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%'e present some comments intended to bring out simply and more explicitly the physics behind the

rigorously proven results on the absence of continuous symmetry breaking in (1 + 1) dimensions at

T = 0 and (2 + 1) dimensions for T & 0. It is also pointed out within a model that a massless boson

is present, in a sense defined in the text, even though symmetry breaking disappears.

The connection, in the absence of long-range
interactions, between the impossibility of broken
continuous symmetry and dimensionality has been
established with some generality and rigor for
both zero and finite temperatures. ' ' %'e sum-
marize this connection in Table I.

In this note we make some simple pedagogical
remarks which we hope will bring out more ex-
plicitly the physics behind these already proven
results. We claim neither new results nor math-
ematical rigor. Let us work in a familiar model,
and begin with one space dimension and one time
dimension and at zero temperature.

Consider two scalar fields cr(x, t) and v(x, t} with
a Lagrangian

Z(x) = g(s„o)'+ —,'(s„x)' —U(v'+c'),

where U(p') has a minimum at p = po. An example
is the familiar form U(p') =-~2'p'+-,'g'p', The
continuous symmetry in question is, of course, the
symmetry of Z(x) under rotations in the (o, x)
plane.

Spontaneously broken symmetry at T =0 refers
to the nonvanishing vacuum expectation value of
o and/or v. More precisely, first restrict the
system to a finite volume I- and add a term

to the Lagrangian where X is small, real, and
nonzero. One says that there is symmetry break-

ing if

(a) —= lim lim & 0 lo(x)10)

00.
The term X'o in (2} is not unique. Any other form
which picks out a preferred direction in the (o, v)
plane by giving it an infinitesimally lower energy
density will suffice. But the order of limits in (3)
is essential, for the result would necessarily
vanish if the order were reversed.

If the fields were classical, then (i} the term
—2[(a„v)'+(S„o)']would tend to make the vector
[o(x), v(x)] constant at all points in space-time,
(ii) U(o'+ v') would tend to make this constant
vector have length po, and (iii) the small external
field A, in (2) would tend to fix the direction of this
vector along o'. For a classical field, the lowest-
energy configuration is precisely o(x, t) = po and

x(x, I) =0, and there is symmetry breaking even
in one space dimension.

For quantum fields, the kinetic terms (so/df)'
and (dx/dt)' lead to zero-point motion, and the
ground state has a wave function that will clearly
spread to other field configurations as well. This
will happen in any number of dimensions. But if
the quantum spread is sufficiently large, then all
memory of the classically preferred direction
may be lost. As a result, (o) could vanish along
with (x), and there would be no symmetry break-
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Zo = oPo'(8„8)' —oX'8'. (6)

As X-O, this is just the Lagrangian for a string
stretched on the surface of a long cylinder of
radius p, . The range of 8(x} is from -~ to +~
to account for configurations where the string is
wound any number of times around the cylinder
at places. Equation (5) also corresponds to a free
scalar field, whose solutions are trivial and are
made up of a set of uncoupled oscillators, one for
each normal mode k. Before the limits in (3) are
taken, we can work in a large but finite volume

Then the free scalar field in (6) is well defined.
As usual,

8( I) [ i(o/ ax() t -i((ut-ax)]1 1

p ~L (2~ )1/2 k o

with [ao, a~ ]=5»,, o)~=(k'+)(')'~. The ground-
state wave function of this system is

1 o&=II y„, (6)

where P„ is just the ground-state wave function of
the harmonic oscillator corresponding to mode k.
In the representation where the field 8(x) is diag-
onal, &N, is just a Gaussian in (8„+8$). The strong
difference from the classical case is evident in

(6). The lowest-energy classical configuration
was restricted to the k=0 mode, where it was
further restricted to 8= 0. The quantum ground
state not only has a spread in the %=0 mode but
has all the infinitely many other modes present
as well. The effect of this spread on fluctuations
of 8(x) can be estimated from the second moment:

ing. This is what happens in one space dimension
and one time dimension, as seen below.

Let us define polar fields by ~ = pcos8 and
w = p sin8, and rewrite the Lagrangian as

~ = oP'((). 8)' + w(S, P)' I/-(P') - wk'8', (4)

where the infinitesimal external field term —&A.'8'
is slightly different (for reasons of solubility)
from (2), but is an equally good candidate for
picking the direction of o. We are interested in
the spread of the ground-state wave function of
this system in 8(x).

To get a qualitative answer, let us replace p'(x)
by an average c-number value po', and consider
just the behavior of the angular field 8(x). In
other words, consider the simpler Lagrangian

tions in 8 are infinitely large, and all memory of
the classical minimum at 8=0 is wiped out. In
fact,

&ole'"*'I o& = =&ole" "e '""e" '*'I o)

(8)

Splitting 8(x) = 8'(x)+ 8 (x) as before, it is easy to
see that

&Ol
eie(x)eie(o)

l 0) e-fo(o)+o(~)3 (10)

while

& Ol
-i B(x) i e(o)

l 0&
e-Lo(o)-~(x)3

Clearly, the infrared divergence is still present,
as X- 0, in the exponent in (10), making (10)
vanish, but it is canceled in the exponent of (11),
making that term nonzero and finite. Hence,

TABLE I. Possibility of reaking continuous symmetry.

where 8'(x) are the usual creation and annihilation
decompositions of 8(x) whose commutator
[8 (x), 8'(0)],=o = c(x) is again given by (7). Once
again, because of the infrared divergence in

c(0) as )(-0, (Ole' (')l0& vanishes, and therefore
so do &o(x)& oo(cos8(x)& and (w(x)& oo& sin8(x)& .
Thus, there is no symmetry breaking. The spread
of the ground-state wave function (6) in the vari-
able 8(x) is infinitely large due to zero-point mo-
tion, so that all directions in the (cr, w) plane enjoy
equal probability.

