the position that important thresh-
old effects are present above 30 GeV/c (e.g. , KK,
BB production and inelastic diffraction), we must
not utilize Fermilab-ISR multiplicity data, which
produce (n)/lns= 3. Any attempt to incorporate
the renormalization effects to determine da/dt
slopes at Fermilab-ISR energies would, of course,
require consistency with multiplicity data at these
energies.

Our intermediate-energy model produces
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(BD( /sj) y e(o) 2.4, (3.12)

(BD~/sj )
' = a'(- BD, /Bi) '. =(n)/(n, lns) (3.13)

evaluated at j = a(0) and t =0. There is no direct
experimental constraint on SD,/St It is instr.uc-
tive to note that momentum transfer and trans-
verse momentum distributions are wildly differ-

so that n, =3- 5. We would naturally argue that
the secondary terms in (n)/lns were such that n,
was closer to 3. In any case, this indicates the
presence of higher-order clusters than the simple
resonances we have employed in this calculation.
An alternative may be to modify the exchange
mechanisms of the model to produce a smaller
value of BD,./sj, consistent with smaller clusters

We close with a remark regarding momentum
transfer distributions. Multi-Regge models which
neglect longitudinal components of momentum
transfer arrive at a relation' between o. ', (n),
and the average transverse momentum of pro-
duced particles (p, '). This relation is violated
by the data; it is also theoretically wrong. The
cor rect re lation is given by

ent experimentally. " Our model does in fact re-
produce these distributions correctly qualitative-
ly when evaluated by computer methods. '

IV. SUMMARY

We have shown that a multiperipheral cluster
model is capable of yielding reasonable results
for the P components of the slope in t of the dif-
ferential cross sections for mP, KP, and PP elas-
tic scattering below 30 GeV/c. This is consistent
with a reasonable trajectory for P and a sensible
average multiplicity of produced particjes. The
crucial aspect of our model is the cluster spin
effect and the realization that, on the average,
the baryon resonance spin is half a unit greater
than the meson resonance spin. We envisage that
a more complete calculation involving a more
complicated resonance spectrum would yield sim-
ilar qualitative results, and that one could even
turn the problem around to inquire about the de-
tailed nature of clusters in production processes
by utilizing the f slope of do/dt as a constraint.
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