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We review the dispersion-theory calculation of the Goldberger-Treiman discrepancy 6 = 1 —mg /f g.
Our estimate is still some way from the experimental value. The latter and its SU(3) counterparts

can be used to determine the chiral-symmetry-breaking parameter c appearing in the (3, 3) + (3,3)
Hamiltonian uo + c u, . We find c ——1 in agreement with its determination from phenomenological

cr terms.

I. INTRODUCTION AND FORMALISM

The validity or otherwise of the proposed (3, 3)
+(3, 3) model' for the breaking of the chiral SU(3)
xSU(3) symmetry can be tested in various ways.
In a previous paper' we have compared the pre-
dictions of the model against phenomenological 0

terms, concluding that the generally large values
of these quantities can be reconciled with the mod-
el only if the parameter c occurring in the syrn-
metry-breaking Hamiltonian H ' = u, + cu, takes the
value c = -1, rather than the value c = -1.25 de-
rived from the pseudoscalar-meson mass formula.

An alternative means of probing the value of c
is provided by the Goldberger-Treiman (GT) re-
lation' and its SU(3) counterparts. This is con-
nected to the above determination in two ways.
First, the discrepancy between the experimental
value f, =93 MeV found from m- p, v decay' and the
theoretical prediction f;T = m~g„/g = 87 MeV can
be reduced slightly if the coupling of the g(e) par-
ticle to pions is large, which, in the cr model, di-
rectly follows from the large value" (=70 MeV) of
the nN v term g(viq). Second, the SU(3) GT dis-
crepancies afford an independent determination of
c provided that the hyperon coupling constants are
known. In fact, as we shall see, the determination
is rather insensitive to SU(3) breaking of these
couplings and indeed leads to c =-1, but cannot
credibly be stretched to accommodate the canoni-
cal value c =-1.25.

Both of these aspects of the QT relation have
been discussed in the literature before. However,
previous evaluations of the QT discrepancy by
means of dispersion relations' ' are marred by
errors and do not use the connection between the
o-meson coupling constants and the &N v term.
Our treatment of the SU(3) relations is in the spirit
of the work of Dashen' and has the advantage of
a now clearer experimental situation as regards

the hyperon coupling constants.
The objects of our study will be the QT discrep-

ancies 6, which for vNN is defined as'

Numerically, this discrepancy is found to be

Q „„„=0.058 + 0.013, (2)

using the values'" m= m„=938.9 MeV, g„—=g„(0)
= 1.25, f, = 93.0 MeV, and" g-=g, » = 13.40.

The formalism for the first aspect of our work
has been set up by Pagels. ' One begins by defining
the nucleon-nucleon matrix element of the axial-
vector current as"'"

D(q') = mg„(q')+ ,'q'h~(q'), — (5)

which can be separated into a contribution from
the pion pole plus the background:

D(q') =D,.i. (q')+ D(q')

Evaluating the pole term at q' =0 leads to

D(0) = mg„= f,g+D(0). (7)

One then assumes an unsubtracted dispersion re-
lation for D(q'):

D(0) = —
I ImD(t) —.1 f — df

t
(8)

& ~(p')
I &'„(~) I ~(p))

=iu(p')( —,'r')[g'g(q')yq +h„(q')q„j y,u(p)e " ",
(3)

where q =P' —P.
Taking the divergence, one has

(x(p )Ia x'(o)Iz(p)) =D(q')-(p ) '&, (p),

(4)

where
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The PCAC (partially conserved axial-vector cur-
rent) relation, 8 ~ A =g'f, P, connects' D(q') to the
pionic form factor K(q ) of the nucleon, leading to

ImD(t) = p,
'f„g

Im K(t)

ular, the insensitivity of the derived relation to
SU(3) breaking is pointed out.