The existence of the infrared divergence in (7)
for the two-point function of the 8 field has a clear
physical meaning. As L, the volume, increases,
so does the probability of finding the string wound
around the cylinder an arbitrarily large number
of times. Thus, if the large fluctuations of the 8

field are interpreted "modulo 2~, " the model
makes physical sense. No matter how large 8

may become, c(x} and w (x), proportional to cos 8(x)
and sin8(x), respectively, cannot become large.
Their two-point functions are well defined, as can
be seen explicitly:

& Ol a(x)c(0) I 0&

co&0l(e'e *)+e 'o * )(eio(o)+e-ie(o))l0) (g)

1 " dke '~'
lim (Ol 8(x)8(0)l 0), ,=, +,)», =—c(x) .
g -neo 2wp,', 2 k'+)(' '"

(7)

It is clear that as )(- 0, (7) has an infrared diver-
gence in one space dimension. Thus, the fluctua-

Space
dimensionality

1
2

&2

T&P

no (See Hefs. 1 and 2) no (See Ref. 3)
no (See Refs. 1 and 2) yes
yes yes
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(a(x)o(0)) =(w(x)v(0)) ~e ~"i '"'~= exp —,—(1 —e "")1 dk

2mpp p k
(12)

is well defined.
[A technical point: The number c(0) used above

has an ultraviolet divergence due to the momentum
integral in Eq. (7). This is related to our cavalier
replacement of the field operator p'(x) in the angu-
lar Lagrangian by an average c number pp'. Note
that c(0) also has a 1/p, ' factor, where
p, - ( p(x)p(x)) again has an ultraviolet divergence.
Since, in the original theory, neither (o(x)o(0))
not (x(x)v(0)) is expected to vanish for xc0, these
offsetting ultraviolet divergences presumably do
not appear at all when the original model in (1)
is solved correctly. However, our results are in-
dependent of these technical complications in the
ultraviolet range, since the restoration or other-
wise of symmetry is an infrared phenomenon. We
therefore assume an ultraviolet cutoff A where
necessary in our qualitative remarks. ]

Next, let us elaborate a little on the statement
that "there are no Goldstone bosons in two dimen-
sions. "' It is not as though the massless Goldstone
boson (which refers in our example to excitations
of the 8 field when the space dimensionality is
greater than 1) acquires a mass in (1+1) dimen-
sions. Instead, its two-point function diverges
at the infrared end, making a massless free scalar
field theory mathematically ill-defined. Be that as
it may, we can consider the situation with an ar-
bitrarily large (but finite) volume L, and/or an
arbitrarily small but finite A. . In that case, the
theory should be well-defined, and excited states
can be obtained from the ground state (6) by apply-
ing the operators a~. The energy of the lowest
excited state, (k '+X')'~, will become arbitrari-
ly small. The system will resemble one containing
a massless boson to high accuracy, despite the
fact that symmetry breaking ((o})is negligibly
small.

This may be stated more precisely. It is be-
lieved that in (1+1)dimensions, a real field P
with a Lagrangian

g L. (8 4)2. &m 2. 42. l) . 44.

leads to two phases (symmetry breaking) for
y = A/m, ' &y„where y, is some finite number.
The "mass gap,

" as a function of y, would become
zero at the point y, . For the case of the complex
field, with a corresponding

~= 2: I8„41':-2m.': I 4 I':-4&:(I41')':,
our heuristic considerations would lead us to con-
jecture that even though there can never be break-
ing of the continuous U(1) symmetry, or massless

bosons in (I + I) dimension, nevertheless the mass
gap would become zero at y —= X/mo' =y„and would
stay at zero for y &y, . However, a massless parti-
cle interpretation of this continuous spectrum for
y&y, would not be viable.

In the case of space dimension D & 1, it is evident
that there is no infrared divergence in (8(x) 8(0)) .
Quantum fluctuations in 8(x) are still present, but
are finite. Therefore, there is still a bias in
favor of the 6}=0direction, and symmetry break-
ing exists. It can be easily checked that (cos8)
and hence (o} are nonvanishing for D &1 at zero
temperature.

At finite temperatures, one would expect the
spread in configurations of 8(x) due to quantum
effects to be further compounded by the demands
of entropy. In other words, a system at finite T
will contain a statistical mixture of not only the
ground state (6), which, as we saw, already had
a considerable spread in 8(x), but of excited states
as well. It is not surprising then that symmetry
breaking requires a higher space dimensionality
than 2. More precisely, at finite T, considera-
tions regarding the vacuum expectation value of
any operator & are replaced by those of the ther-
modynamic expectation value

Tl [e AJ

Thus, in the limit X-0, L- ~, we have

6(k- k')
&aran)r =,8,

where

P= I/keT,

where k~ is the Boltzmann constant. Hence,

2
(8(x)8(0)}r= ~ e ""(I+

0

(14)

The first term in (14) is the earlier T =0 result,
but the second term has a stronger infrared be-
havior. It is clear that unless D&2, (14) will be
infrared-divergent, producing infinitely large
fluctuations in 8(x) and destroying symmetry
breaking as before.

Needless to say, all these remarks apply only
to continuous symmetry. Broken discrete symme-
try can happen at T =0 in one space dimension,
although it disappears for any finite T. An ex-
ample of this in a renormalizable field theory has
been discussed in detail elsewhere. 4
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