Following these calculations a discussion of the
experimental discrepancy of b.„» and the status
of the GMOR model is given in Sec. V.

where K(t) is normalized to unity at q'—= t = g'.
Thus Eq. (8) can be rewritten as

D(0) = f, g —~, lmK(t),
m J»2t p, —f

and Eq. (7) as

(10)

m»2tt —p,

This can be interpreted as a once-subtracted dis-
persion relation in the pionic form factor of the
nucleon, 6 being thus a measure of the variance
of this quantity between q' = p.

' and q' =0:
a,„„=K(p')-K(0) . (12)

D(0) = —,'(Nie A'(0) iN)

where

(13)

The contributions to the dispersion integral will
be examined in Sec. II, where the differences with
previous work will be carefully pointed out. The
value of the cr term v(vN) and the form of the low-
energy approximation to the I, =0 mN amplitude
will prove to be important, as discussed in Sec. III.

The second aspect of our work has been dis-
cussed briefly by Dashen. '" Here one evaluates
the nonpole part of D(0) in Eq. (7) in terms of the
structure of the chiral-symmetry breaking Ham-
iltonian:

II. SATURATION OF THE DISPERSION RELATION

We now reexamine estimates" of A»„obtained
by saturating (11) with the lowest-lying intermedi-
ate states. Barring the existence of a heavy pion
or a large 3~ enhancement, " it has been shown"
that the contribution from the Sw intermediate
state is completely negligible. Furthermore, the
high-energy contribution, i.e. , the contribution
from values of I; & 4m ', has been shown" to be
bounded by 0.01. Thus we can restrict our atten-
tion to the resonant pr and 0 m intermediate states
and take the upper limit of integration in Eq. (11)
as 4m'. The contributions are shown diagrammat-
ically in Fig. 1. In the absence of a complete rep-
resentation of the right-hand amplitudes mo —NN
and ~p- NN, we can only attempt an estimate
thereof using s-, u-, and t-channel pole terms.

We consider first, then, the s- and u-channel
nucleon poles, leading to the contributions shown
diagrammatically in Figs. 2(a) and 2(b). These
poles are the first approximations to a fixed-t dis-
persion calculation of the right-hand amplitude; in
this spirit their couplings are to be taken as con-
stants, as previous authors have done."

A. pm intermediate state

The couplings necessary for this calculation are
defined by the following phenornenological Hamil-
tonians:

(18)

In the (3, 3) +(3, 3) model H' takes the form

H =Qo+CQ 8 q

and the relevant commutators in Eq. (13) are

[ qi Q j] td ~a~ 5

Thus, from this point of view

D(0) = — (V, )~~,
W2 +c

2 3

and so

1 W2+c
( .4»

(14)

(16)

(17)

(19)

Hp„„=gp„„N(P')(27;)[F,y„+F, iraq, (P' —P)'/2m]

x p '"N(P) (20)

where, by vector dominance, I „I', are respec-
tively the Dirac and Pauli isovector couplings,
with the values I, =1, E, =~~ =3.7, and g&,„
=gz» —=g~, with g~'/4m = 2.8, as determined by the
width' I'&„„=150MeV.

N

The SU(3) analogs of this relation can be used to
eliminate the unknown quantity (v, )» in favor of
hyperon discrepancy functions A~», A~„z. This
analysis is discussed in Sec. IV, where, in partic-

FIG. 1. pw and 0~ intermediate state contributions to
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FIG. 3. t-channel pion pole diagram.

The contribution to the absorptive part of K is
then calculated to be, "for (m~ + p)' & t ~ 4m',

1m'"„(t)=

g 2 2

+ &-P " tan-'g
P Wt

(21)

FIG. 2. (a) s-channel nucleon pole diagram, and (b) u-
channel nucleon pole diagram. ~S~( )

8' S Sgn~'( 2m 1

4w t 2PWt

~tan 'A, . (30)

As discussed in the next section we will use the
values of the couplings g „„g»as given in the
0 model, ' viz. ,

(31)

where =~ m2-2gcrss =
2 (~a p )I (32)

and

[[t —(m, —p, )'][ t —( m, + p. )'])"'

P=-,'(4m'- t)"',

4PQp
A

t —M
P

(22)

(23)

and a mass m, = 500 MeV, somewhat lower than
the mass of the physical e particle. ' We choose
this value to agree with the pion-nucleon 0 term
and in recognition of the fact that, as far as the o.

particle is concerned, we are not including closed
loops, which renormalize the mass upwards. "

With these parameters the calculated contribu-
tion to 6 is"

When inserted into the dispersion integral and
evaluated numerically, this gives a contribution to
d (N for nucleon channels)

s"(pm) = 0.015, (25)

in agreement with the calculation of Braathen. '
The inclusion of the pion pole, Fig. 3, leads to

a contribution to the absorptive part (s for self-
energy)

and to ~

)
gp 4@p'v t

4w rnid'(t —p, ') ' (26)

6'(pm) =-0.0055. (27)

B. our intermediate state

Howe =8 o~y NN Q, ,

JH„,=g„,li 5;, II P, .
(28)

From Figs. 2(a) and 2(b) we obtain an absorptive
part

In the calculation of the contribution from this
intermediate state, we will differ in some impor-
tant respects from previous treatments. Let us,
however, first calculate the absorptive part for a
0' 0 particle of arbitrary mass m and couplings
g», g,„,defined by the phenomenological Hamil-
tonians

A" (ow) = 0.01. (33)

The self-energy diagram, Fig. 3, gives an ab-
sorptive part"

2
$

2 2

Ifs ( )
gospel ™(J

07I' 4 4t(t 2) (34)

which gives a negligible contribution to 6 when in-
serted in the dispersion integral, Eg. (11).

C. Resonant contributions

So far our discussion has been limited to the in-
clusion of nucleon poles in the s- and u-channels
of the amplitudes rp- NN and wo -NN. In the ab-
sence of a reliable method of estimating the con-
tinuum contribution, we can consider the inclusion
of higher-mass resonances in these channels. The
structure of the resonance spectrum is such that
these resonances do not contribute as much as
might have been expected. The reasons for this
are as follows:

(i) For the pm intermediate state, the a(1236)
contribution is suppressed (apa, rt from the mass
factor) by the Ml nature of the pNb. vertex near
resonance. '- Higher-resonant contributions will
be suppressed primarily because of the mass fac-
tor, and as an optimistic estimate we may hope
for at most
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6 ""'(pw) =0.02

for the proper pm contribution.
(ii) For the ow intermediate state b, (1236) is ex-

cluded by isospin invariance. Higher resonances
such as N'(1470), N'(1520), N'(1535), etc. , ap-
pear' to be rather weakly coupled to the eN system»
Hence, if we assume that the combined resonance
contributions add, it seems that the most we can
hope for is

III. THE 0 MODEL AND THE mN 0 TERM

The parameters of the 0 meson used in Sec. II
are intimately related to the value of the &N o

term,

(35)

This can be obtained by an extrapolation of the
background (nonpole) forward isotopic-even wN

amplitude

b, )'")'" ((xw) = 0.015 . E ' (v, t) =A ' +vB ' -g'/m (36)

D. Strange-particle intermediate states

The next-highest-mass intermediate states would
be the strange counterparts of (A) and (B), viz. ,
K~K and vK, respectively. The couplings of K*
and K can be related by SU(3) to those of p and w,

giving an overall Clebsch-Gordan factor = 0»4 for
the Dirac coupling and 0.2 for the Pauli coupling.
Combined with a large reduction factor from high-
er masses in the dispersion relation, the effect is
to make the K*K contribution negligible. Since the
o(e) is predominantly a unitary singlet, "the cou-
plings of the & and the o. cannot be so directly re-
lated, but barring an unforeseen enhancement, the
mass effect in the dispersion relation should have
the same result of also making the vK contribution
negligible.

To sum up, our calculated contributions to 6,
E(ls. (25), (27), and (33), amount to 0.02. Our val-
ue for b, (pw) agrees with that given by Braathen
(Ref. 7, Table 5) and is greater than that of Pagels
(Ref. 16, footnote 9) because of the inclusion of the
Pauli term and the use of a larger value of g&2.

Our value for b, (ow) is positive and greater than
the h(ew) of Braathen" because of a, different eval-
uation of the o7T contribution, as discussed in the
next section.

In addition to the calculated contributions we

have looked at possible resonance contributions
and estimated that they may amount to some 0.01.
Finally, there is the high-energy contribution,
from states with invariant masses greater than

2m, which, given the assumptions of Pagels, '"
is bounded by 0.01. It is interesting, however,
that a. reasona. ble cutoff of 2 QeV leads to a pr
high-energy contribution' to 6 of 0.028.

In spite of the increase over previous estimates,
with a possible total contribution of, say, 0.035,
we are still some way from the present experi-
mental value, E(l. (2). However, the discrepancy
is small enough that one may hope for an ultimate
reconciliation. It may be that the high-energy
bound of Ref. 6 and the assumptions made therein
hold the key to the puzzle,

to the on-shell subthreshold point" v =0, I;=2p, '.

(37)

or to the double off-shell point v = 0, f =0 with
q2 ql2 0»

F(+)(0 0. 2 12 0)

Phenomenological analyses using both these meth-
ods seem to be converging"" on a value of cr(wN)

=70 MeV.
The final term in E(l. (36), which arises from

the difference between the nucleon pole contribu-
tions as evaluated in dispersion theory in contrast
to field theory, is crucial to what follows, and has
been noted by several authors. In the presence of
this term the t-channel "o dominance" model for
I' ' reads"

y(+)( t) gaNWga»»2

m Q E Ol

The g model couplings (31) and (32) then ensure
that F(')(v, t) vanishes at the on-shell point v =0,

2
-~F ( -)

( t)
8'P»» gPww g'

vgp —I' 2 pB
(41)

The value of g~ we have used in Sec. II, which is
in fact that given by the KSBF relation"

g 1
mp' 2f '' (42)

(40)

which is a good approximation" to the required
vanishing" of the amplitude at the off-shell Adler
consistency point v=0, t= p.2, q'=0, q" = p, '. Thus
we may have some confidence in the couplings (31)
and (32), or at least in their product, which is all
that enters into the calculation of h(ow).

Parenthetically, we may remark that a similar
situation obtains with the isotopic-odd forward
scattering amplitude and the p couplings. The t-
channel "p dominance" model" for E~ ~ = A. '

+ vB~ ~ implies
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c(wN) = g„'(y/rn )'m. , (43)

where, to this order of accuracy, we have used
the GT relation itself and have neglected the pion
mass relative to the v mass.

There is some ambiguity at this stage. Since we
are using the lowest-order unrenormalized" cou-
plings for 0, we should perhaps for consistency
take g„=1 in Eq. (43). An input v term of the or-
der of 70 MeV would then lead tom 2=13'', or
m, = 500 MeV. Given this value of m„ the o -model
relations then give

go7 7)
=12&

~ (44)

while g» as always is constrained to have the
value g.

In principle (44) can be compared directly with

experiment in the form of the v width. "'" Unfor-
tunately, the experimental situation is rather con-
fused, we have the above-mentioned renormaliza-
tion ambiguity, and the narrow-width approxima-
tion is not obviously a very appropriate one.

We wish, however, to make the following obser-
vation. According to the narrow-width approxima-
tion (NWA) the a width is given by"

is such as to cast (41) into the form of the Adler-
Weisberger relation" with the GT value for g„.
Once the 0(p') background is taken into account,
it can be shown that (41) is in good agreement with
the low-energy data for various values of v and t
near threshold. "

Returning to the question of the cr couplings, we
note that the difference between our evaluation of
the cr~ contribution and that of Pagels' derives
from the extra term in Eq. (39), in the absence of
which the values of the ~N scattering lengths con-
strained g~»g«, to be small. Since g«„was re-
garded as fixed by the width F, ,„, the net result
was to suppress g» and hence the triangle graph
contributions, leaving only a small (negative) self-
energy contribution. '

Our attitude is to keep the v-model relations (31)
and (32) for the couplings and then allow the value
of the 0 term to determine the effective mass to be
used in the calculation. The connection is provided
by confronting (37) with (39), which gives"

IV. SU|'3) X SU(3) CHIRAL SYMMETRY BREAKING

We now turn to the use of the GT relation to
probe the nature of the symmetry-breaking Hamil-
tonian 0 . In particular, if this is assumed to
have the (3, 3) + (3, 3) form H' = u, + cu „ the GT re-
lation provides an independent determination of the
value of c.

Equation (17) on its own will not suffice, since
we have no way of evaluating (v, )». The method
of procedure will therefore be to eliminate this
quantity by means of the SU(3) generalizations of
Eq. (17). Defining the K'PA and K'PZ' discrep-
ancies as

2(~A ™N)gAI KNA

+KNA f~a~~~
(47)

given physical width. (For example, the wNA cou-
pling derived from the 6 width in NWA is 40%%uo

greater than the physical coupling. ") Thus the ne-
glect in (43) of the factor g„', the GT approxima-
tion, and the neglect of p. compared to m ', which
would have led to a, (factor of 2) larger physical
coupling constant, to some extent takes account of
this effect. We therefore take the attitude of using
the coupling constant (44) and at the same time ig-
noring finite-width effects.

With c(wN) =70 MeV leading, as we have seen, to
I" = m, =500 MeV, the 0 model may be taken a.s a
reasonable approximation to reality. By wa, y of
contrast we note that if o(aX) were very small,
say v(n'N) = 15 MeV, then the c model would lead
to m = 1100 MeV, g„,= 30p, , and I', = 2000 MeV,
a,nd would not then be physically relevant.

The difference of our v contribution from
Braathen's e contribution lies in the fact that we

have taken go» to be fixed by the cr model and de-
termined m from the pion-nucleon 0 term, lead-
ing to a not unreasonable value for I', . Braathen,
on the other hand, took m, and 1, as input, lead-
ing to a much-reduced value for g,». Comparison
of the resulting 4's shows the sensitivity of the
calculation to such factors.

2

I', ,„=— "", (m ' —4p, ')'",

which, for m ' = 13p, ', has the value

(45)
2(~ Z ™NkA

~KM Z fK AKN Z

we have, "as analogs of (17),

(48)

X',„=4@.=550 MeV
1

+KNA f IC RKlVA

v 2 ——,'c
(~K)NA i (49)

within the range of experiment. " Although the use
of the NWA is not a Priori very reasonable for a
width of this magnitude, the general feature of this
approximation is that a coupling larger than the
physical one is needed to obtain agreement with a

1
KN Z fKRKNZ

v 2 --,'c
2v 3

(v~)„z . (50)

The matrix elements of V appearing in (49) and
(50) are related in SU(3) according to
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(vf, }«——2(v, }„„(d„d»;—f„if»;), (51)

in which we have an unknown f„(d„=1 —f„). This,
however, may be eliminated between the two equa-
tions, leading to the relation'"'"

M2 + c 2f ~ gw«»~ mfiN
I j. i=

ac f« ~ 3 g«nr»~««r +g««z+«ivz

(52)

If one further assumes exact kaon PCAC in the
operator sense, the left-hand side of (52) becomes
f „m„'/f «m»', in agreement with GMOR. In this
case (52) is then equivalent to the sum rules de-
rived by Dashen and Weinstein. "' We prefer,
however, to follow the philosophy of Furlan and
Paver" and regard (52} as the baryon analog of the

GMOR meson mass formula from which we can in-
dependently derive the value of c.

The procedure we will adopt in analyzing (52) is
first of all to assume SU(3) invariance for the bar-
yon couplings to mesons and axial-vector cur-
rents, "viz. ,

gPf i = 2g(d~d», —f„i f»i) (53)

and

g A gA( A»i ffiif»i ) ~ (54)

with d p+ f I, = d„+f„=1, and then afterwards to ex-
amine the effects of SU(3} breaking.

In the case of exact SU(3), Eq. (52) can be re-
cast in the form

M2+c, f mg„mz+m~ —2m„m —
m~)4m„" 2m„ (55)

Remarkably, we see that fp does not appear
here, i.e. , that the relation is independent" of the
d/f ratio for the strong-coupling constants once
these are assumed to obey SU(3). Moreover, the
dependence on the parameter f„ is greatly sup-
pressed by the factor (mz —m»). The remaining
terms in the right-hand denominator are all SU(3)-
breaking effects, and are of such a magnitude mea-
sured against 6,» that the value of c derived from
(55) is considerably different from the canonical
GMOR value of —1.25.

A single-angle fit to hyperon semileptonic decays
gives" '"

d„/f „=1.7,

corresponding to f„=0.37, while, with the aid of
the nonrenormalization theorem" for K» decay,
f«/f, can be determined from the value4' of

f»/[f„f, (0)] to be f«/f, =1.24+0.02. For b, ,»

we insert the experimental value given in Eq. (2)
and obtain

c GT
= -0.9 + 0.1, (56)

in remarkable agreement with the value obtained
by an examination of v terms. ' The degree of de-
viation from the GMOR prediction is more fairly
measured by the quantity (v 2 +c)/(M2 —~c),
which, from (56), is

= 0.28 ~ 0.05~ ~

v"2 +c
2 —zc

(57)

compared with the expected value' m „'/m„'=0. 08,
or' f,m, '/f»m«'=0. 06.

We now go back to examine our assumption of
SU(3) invariance for the various couplings

Pfi
APfi~g A

In the general case (52) can be written as

f» mg„m z+ m» +2m„mz —m»
f, f,g 4m„2m„ (58)

where

A=( /3 g»«f +g««z)/2g,

g««A +»fi z)/2 (60)

C = (S3 ga"'+ g„"')/4g~, - (61)

which, in the SU(3) limit we have just been discus-

sing, take on the values A 8=1 and=C =f„.
The experimental situation for the strong-cou-

pling constants appearing in (59) is as follows. "
All estimates of g«„z'/4ii have been that this quan-
tity is small, of the order of 2. Modern methods of
extracting the coupling constants from KN scatter-
ing evaluate the combination g„'
—= (g»„»'+0.84g»„z')/4m. In the 1973 compilation"
the most reliable value was considered to be"
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g~' = 12.2 y 2.5; however, the va, lue g~' = 15.2 + 2.3
obtained by the Cutkosky conformal mapping tech-
nique" was not mentioned. Furthermore, a recent
experiment" indicates that g~' =19.8 + 4.4 within
the zero-range approximation, thus negating the
original zero-range estimates" of g~'=4. Hence,
at the present time, we believe that fair estimates
of the coupling constants are

g»»A /47T = 14 + 2

g»»z'/4& = 2 +1
(62)

gKN Z

Substituting these values into (59) we find

A. =]..0+0.1. (64)

The situation with regard to the SU(3)-Cabibbo
theory of hyperon semileptonic decays has also
improved recently. ' The experimental values of
the axial-vector-to-vector ratio g,/f, in A-pep
appear to be converging, with a mean value of

g,/f, =0.66+0.06. Since the Cabibbo estimate of
g,/f, is (f„+~ d„)g„= 0.70, using d„/f„=1.9,
which is obtained from the remaining hyperon de-
cays, "we can evaluate (60) as

& =1.0~ 0.1. (65)

As previously noted in the symmetry limit, the
contribution of C in (58) is greatly suppressed by
the factor (mz —mA), so that we may take C = f„
without serious error.

With these values (58) gives

0.058 s 0.013
0.21 + 0.16

While the error in the denominator of (66) is
large, it is clear that the QMOB value of 0.06
to 0.08 for (W2 +c)/(M2 ——,

' c) is still remote. We
therefore arrive at the conclusion, bearing out the
misgivings expressed in Bef. 8, that, given a sym-
metry-breaking Hamiltonian of the form u, +cu„
the value of c derived from the Goldberger-Trei-
man relation may not be -1.25, but instead is close
to -1, in agreement with the value obtained from
phenomenological analyses of o terms.

in reasonable agreement with the original evalua-
tion of Kim." Moreover, these values would pre-
dict g„Az'/4w =9 by SU(3), compared to the values
10.9 + 0.3, 12.9 + 0.8 obtained phenomenological-
ly"'" from Aw partial-wave dispersion relations.
Thus we will certainly believe SU(3) to the extent
that it determines the signs of g~~A and gx„z and
hence deduce from (62) that

gKNA = —13%1 )

(63)

V. DISCUSSION AND CONCLUSIONS

cos0„=0.976+ 0.001,

which leads to the value quoted in Sec. I along with
its error:

f =93.0+1 MeV (68)

including the possible 1% radiative corrections to
w' - p, 'v. These are the values we have used in
Eg. (2) to obtain b, ,'"„„together with its error,
which, as we have seen, is large enough to make
an ultimate agreement between theory and experi-
ment by no means improbable. The change from a
few years ago arises from an increased theoreti-
cal estimate and a trend in the experimental num-
bers all in the direction of decreasing 6'„"„„.

As far as the second aspect is concerned, we

have shown in the present paper and in Ref. 2 that
two ot the measures of SU(2) && SU(2) breaking
noted by Li and Pagels, "namely,

(69)

o (wN) 70 MeV
m 939 MeV

(70)

%e have discussed two aspects of the Goldber-
ger- Treiman relation: the attempt to account for
the experimental wN discrepancy 6,» by means
of dispersion relations, and the use of this quantity
and its SU(3) counterparts to test the nature of the
chiral-symmetry-breaking Hamiltonian.

The narrowing of the gap between the experimen-
tal and theoretical values of h„„„arises from two
factors: first, a not insignificant contribution
from the Ow intermediate states, ultimately con-
nected to the large value of the wN v term, and
second, a shift in the experimental parameters all
in the direction of reducing the experimental value
of 6„». Thus g„has increased in time to the cur-
rently accepted value' 1.25 + 0.01. The wN coupling
constant g has tended to decrease with time, and
indeed the most recent and most accurate determi-
nation" g=13.40+0.08, which we used in arriving
at Eg. (2), is appreciably less than the more gen-
erally quoted" value g = 13.6. The nucleon mass"
has not, of course, varied to any appreciable ex-
tent, but the value to be used in Eg. (2) is actually
the average of the neutron and proton masses,
namely 938.9 MeV. From the w' lifetime'
T = (2.6030+ 0.0023)&&10 ' sec and using the value"
G = (1.026+0.001)xl0 'm~ ', one can derive

f„cosg„=90.799 +0.042 MeV.

Given f»/f, =1.24+0.02, the ratio of K» to w»
rates implies
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can be. explained by the same chiral-symmetry-
breaking mechanism 0' = u, + cu, with c = -1.

The third measure,
2

"2 =0.077,
PB lf"

(71)

seems difficult to reconcile with the first two. In
the standard GMOR version of SU(3) xSU(3), c is
related to the masses by soft pion, kaon, and q
PCAC according to

( 0
~
v;

~
P; ) and of the vacuum. "

If this resolution is not found convincing [and
certainly, as we have shown, the value c = -1.25
is in disagreement with the SU(3) GT relation (52),
whose derivation is on very firm ground according
to the standard approach], the conclusion to be
drawn is that the irreducible (3, 3) + (3, 3) repre-
sentation is not compatible with the data. The
most plausible alternative, a reducible representa-
tion with a small admixture" of (8, 8), has yet to
be confronted with all the data in a systematic
way.

= -1.25 . (72)
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